
User-Centric Communication Middleware

Technical Report FIU-SCIS-2005-11-01
November 2005

Chi Zhang, S. Masoud Sadjadi, Weixiang Sun, Raju Rangaswami, Yi Deng

School of Computing and Information Sciences
Florida International University

{czhang, sadjadi, wsun001, raju, deng}@cis.fiu.edu

Abstract
The development of communication applications today follows a vertical development approach where

each application is built on top of low-level network abstractions such as the socket interface. This stovepipe
development process is a major inhibitor that drives up the cost of development and slows down the pace of
innovation of new generation of communication applications. In this paper, we propose a user-centric
communication middleware (UCM) that provides a unified higher-level abstraction for the class of multimedia
communication applications. We investigate the minimum set of necessary requirements for this abstraction from
the perspective of next-generation communication applications, and provide an API that exemplifies this abstraction.
We demonstrate how UCM encapsulates the complexity of network-level communication control and media
delivery. Further, we show how its extensible and self-managing design supports dynamic adaptation in response to
changes in network conditions and application requirements with negligible overhead. Finally, we argue that UCM
enables rapid development of portable communication applications, which can be easily deployed on IP-based
networking infrastructure.

Keywords: Multimedia communication applications, user-centric middleware, autonomic computing.

1 Introduction
The convergence of various multimedia communications including voice, video and data over IP networks

during the past decade has resulted in the emergence of a wide range of communication applications. Examples
include Video Conferencing, Voice over IP (VoIP), and Instant Messaging. These communication applications have
the potential to dramatically impact our everyday life and change the way we communicate with each other.
However, the fast pace growth of innovations in this direction has been restrained by the stovepipe approach that is
currently employed in the development process of these applications. In this paper, we introduce a novel user-centric
communication middleware (UCM) that provides a high-level communication abstraction; essentially, speeding up
the development of new communication applications and freeing the developers from the complexity of network-
level communication control and media delivery.

Today, the development of domain-specific communication application (e.g., Telemedicine and Disaster
Management) is both time-consuming and error-prone because the low-level communication services provided by
the existing systems and networks are primitive and often heterogeneous. Multimedia communication applications
are typically built on top of low-level network abstractions such as TCP/UDP socket, SIP (Session Initiation
Protocol) and RTP (Real-time Transport Protocol) APIs. Further, the underlying network configurations can also
vary significantly which can reduce portability within applications developed using a vertical stovepipe approach.
What is lacking is a shared and systematic approach to design and development across communication applications.
As a result, development continues in an ad-hoc manner creating a fragmented and non-reusable set of software
products. This fundamental approach of vertical and stovepipe development, therefore, drives up the cost of
development and deployment, limits the utility of the applications, and significantly slows down the pace of
innovation of next generation communication applications.

1

Figure 1: UCM provides an abstraction that separates network complexity from application communication logic.

Our UCM fundamentally changes the process of building communication applications from stovepipe

development to horizontal middleware-based integration, which helps to streamline standardization. As illustrated in
Figure 1, UCM provides a unified user-centric communication service to diverse upper-layer communication
applications ranging from simple phone call and video conferencing to specialized communication applications like
disaster management and telemedicine. UCM is well-positioned to serve as a client-side “middleware” that
encapsulates the complexity of multimedia telecommunication. The key innovation of the UCM concept is a
horizontal abstraction that separates and isolates the complexities of network-level communication control and
media delivery from the diversity of application-dependent communication logic. UCM delivers this high-level
abstraction by providing a uniform and easy-to-use API that follows the Façade design pattern1 [FHJV95]. Under
this unified high-level abstraction, internally UCM utilizes the underlying network infrastructure, systems and
libraries to ensure that basic communication tasks are carried out smoothly.

Since the UCM solely targets its abstraction towards providing user-centric multimedia communication service,
its API has a limited scope. We identify the scope of UCM more specifically to multimedia telecommunication
between users. This reduced scope allows for a simple and easy-to-use UCM interface. It also allows for policy-
based self-management and autonomic behavior within the UCM. To show the value of UCM, we developed a
prototype implementation of UCM in Java (UCM/J). We conducted a number of case studies using UCM/J (the
results reported in later sections). Compared to previous abstractions for communication in Java, most notably the
socket API in the Java network package, the signaling API of JAIN-SIP package [JAIN], and the real-time media
delivery API in the JMF package [JMF], the UCM provides more coarse-grained reusability as well as ease-of-use.
However, it sacrifices some flexibility due to its restricted scope of user-centric multimedia communication support
for client-side applications (e.g., JMF can be used to implement a media streaming server). This is illustrated in
Figure 2.

In this paper, we investigate the minimum necessary requirements for the UCM abstraction, from the
perspective of sophisticated communication applications, and provide an API that exemplifies this abstraction and
supports dynamic multi-party and multimedia communications. We demonstrate how the extensible and self-
managing design of UCM supports dynamic adaptation in response to changes in network conditions and application
requirements. Further, we discuss how UCM enables rapid development of portable communication applications
that can be easily deployed over commodity IP-based networking infrastructure. We summarize the values of this
unified UCM abstraction as follows:

1 Façade design pattern provides a simple interface to a complex system.

Application-dependent
Communication Logic

Signaling (e.g., SIP)

UUCCMM:: UUsseerr--CCeennttrriicc CCoommmmuunniiccaattiioonn MMiiddddlleewwaarree

TCP/UDP Sockets Real-Time Media Delivery (e.g., RTP)

Application-Independent
Communication Service

Disaster
Management Telemedicine

Application Phone
Call Conference

Call App. Video Instant Distance
Conferencing Messaging Learning

UCM API

Network-Based Communication
Control and Media Delivery

Device Drivers System Libraries

2

Figure 2. UCM abstraction and flexibility compared to JMF, JAIN-SIP, and Java Network Package.

• Due to the high-level abstraction separating the application-dependent business logic from the network-

level basic communication services enabled by UCM, the applications are transparent to the details of
underlying network protocols and infrastructure. They only deal with high-level application-dependent
communication logic; which are relatively simple to express.

• Since UCM is responsible only for the basic multimedia communication services that can be shared across
applications, the high-level abstraction of UCM is independent of application business logic. As a result, a
version of the UCM developed and optimized for a particular system and network configuration is
reusable by a variety of communication applications.

• The network infrastructure underlying the UCM can be heterogeneous, requiring different patterns of
communication. For example, even for simple VoIP conferencing, the signaling procedure depends largely
on the network infrastructure [LS03, Ros05]. With UCM, a change in the underlying network
infrastructure does not affect the communication logic of applications; a unified UCM abstraction hides
network heterogeneity from the applications so that applications can be easily ported to new network
environments.

The rest of this paper is organized as follows. In Section 2, we identify the set of requirements for the UCM
abstraction and present a minimal API for UCM that reflects these requirements. In Section 3, we overview UCM’s
internal architecture and design and show how this architecture realizes its API. In Section 4, we introduce the
prototype implementation of UCM in Java and report some of our findings through the experiments we conducted
using the prototype. Section 5 presents related work and Section 6 makes concluding remarks.

2 UCM Abstraction and API
The UCM abstraction is the key contribution of our work. In fact, we realized that finding the right level of

abstraction is non-trivial. An abstraction that is too high-level can reduce the flexibility afforded to the application in
the kind of functionality it provides to users. On the other hand, an abstraction that is too low-level, although
providing a greater degree of flexibility to the application, can significantly complicate the task of the developer,
increase development time, and also reduce portability. In determining the level of abstraction, we took into account
the above factors as well as kept in mind the target class of applications that would use the abstraction: client-side
multimedia communication applications.

In this section, first, we identify the set of necessary requirements for the UCM abstraction. We then
present an API that reflects the UCM abstraction. Finally, we provide a justification as to why we believe that the
proposed UCM API reflects the minimum set of necessary requirements to deliver the UCM abstraction.

2.1 UCM Abstraction Requirements

We first look at the requirements of the UCM abstraction from the perspective of upper-layer applications. In
contrast to traditional telephone networks, where end devices are “dumb” and all the complicated communication
functions are controlled by servers/switches, in IP networks designed based on the end-to-end argument,
applications on end-hosts can deliver sophisticated communication services. For example, in a simple traditional

Level of
Abstraction

Level of
Flexibility Low High

Low

High

Java
Network
Package

JMF &
JAIN-SIP
Package

Trend Direction
Legen

User-Centric
Communication
Middleware

3

person-to-person call, only one voice conversation needs to be supported at each end-host. With sophisticated next-
generation communication applications, a user at one end-host might simultaneously communicate with different
groups of people using diverse media.

To satisfy the communication needs of next generation multimedia communication applications, the UCM
abstraction should support the basic concept of a user session and should allow for creation of multiple user sessions.
We define a user session within UCM as a communication process that involves a number of participants, who can
be added or removed dynamically. A user session thus represents a “multicast communication space”, within which
each participant can send media to all the other session participants. In case one participant needs to communicate
with only one of the other participants, a separate user session should be established. Within each user session, the
participant should be able to deliver various media on demand, such as send a document in the middle of a voice
communication. One important requirement for the UCM abstraction is supporting multiple user sessions, which is
necessary for sophisticated communication applications, such as disaster management. In response to a disaster, an
administrator may initiate several user sessions from an end host to different groups, since different groups may
have different communication topics, media types (e.g., voice communication in one user session and text chat in
another), priorities and levels of secrecy. As another example, in a distance learning application, while all students
participate in a user session of lecturing, one student may establish a private session to another student, asking for a
document.

Another requirement of the UCM abstraction is that it must comprehensively encapsulate the details of the
end-host networking infrastructure. The abstraction should ensure that applications can be ported easily to different
end-host hardware and different underlying network infrastructure. However, although the UCM encapsulates
networking details, under certain circumstances, the upper-layer application may desire to be notified of the
communication states, so that appropriate decisions can be made based on its application-dependant communication
logic. Further, in some applications, the user may desire to dynamically control the behavior of UCM in session
control and media delivery, according to his/her preferences, by specifying policies. The UCM abstraction must be
flexible enough to support such requirements. We elaborate on these discussions further in Section 2.5.

Given the above expectations from UCM as a user-centric middleware, we identify four major categories of
requirements to be reflected by its interface providing the communication service:

• First, the interface must support the basic presence functionality so that a user can login to a signaling
server, and be able to retrieve and modify his/her current contact-list.

• Second, the interface must support the basic concept of communication by adequately capturing the notion
of a communication user session among multiple participants using diverse media so that the set of
participants and media can be dynamically controlled.

• Third, the interface must provide a mechanism to expose low-level network and system events to the
applications; essentially, enabling development of context-aware applications on top of UCM.

• Fourth, the interface must provide the capability to specify high-level self-management policies to be used
as guidance inside the UCM for controlling how media is exchanged and delivered.

In the rest of this section, as a proof of concept, we introduce a UCM API as four functionally separated sets of
operations that reflect the four requirements of the UCM abstraction.

2.2 UCM Initialization and Presence Interface
We first present the UCM initialization and presence interface that allows an application to register a user for

communication purposes with a signaling server. The signaling server information is maintained within the UCM.
Table 1 presents the proposed interface.

Interface Description

void launch();
void shutdown();
boolean login(String realm,
 String userName, String passwd);
boolean logout();
boolean addContact(
 String displayName, String identifier);
boolean removeContact(
 String displayName, String identifier);

/* Configure UCM based on a configuration file */
/* Do cleanup for UCM */
/* Login at the signaling server */

/* Logout from the signaling server */
/* Add a new contact to the contact list */

/* Remove an existing contact from the contact List */

Table 1: UCM Initialization and Presence Interface.

4

2.3 UCM Session Interface
The session interface provides an application with the ability to create multiple independent user

communication sessions. Each user session can be configured to allow multiple participants and various media
delivery on demand. The session interface is presented in Table 2.

Interface Description

int createSession(String comments);
boolean destroySession(int sid) ;
public boolean addParty(int sid, ArrayList parties);
public boolean removeParty(int sid,
 ArrayList parties);
boolean addMedia(int sid,
 String media_type, String media_location);
boolean removeMedia(int sid,
 String media_type, String media_location);
boolean suspendMedia(int sid , String media_type,
 String media_location, String direction);
boolean resumeMedia(int sid , String media_type,
 String media_location, String direction);

/* Create a session for a new communication */
/* Destroy an existing session */
/* Add new parties to a session */
/* Remove parties from a session */

/* Add a new media to a session */

/* Remove an existing media from a session */

/* Suspend the data transmission for a media */

/* Resume the data transmission for a media */

Table 2: UCM Session Interface.

 A session ID is returned by the UCM whenever a new session is created with the createSession call from
the upper layer. The session ID is then used by the upper layer to uniquely identify a user session maintained within
the local UCM, in the subsequent calls to add/remove participants and media into/from the user session.

Each user session may involve several types of media. Each media delivery within a session is uniquely
identified by the URI of the media. Diverse media types are supported (e.g., real-time audio/video, instant messages,
and files). In addition, there is always a default medium, for continuous conversation. In traditional telephone or
conferencing applications (such as those supported by Java Telephony API), the default medium is voice. However,
if a user already has one session with voice as its default medium, it’s not desirable to have voice as the default
medium for another concurrent user session on the same device. The UCM abstraction allows the upper-layer to
specify application-dependent default medium (e.g., the application can establish a second session of text chat). In
addition, the traditional telephone or conferencing applications assume the media delivery is always bi-directional.
UCM supports both two-way (e.g., voice conversation) and one-way media transfer (e.g., file transfer and distance
learning) with different media formats.

2.4 UCM Callback Interface
The UCM callback interface provides a mechanism by which the UCM can notify the application of

specific events within the UCM. These are then used by the application in a custom fashion.

Interface Description
void networkFailure(String nwFailure);
void contactStatus(String user, int status)
void sessionStatus(int sid, String status);
void partyStatus(int sid, String user,
 int status);
void media Status(int sid, String media_type,
 String media_URI, int status);

/* Notification of network failure */
/* Report the presence of a contact */
/* Report the status of a session (open, close etc.) */
/* Report the status of a participant in a session (busy-
tone, ring-tone, join, etc.) */
/* Report the status of a media in a session */

Table 3: UCM Callback Interface.

The UCM callback interface presented in Table 3 allows UCM to report status of the network, session,
participants, and media. Notifying session status to the upper-layer applications enhances UCM flexibility for

5

different application logic. As an example, at the caller side, after the caller dials the callee, he/she should receive
either a “Busy-tone” or a “Ringing-tone”, indicating whether the remote device is busy/ready before the callee picks
up the phone. When a “Ringing-tone” signaling message is received by the caller, the upper layer may select a
presentation (e.g., a flashing icon) other than an audio ring on the speaker. This could be useful when the caller
concurrently initiates several sessions in disaster management, or connect to several participants in one session.
Thus, instead of encapsulating the “Ringing-tone” message and playing an audio ring on the speaker directly, the
UCM simply notifies the session status to the upper-layer for application-dependent processing.

2.5 UCM Self-Management Interface
The UCM self-management interface allows application control over UCM behavior. The application can

customize UCM behavior under specific network and system conditions, based on user or application preference.
The interface takes as input an XML string which describes the policy for self-management. This API is presented in
Table 4.

Interface Description
int applyPolicy(String xmlString);

/* Apply the self-management policy specified by the
xmlString */

Table 4: UCM Self-Management Interface.

We developed an XML Schema to be able to specify high-level policies in XML documents. At a high-level, a
UCM self-management policy can be interpreted as an “if <condition> then <action>” construct. An example of a
self-optimization (a sub-category of self-management) policy in XML that is currently supported by the UCM is
shown in Figure 3. The policy is specific to the session with ID # 24 and it dictates that when UCM detects a low
network bandwidth condition, it should increase the video compression and vice-versa to maintain a steady frame-
rate. A specific experiment showing the following policy in action and providing further details is presented in
Section 4.

<session sessionID=”24”>
<connectionConstraint condition=”networkBandwidthDecreasing”
action=”decreaseVideoResolution” />
<connectionConstraint condition=”networkBandwidthIncreasing”
action=”increaseVideoResolution” />

</session>

Figure 3. Example self-optimization policy specification.

2.6 UCM API Justification
As mentioned earlier, the UCM API is limited to the scope of user-centric multimedia communication.

However, it should be flexible enough to allow diverse and sophisticated user-centric communication logic. We
claim that these set of requirements are necessary for the UCM that are required to keep the API simple, yet flexible.
These requirements allow the UCM API to remain simple by providing bare minimum middleware support for
multimedia telecommunication among users, while at the same time, providing such applications the flexibility of
establishing full-featured communication user sessions with control over the number and identity of participants and
the nature and timeliness of media exchanged during the session. Further, the API also provides a mechanism for
reporting session states, error conditions, exceptions, as well as specific system and network events that the
application may be interested in. The API also allows for policy-driven self-management, whereby an application
can tailor the behavior of UCM under special or changed environment. This minimum API can already support a
variety of next-generation communication applications. We believe that with the UCM abstraction and API we have
reached a higher-level of understanding about user-centric communication services.

3 UCM Internal Architecture and Design
In this section, we detail the UCM internal design that supports the unified high-level abstraction, deals with

the complexity of communication, and encapsulates underlying networking heterogeneity.

6

3.1 UCM Design Issues
UCM is a client-side middleware to be deployed on end hosts. Below the unified UCM abstraction, the

UCM core translates a high-level communication task into a series of operations that control and coordinate the
underlying networking facilities to deliver media to session participants. The UCM core is complex in that it
coordinates both the control plane (i.e., signaling protocols negotiating the communication) and the data plane (i.e.,
transport protocols delivering media) according to the requirements of communication tasks, as well as the network
configurations and conditions.

The introduction of UCM will not affect or require changes to the existing protocols and network
infrastructures. The communication between peer UCMs follows various protocol standards (e.g., SIP [HSSR99] for
signaling, and RTP [SCFJ03] for delivering real-time media), and may rely on various communications
infrastructures such as signaling servers and media gateways between peer UCMs. For example, an existing
signaling server can process and forward signaling messages negotiating communication parameters such as media
to be transmitted, encoding/decoding schemes, TCP/UDP port numbers, and device media capabilities. The standard
protocols, such as SIP, can be adopted as the signaling mechanism between UCMs, or between UCM and signaling
servers. The signaling servers also accept user registration and authenticate the users. The IP address of the signaling
server and its port number for SIP signaling must be configured into the UCM during its initialization. In addition,
there may be a media gateway converting diverse audio/video encoding schemes from different UCMs, and mixing
real-time audio/video (sometimes called Multi-Point Control Unit, or MCU) for distributed multi-party conferencing.
A mixer receives individual audio streams from all session participants and combines them into a single stream (by
summing audio signals), which is then sent back to all participants. Without a mixer, the UCM of each participant
has to establish point-to-point audio connections (i.e., a full mesh model) to all the other participants [LS03, Ros05].
These considerations reflect the design philosophy of not re-inventing the wheel in UCM design and implementation.

The abstraction of UCM user session is a high-level and simple abstraction for multimedia and multi-party
communication. While the application maintains and processes application-dependent states of a session, UCM
maintains and processes the application-independent low-level communication states of a session. Just like a socket
number and its associated port that hide the communication details of reliable/unreliable data delivery (e.g., data
packetizing, packet sequencing, and acknowledgements), the UCM session ID encapsulates the complexity of
multiparty, multimedia communication. To be more specific, although the session IDs are unique within each UCM,
for the same user session involving multiple participants, the UCM session IDs may be different at different UCMs
of different participants. The communication messages between different UCMs follow the standard networking
protocol. The messages of these networking protocols may have their own notions of sessions or session IDs, and do
not contain UCM session IDs. For example, a RTP session is a single media stream between two users; without a
media mixer, one participant has to send his/her audio to all the other participants in duplicated streams, each of
which may have different SIP session ID and RTP session ID. To encapsulate various network sessions in one
abstracted user session for our user-centric middleware, UCM must internally maintain the mapping between the
UCM session ID and the session IDs of the underlying protocols. In the rest of the paper, the term “session” is used
to denote a UCM user session, unless otherwise stated.

The UCM internal architecture has an extensible framework facilitating the integration of new communication
functionality, new media types, and new networking primitives (e.g., QoS). The internal modules of UCM are
designed to be extensible and reusable for different network configurations (e.g., with or without conferencing mixer
discussed above; with or without NAT traversal [RWHM03]; different signaling protocols such as SIP [HSSR99] vs.
H.323 [H232]). The UCM is also designed to be self-optimizing, so that the middleware can automatically adapt to
dynamic network conditions, such as available bandwidth, packet loss rate, and energy consumption.

3.2 UCM Internal Architecture
Below the unified API, the internal architecture of UCM is outlined in Figure 4. It includes the following

modules:

7

UCM Unified Application Programming Interface

Figure 4: The UCM Architecture.

(a) UCM Manager:

The UCM Manager is responsible for the initialization and the configuration of the UCM middleware. The
UCM configuration occurs when the UCM is initially launched and includes the signaling server information (IP
address etc.). It is also responsible for registering the user account at the signaling server, providing the current
address at which it can be reached for signaling messages. Upon receiving an application request for creating a new
session (at the caller side), or a signaling message INVITE (at the callee side) from a remote user negotiating a new
conversation, it creates a new Session Manager (see below) to handle the new communication session. The UCM
maintains the list of Session Managers for all active sessions. In addition, the UCM manager handles states relevant
to all sessions that cannot be handled by individual Session Managers. For example, in case of multiple user sessions
of voice communication, the UCM can activate one voice session and mute all the other voice sessions. The
application can control the active session through the resumeMedia/suspendMedia interface given in section
2.2, thus implementing the call-waiting service.

(b) Session Manager:

A session manager deals with a single user session. Since the states associated with a session include the call
status, the participants, and the media transfer, this module further delegates the tasks to the “Call Processing”,
“Session Participants”, and “Media Delivery” sub-modules within the Session Manager. The Session Participants
module keeps the list of participants of this session.

UCM Manager

Session Manager
Call Participants

Processing

Network Sessions

Media QoS & Self-
Delivery managemen

User Sessions

Presence

t

Media Processing & TransmissionSignaling

Signaling Protocols
Networking Interface to the Underlying IP Networks and Protocols

Real-Time Protocols Best Effort Protocols
, SIP) (e.g., SCP, HTTP(e.g. (e.g., RTP))

TCP /UDP Sockets

8

Media Processing & Transmission Modules

Configure and Control
Send short messages

Add/Remove/Pause Media
Negotiate Parameters Media

Delivery
QoS &

Self-Management

Mixer

Fetch Media

Encode Media
and Sync.

Transmit
Media

Receive
Media &
Feedback

Decode Media
and Sync.

Play Media

Read File

Send File

Store File

Receive File

Call
Processing

Real-Time Media Best-Effort Media

Signaling

Figure 5. Signaling and Media Delivery.

The Media Delivery module manages, at a high level (i.e., at the level of user sessions rather than network

sessions), the transfer of media in a session, as demonstrated by Figure 5. It translates an “addMedia” call from the
application into a number of internal invocations. It first relies on the Call Processing module (see below) to
negotiate the transmission parameters (port number and encoding/decoding schemes) before the actual media
transmission. It then controls on the “Media Processing and Transmission” module (see below) to actually deliver
the media. Some media, such as short messages, can be delivered within the signaling message (e.g., SIP), and thus
go through the Signaling module (see Figure 5). It also triggers the delivery of all session media to a new participant,
when he/she just joins the session.

The Call Processing module controls, at a high level (i.e., at the level of user sessions rather than network
sessions), the call processing logic of a session. It maintains the mapping from a user session to low-level signaling
sessions. It is based on the underlying Signaling module, which actually carries out the basic signaling. For instance,
it translates a call of “addParticipant” from the upper layer into a number of operations independent of the
user session, to be delegated to the underlying Signaling module to invite the remote participant. When receiving a
signaling message indicating that a new participants joins the session, it calls the Participants module to update the
participant list, and then reports the newly joined participant to the upper-layer (through the partyStatus
callback interface in Table 3). For voice conferencing, the Call Processing module adjusts its signaling procedures
based on the availability of a conferencing mixer, and appropriately instructs the Media Delivery module.

(c) Media Processing and Transmission:

The media will be pre-processed before transmitted at the sender side, and will be post-processed and recovered
at the receiver side. The processing and transmission/reception depend largely on the media types and network
configurations. The Media Processing and Transmission module maintains the supported media types and the
corresponding encoding/decoding schemes, and carries out media processing and transmission, demonstrated in
Figure 5. For voice conferencing, the participants either rely on a conferencing server mixing the voices from
different senders, or use meshed audio connections with which each participant establishes audio connections to all
the other participants [LS03, Ros05]. With the latter, this module must mix the received audio signals on the end
host. Although the Media Delivery module (user-session dependent) under the Session Manager controls or
configures whether mixing is turned on, based on the information from the Call Processing module, the actual
mixing is conducted by the Media Processing and Transmission module. In contrast to the Media Delivery module,
this module is fully unaware of the states of a user session.

9

As shown in Figure 5, the module has different processing paths for real-time media delivery and best-effort
data delivery (e.g., files). For best-effort data delivery, everything can be blindly transmitted as a file, since no
encoding/decoding is needed, and transmission control is independent of the media content. At the receiver side, the
received file associated with a session will be stored at a specified directory (i.e., simple post-processing). Since the
signaling modules has negotiated and reported the file type (e.g., PDF), the upper-layer can conduct application-
dependent processing, such as launching the corresponding document processing applications (e.g., Acrobat Reader)
according to the file type.

(d) Signaling:

The Signaling module carries out the basic signaling operations according to the signaling protocols (e.g., SIP),
such as registration, invite/disconnect a user, media type and parameter negotiation. In the middle of media delivery,
it can also negotiate to temporarily suspend the media delivery in a session (e.g., through a SIP re-INVITE message
with a connection address 0.0.0.0). The major difference between the Signaling module and the Call Processing sub-
module under the Session Manager is that the basic signaling activity is carried out by the Signaling module, and the
Signaling module is independent of the states of a particular UCM user session. For example, the signaling module
is unaware of the mapping between a user session and SIP signaling sessions. In contrast, the Call Processing
module takes care of signaling issues depending on the states of the user session. On the other hand, the Signaling
module encapsulates the signaling heterogeneity, such as different signaling protocols (SIP [HSSR99] vs. H.323
[H232]), with or without NAT traversal [RWHM03].

(e) QoS and Self Management:

This module assists Media Delivery in automatically adapting transmission parameters or modes, seamlessly
handling network transitioning, and hiding or reporting network faults. The high-level policies guiding self-
optimization can be given by the interface defined in Section 2.5. The policy is made concrete and implemented
inside the Session Manager. For example, if the available bandwidth is low, this module can either instruct the
Media Delivery module to use an encoding scheme that provides less resolution and consumes less bandwidth, or
report to the upper-layer for a high-level decision (e.g., instead of voice communication, use a light-weight text
chat). Our experiment results are presented in Section 4.

(f) Presence

A user X may need to know whether his/her friend Y is present in the system, indicated by login of Y at his/her
signaling server. The user X may rely on mechanisms such as SUBSCRIBE/NOTIFY in SIP to request the
registration server to “push” the information to the client-side UCM. Since this information does not belong to any
established session, a separate module, Presence, is introduced for this purpose.

3.3 Discussion
As can be seen, one important criterion for the UCM design is separating a user-level session from the

underlying network sessions, as indicated by the horizontal dotted line in Figure 4. Each user session involves a
number of network-level sessions (either signaling or media delivery sessions). Only the modules above the dotted
line are aware of user sessions, while all the modules below that line are responsible for individual network-level
sessions. Adding new features related to user sessions, such as “getLastMissedCall”, will only change the
UCM Manager and the Session Manager above the dotted line in Figure 4. On the other hand, changing the
underlying signaling protocols (e.g., from H.323 signaling protocol to SIP) will only affect the Signaling module
under the dotted line.

We are aware of the importance of other issues, such as security, energy consumption, and
mobility support. For example, each UCM session may have different security policies.
However, the principal contribution of this paper is to demonstrate an extensible framework that
facilitates hiding the communication complexity and heterogeneity, rather than new
communication functionality. We do not envision any roadblocks to incorporating such advanced
features once an extensible framework is established.

10

4 Prototype Implementation and Evaluation

In order to evaluate the concept of UCM, we have developed a prototype of UCM in Java, called UCM/J. As

the SIP protocol is accepted as a standard protocol for Voice over IP, we chose SIP as our signaling protocol.
Among the implementations of the SIP protocol, we chose the open source JAIN SIP [JAIN] by NIST. We extended
the SIP signaling protocol to negotiate transmission parameters (i.e., TCP port numbers) and file names for on-
demand file transfer bundled within a UCM session. However, most of the features provided by the UCM can be
mapped to the existing protocol standard. For example, adding a medium in the middle of a session is supported by
the SIP re-invite message. Negotiating unidirectional media transfer is implemented by the “send-only” or “recv-
only” attributes of Session Description Protocol (SDP) [HSSR99]. The signaling messages of UCM go through SIP
Express Router, an open source SIP server (http://www.iptel.org/ser/).

For real-time multimedia transmission on IP networks, RTP is used as the transport protocol. We developed
our prototype based on the JMF [JMF], which uses RTP. In our prototype, files are transferred via TCP connections
and instant messages are delivered via SIP Messages. The prototype follows an extensible design, so that it can
easily incorporate new media.

Application Based on JAIN_SIP/JMF Based on UCM
Person-to-Person
Voice Call

JAIN-SIP-Applet-Phone UCM-based Voice Call

Person-to-Person
Video Communication

SIP-COMMUNICATOR UCM-based Video Communication

Table 5: Applications and Development.

To justify the UCM concept, we developed two types of applications based on UCM: person-to-person voice
call, and person-to-person video communication (including both video and audio). We compare these against two
equivalent open source applications developed upon JAIN-SIP/JMF that we downloaded off the Internet: the JAIN-
SIP-Applet-Phone (https://jain-sip-applet-phone.dev.java.net/) for person–to-person voice call and the SIP-
Communicator (https://sip-communicator.dev.java.net/) for person to person video communication, shown in Table
5. The encoding schemes used are G.711 and Motion JPEG, for audio and video, respectively. For each type of
application, we did comparative experiments to evaluate the UCM.

4.1 High-level UCM Abstraction

By providing the high-level communication API, we claim that UCM makes it easier to develop
communication applications. We used the lines of code (loc) metric to compare the above applications, with and
without the UCM abstraction. The results are shown in Table 6. The development time for Person to Person Voice
Call application based on UCM is about 5 hours (one developer). The development time for Person to Person Video
Communication based on UCM is about 6 hours (one developer). We did not get the development times for the open
source applications. However, based on the lines of code comparison with and without UCM, it is reasonable for us
to conclude that the development time for communication applications without UCM would be significantly longer,
probably requiring several days. The experiments show that in terms of the lines of code (loc) metric and the
development cycle, the UCM API makes it significantly easier to develop user-centric multimedia communication
applications.

Application JAINSIP/JMF

 (loc)
UCM
(loc)

Person to Person Voice call 9478 435
Person to Person Multimedia communication 16784 440

Table 6: Lines of Code comparison for developing applications with/without the UCM abstraction.

4.2 Performance Evaluation
While providing a higher-level abstraction to communication applications, UCM could potentially introduce

performance overhead. Although UCM does not touch the network protocols and infrastructure, it changes the
paradigm of application development on end hosts. Therefore, it is very important to evaluate the UCM performance
on end-hosts. We compare the CPU utilization as well as the network utilization of the applications developed with

11

and without UCM. Our results demonstrate that UCM can provide the higher-level abstraction without significantly
compromising the performance.

For person to person voice call, the average CPU utilization is around 0.237% with the JAIN_SIP-Applet-
Phone application, and 0.284% with the UCM-based equivalent application. For person to person video
communication, the average CPU utilization is 35.417% with SIP-Communicator, and 34.912% with the UCM-
based equivalent application, as shown in Figure 6. The CPU utilizations are almost the same; that is, the
performance overhead in terms of CPU utilization with UCM-based communication applications is negligible.

In terms of network utilization, for person to person voice call, the average throughput is 73.8 kbps with the
JAIN-SIP-Applet-Phone, and 73.2 kbps with the UCM-based equivalent application. For person to person video
communication, the average network bandwidth of SIP-Communicator is 830 kbps, and 670 kbps for the UCM-
based application, due to an optimized image compression rate.

 Figure 6. CPU Utilization with Person-to-Person Video Communication: (a) SIP-COMMUNICATOR
(b) UCM-based software.

 CPU Utilization (%) CPU Utilization (%)

4.3 Self-Management Experiments

Next, we demonstrate how UCM supports self-optimization as one aspect of self-management. The high-

level policy from the upper-layer application reflects the user preferences: if the network bandwidth changes, then
only modify the video resolution. This policy implies that the frame rate should be stable (in this case 13 fps). This
high-level policy is expressed using the XML policy string as shown in Figure 3. The throughput of video traffic,
limited by the available bandwidth, is the product of the frame-rate and the frame-size. The latter is further
determined by the image compression rate. Without the self-managing policy for the sender, a decreased bandwidth
will cause packet losses, and significantly reduce the frame-rate at the receiver side. With the above policy, the user
can expresses his/her preference to maintain high frame-rate at the expense of more image compression: if the
available bandwidth decreases, reduce frame resolution by increasing the image compression in order to make the
frame rate stable; if the available bandwidth increases, increase frame resolution by reducing the image compression
for full utilization of the network resource. Notably, before the image compression rate increases to a certain point,
the difference in image quality is not discernable to many users. Second, frequent change in the compression rate
may cause instability. The implementation details about setting difference thresholds are omitted due to space
limitations.

To simulate the change of bandwidth, we use NetPeeker (http://www.net-peeker.com/), a network speed
limiter, to control the traffic. With NetPeeker, we simulate three network capacities: 1100KB/s, 500KB/s, and
100KB/s. The results of this experiment are illustrated in Figure 7. The deep blue line shows the network bandwidth
and the light blue line represents the throughput of video stream. As Figure 7 shows, UCM dynamically adjusts its
throughput of video stream based on the change of available bandwidth.

120 100 0 60 20 40

0

20

40

60

Time
(seconds)

80 140

80

100

120 100 0 60 20 40

0

20

Red line represents current time Red line represents current time

40

60

Time
(seconds)

80 140

100

80

12

Network
Bandwidth
(KBytes/s)

Figure 7: The network bandwidth (deep blue line) and video stream (light blue line) over time.

Figure 8: Frame rate changes with network bandwidth change.

Finally, we performed the same experiment with the SIP-Communicator and compared its receiver-side
frame-rate with an equivalent UCM-based application, shown in Figure 8. The red O symbols represent the frame
rates for the SIP-Communicator at different network bandwidths while the blue X symbols represent the frame rates
of UCM-based implementation. With the configured policy, the frame rate of UCM is stable when the network
bandwidth decreases, due to the increased compression rate. With a fixed compression rate, the frame rate of SIP
communicator decreases and sometimes the video freezes. Without the policy, the behavior of UCM is the same as
SIP Communicator.

5 Related Work
Prior work related to UCM that can be categorized into three major groups: (1) multimedia communication

applications, (2) protocols, APIs, and software frameworks for developing multimedia applications, and (3) adaptive
middleware and toolkits for supporting self-management in multimedia applications. In the rest of this section, we
briefly introduce projects in each category and discuss how they are related to UCM.

Multimedia communication applications. Yahoo Messenger, MSN Messenger, AOL Instant Messenger, AIM,
ICQ, IRC, Jabber, and Google Talk are among the numerous multimedia communication applications that are
currently being used by millions of individuals and institutions around the world. These applications provide a one-
size-fit-all solution to multimedia communication and fail when there is a need for more specialized communication

90 60 30

100

500

1500

1000

Time
(seconds)

240 270 300 0 120 150 180 210

X

1.5fps

6.5fps

13fps X X o

Frame rate

o
UCM with self-management (x)

Sip-communicator (o)

o

Network bandwidth 100kbyte/s 500kbyte/s 1500kbyte/s

13

requirements. For example, the requirements for domain-specific communication applications such as Telemedicine,
Disaster Management, Business Conferencing, Scientific Collaboration, Distance Learning, and Battlefield
Coordination can not be satisfied by the generic multimedia applications. Such generic multimedia applications can
be developed rapidly using UCM without worrying about the complexity of network-level programming. The
developer is only required to focus on the application communication logic leaving the complexity of network
programming to UCM. As a proof of concept, we have developed a prototype for Telemedicine using UCM
[DSC+04].
There are other projects including Polycom, VRVS, Access Grid, and those of [LS03, GNCS04, Ros05] that propose
various IP-based conferencing systems. We consider these approaches as complementary to UCM and we plan to
benefit from their findings and incorporate some of their services. For example, we plan to use the VRVS reflectors
to provide scalability in UCM.

Protocols, APIs, and software frameworks. SIP [HSSR99], H.323 [H323], and MEGACO [GRR00] are among
the signaling protocols for internet telephony, while RTP [SCFJ03] provides transport functions for transmitting
real-time audio and video.
JAIN SIP [JAIN] is a standardized Java interface to SIP. Java Media Framework [JMF] is a library for audio and
video communication. The low-level APIs of these communication libraries are still significantly complex to use.
For example, JAIN SIP facilitates the generation of SIP messages, and captures the SIP syntax of Transactions and
Dialogues. The signaling logic is left to the application developers. The network-level session supported by JAIN
SIP is far less usable than the user-centric session of UCM. JMF does not support instant messages and file transfer,
and has no concept of user communication sessions. The Java Telephony API and Microsoft Telephony API are
high-level APIs for traditional telephony applications. They do not support next-generation multimedia
communication applications with sophisticated business logic. Eclipse Communication Framework (ECF) is a
project that facilitates the creation of communications applications on the Eclipse Platform. The framework provides
APIs for secure asynchronous and synchronous messaging for communication and collaboration. The ECF project
does not separate the network-level communication control and information delivery from the complexity of
application-oriented communication logic.
[BCP+04, JZ98, ZGS04] discuss open software architectures for IP-based voice communication. Parlay is an API
that enables the rapid creation of telecommunication services. ICEBERG project [ICEB] provides core network
architecture for integrated communications. These frameworks mostly address the server-side architecture and the
service creations. The server-side architecture has different concerns than the client-side middleware, which is the
focus of UCM. Furthermore, in contrast to traditional telephone networks, where end devices are “dumb”, in IP
networks, end-hosts are capable of sophisticated communication logic. Compared to UCM, none of the above
contributions have established a unified software abstraction that allows diverse and sophisticated communication
logic at the client side. The UCM concept facilitates the integration of new functions and features with diverse
multimedia communication, responds to the dynamic network conditions and configurations, and enables easy
encapsulation of complex, heterogeneous and dynamic network systems.

Reflective and adaptive middleware and toolkits. In order to provide self-management in software, two general
approaches have been used: parameter and compositional adaptation [MSKC04]. Parameter adaptation involves the
modification of variables that determine program behavior. As described by Hiltunen and Schlichting [HS96], a
well-known example of parameter adaptation is the way that the Internet’s TCP protocol adjusts its behavior by
changing values that control window management and retransmission in response to apparent network congestion
[KR01]. Recently, parameter adaptation has been used in many context-aware systems [SG02, DA00, KSPR01], in
which software execution is directly affected by the external environment. A weakness of parameter adaptation is
that it cannot adopt algorithms or components left unimplemented during the original design and construction of an
application. That is, parameters can be tuned or an application can be directed to use a different existing strategy, but
strategies implemented after the construction of the application cannot be adopted.
In contrast, compositional adaptation results in the exchange of algorithmic or structural parts of the system with
ones that improve a program’s fit to its current environment [HS96, AC03, Ven02, CHS01, RBH+98, MPAS03]. In
comparison to parameter adaptation, compositional adaptation enables an application to adopt new algorithms for
addressing concerns unforeseen during original design and construction. The flexibility of compositional adaptation
enables more than simple tuning of program variables or strategy selection. Dynamic recomposition is needed when
resource limitations (for example, memory in small devices) restrict the number of responding components that can
be deployed simultaneously, or when adding new behavior to deployed systems to accommodate unanticipated
conditions or requirements (for example, detection of and response to a new security attack).

14

In its internal design, UCM employs both parameterized and compositional adaptation. Instead of reinventing the
wheel, UCM incorporates existing adaptive and reflective middleware toolkits to provide self-management using
only a high-level guideline from communication applications. ACE, Ensemble, and Open ORB are among the
projects that we closely follow to incorporate some of their services inside UCM. Adaptive Communication
Environment (ACE) [Sch93, SH02] is a real-time object-oriented framework written in C++ that wraps many OS
services and provides a variety of communication-related patterns for use by distributed applications.
Ensemble [RBH+98] from Cornell University is a groupware communication toolkit that supports distributed
applications with application-specific communication protocols. Central to the design is the construction of protocol
stacks from fine-grained components, called micro-protocols. For example, to support QoS monitoring, Ensemble
enables insertion of detectors in the protocol graph. These detectors can trigger dynamic adaptation by distributing a
new protocol-graph specification to all involved participants using a reconfiguration protocol. Ensemble provides a
number of reusable micro-protocols in its library, and new micro-protocols can also be developed and used in
Ensemble. Similar to ACE, Ensemble provides a process-wide adaptation.
In the Adapt Project, Blair et al. [BCD97] investigated middleware implementation for mobile multimedia
applications that can be dynamically adapted in response to the environmental changes. In the OpenORB project
[BCRP98], the successor to the Adapt project, Blair et al. focused on the role of computational reflection in
middleware.
Finally, in confronting a dynamic physical world, decision making in adaptive systems must modify software
composition to better fit the current environment while preventing damage or loss of service. Decision makers must
monitor both their physical and virtual environments using software and hardware sensors. Moreover, pervasive
computing environments may require that software learn about and adapt to user behavior. Some existing decision
makers use rule-based approaches [LJK+00], while others are supported by theoretical models, including those
based on control theory [HS00], resource optimization [PSGS03], and those inspired by biological processes, such
as the human nervous system [KC03] and emergent behavior in species that form colonies [WS00]. UCM currently
employs a rule-based decision maker. In near future, we are planning to investigate the value of other decision
makers in UCM.

6 Conclusion and Future work
We have proposed UCM, a unified high-level abstraction that isolates and separates the complexities of

network-level communication control and media delivery from the application-dependent communication logic. We
have identified the requirements of the UCM abstraction required for the class of user-centric multimedia
communication applications. UCM facilitates rapid creation of portable communication applications. The design of
UCM is based on an extensible and reusable software framework that provides a unified communication interface to
applications with diverse communication logic and using various media types, by providing an encapsulation of
heterogeneous network environments. In the future, we plan to enhance the extensibility, reusability, and self-
management of UCM. . Also, the prototype will be improved with respect to performance and usability issues.

Acknowledgements We thank Nagarajan Prabakar, Peter Clarke, and Vagelis Hristidis for their participation in
discussions and their contributions in the implementation of the UCM prototype.

Reference
[AC03] M. Aksit and Z. Choukair, “Dynamic, adaptive and reconfigurable systems overview and prospective

vision,” in Proceedings of the 23rd International Conference on Distributed Computing
SystemsWorkshops (ICDCSW’03),(Providence, Rhode Island), May 2003.

[BCD97] G. Blair, G. Coulson, and N. Davies, “Adaptive middleware for mobile multimedia applications,” in
Proceedings of the Eighth International Workshop on Network and Operating System Support for
Digital Audio and Video (NOSSDAV), pp. 259–273, 1997.

[BCP+04] Gregory W. Bond, Eric Cheung, K. Hal Purdy, Pamela Zave, and J. Christopher Ramming, “An open
architecture for next-generation telecommunication services”, ACM Transactions on Internet
Technology IV(1):83-123, February 2004.

[BCRP98] G. S. Blair, G. Coulson, P. Robin, and M. Papathomas, “An architecture for next generation
middleware,” in Proceedings of the IFIP International Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware’98), (The Lake District, England), September 1998.

15

[CHS01] W. K. Chen, M. A. Hiltunen, and R. D. Schlichting, “Constructing adaptive software in distributed
systems,” in Proceedings of the 21st International Conference on Distributed Computing Systems
(ICDCS-21), (Mesa, Arizona), pp. 635–643, April 2001.

[DA00] A. K. Dey and G. D. Abowd, “The context toolkit: Aiding the development of context-aware
applications,” in Proceedings of the 22nd International Conference on Software Engineering (ICSE):
Workshop on Software Engineering for Wearable and Pervasive Computing, (Limerick, Ireland), June
2000.

[DSC+04] Yi Deng, S. Masoud Sadjadi, Peter Clarke, Chi Zhang, Vagelis Hristidis, Raju Rangaswami, and
Nagarajan Prabakar, "A Unified Architectural Model for On-Demand User-Centric Communications",
Technical Report FIU-SCIS-2005-09, School of Computing and Information Sciences, Florida
International University, 2004.

[FHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements od Reusable Object-
Oriented Software. Addison-Wesley Professional Computing Series, New York, NY: Addison-Wesley
Publishing Company,1995.

[GNCS04] Xiaohui Gu, Klara Nahrstedt, Rong Chang, Zon-Yin Shae, “An Overlay Based QoS-Aware Voice-
Over-IP Conferencing System”, In Proceedings of IEEE International Conference on Multimedia and
Expo (ICME2004), June 27-30, 2004.

[GRR00] N. Greene, M. Ramalho, and B. Rosen, “Media Gateway Control Protocol Architecture and
Requirements”, RFC 2805, April 2000.

[H323] ITU-T Recommendation H.323v.4 "Packet-based multimedia communications systems", November
2000.

[HS96] M. A. Hiltunen and R. D. Schlichting, “Adaptive distributed and fault-tolerant systems,” International
Journal of Computer Systems Science and Engineering, vol. 11, pp. 125–133, September 1996.

[HS00] M. A. Hiltunen and R. D. Schlichting, “The Cactus approach to building configurable middleware
services,” in Proceedings of the Workshop on Dependable System Middleware and Group
Communication (DSMGC 2000), (Nuremberg, Germany), October 2000.

[HSSR99] M. Handley, H. Schulzrinne, E. Schooler and J. Rosenberg, “SIP: Session Initiation Protocol”, RFC
2543, March 1999.

[ICEB] The ICEBERG Project, University of California, Berkeley. http://iceberg.cs.berkeley.edu/
[JAIN] JAIN SIP, https://jain-sip.dev.java.net/
[JMF] Java Media Framework API, http://java.sun.com/products/java-media/jmf/
[JZ98] Michael Jackson and Pamela Zave, “Distributed feature composition: A virtual architecture for

telecommunications services”, IEEE Transactions on Software Engineering XXIV(10):831-847,
October 1998.

[KC03] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” IEEE Computer, vol. 36, pp.
41–50, January 2003.

[KR01] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach Featuring the Internet.
Boston, Massachusetts: AddisonWesley, 2001.

[KSPR01] G. Kortuem, J. Schneider, D. Preuitt, T. G. C. Thompson, S. Fickas, and Z. Segall, “When peer-to-peer
comes face-to-face: Collaborative peer-to-peer computing in mobile ad-hoc networks,” in Proceedings
of the 2001 International Conference on Peer-to-Peer Computing (P2P2001), (Link¨opings, Sweden),
August 2001.

[LJK+00] B. Li, W. Jeon, W. Kalter, K. Nahrstedt, and J. Seo, “Adaptive middleware architecture for a
distributed omni-directional visual tracking system,” in Proceedings of SPIE Multimedia Computing
and Networking 2000 (MMCN’00), January 2000.

[LS03] Jonathan Lennox and Henning Schulzrinne, “A Protocol for Reliable Decentralized Conferencing”,
ACM NOSSDAV 2003.

[MPAS03] P. K. McKinley, U. I. Padmanabhan, N. Ancha, and S. M. Sadjadi, “Composable proxy services to
support collaboration on the mobile internet,” IEEE Transactions on Computers (Special Issue on
Wireless Internet), pp. 713–726, June 2003.

16

http://cairo.cs.uiuc.edu/publications/paper-files/icme04.pdf
http://cairo.cs.uiuc.edu/publications/paper-files/icme04.pdf
http://www.icme2004.org/

[MSKC04] Philip K. McKinley, Masoud Sadjadi, Eric P. Kasten, and Betty H. C. Cheng, “Composing adaptive
software”, IEEE Computer, pages 56-64, July 2004.

[PSGS03] V. Poladian, J. P. Sousa, D. Garlan, and M. Shaw, “Dynamic configuration of resource-aware
services,” in Proceedings of the 26th International Conference on Software Engineering, (Edinburgh,
Scotland), May 2004.

[RBH+98] R. van Renesse, K. P. Birman, M. Hayden, A. Vaysburd, and D. Karr, “Building adaptive systems
using Ensemble,” Software Practice and Experience, vol. 28, p. 963979, August 1998.

[Ros05] J. Rosenberg, “A Framework for Conferencing with the Session Initiation Protocol”, Internet Draft,
May 27, 2005. http://www.ietf.org/internet-drafts/draft-ietf-sipping-conferencing-framework-05.txt

[RWHM03] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “STUN - Simple Traversal of User Datagram
Protocol (UDP) Through Network Address Translators (NATs)”, RFC 3489, March 2003.

[SCFJ03] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Protocol for Real-Time
Applications”, RFC 3550. July 2003.

[Sch93] D. C. Schmidt, “The ADAPTIVE Communication Environment: An object-oriented network
programming toolkit for developing communication software,” Concurrency: Practice and Experience,
vol. 5, no. 4, pp. 269–286, 1993.

[SG02] J. P. Sousa and D. Garlan, “Aura: an architectural framework for user mobility in ubiquitous
computing environments,” in Proceedings of the third Working IEEE/IFIP Conference on Software
Architecture, pp. 29–43, 2002.

[SH02] D. C. Schmidt and S. D. Huston, C++ Network Programming: Mastering Complexity Using ACE and
Patterns. Addison-Wesley Longman, 2002.

[Ven02] N. Venkatasubramanian, “Safe composability of middleware services,” Communications of the ACM,
vol. 45, June 2002.

[WS00] M. Wang and T. Suda, “The bio-networking architecture: A biologically inspired approach to the
design of scalable, adaptive, and urvivable/available network applications,” Tech. Rep. 00-03,
Department of Information and Computer Science, Unversity of California, Irvine, California,
February 2000.

[ZGS04] Pamela Zave, Healfdene H. Goguen, and Thomas M. Smith, “Component coordination: A
telecommunication case study”, Computer Networks 45(5):645-664, August 2004.

17

	Introduction
	UCM Abstraction and API
	2.2 UCM Initialization and Presence Interface
	2.3 UCM Session Interface
	2.4 UCM Callback Interface
	2.5 UCM Self-Management Interface
	2.6 UCM API Justification

	As mentioned earlier, the UCM API is limited to the scope of
	UCM Internal Architecture and Design
	UCM Design Issues
	UCM Internal Architecture
	Discussion

	Prototype Implementation and Evaluation
	High-level UCM Abstraction
	Performance Evaluation
	Self-Management Experiments

	Related Work
	Conclusion and Future work

