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Abstract 
The development of communication applications today follows a vertical development approach where 

each application is built on top of low-level network abstractions such as the socket interface. This stovepipe 
development process is a major inhibitor that drives up the cost of development and slows down the pace of 
innovation of new generation of communication applications. In this paper, we propose a user-centric 
communication middleware (UCM) that provides a unified higher-level abstraction for the class of multimedia 
communication applications. We investigate the minimum set of necessary requirements for this abstraction from 
the perspective of next-generation communication applications, and provide an API that exemplifies this abstraction. 
We demonstrate how UCM encapsulates the complexity of network-level communication control and media 
delivery. Further, we show how its extensible and self-managing design supports dynamic adaptation in response to 
changes in network conditions and application requirements with negligible overhead. Finally, we argue that UCM 
enables rapid development of portable communication applications, which can be easily deployed on IP-based 
networking infrastructure.  
 
Keywords: Multimedia communication applications, user-centric middleware, autonomic computing. 

1 Introduction 
The convergence of various multimedia communications including voice, video and data over IP networks 

during the past decade has resulted in the emergence of a wide range of communication applications. Examples 
include Video Conferencing, Voice over IP (VoIP), and Instant Messaging. These communication applications have 
the potential to dramatically impact our everyday life and change the way we communicate with each other. 
However, the fast pace growth of innovations in this direction has been restrained by the stovepipe approach that is 
currently employed in the development process of these applications. In this paper, we introduce a novel user-centric 
communication middleware (UCM) that provides a high-level communication abstraction; essentially, speeding up 
the development of new communication applications and freeing the developers from the complexity of network-
level communication control and media delivery. 

Today, the development of domain-specific communication application (e.g., Telemedicine and Disaster 
Management) is both time-consuming and error-prone because the low-level communication services provided by 
the existing systems and networks are primitive and often heterogeneous. Multimedia communication applications 
are typically built on top of low-level network abstractions such as TCP/UDP socket, SIP (Session Initiation 
Protocol) and RTP (Real-time Transport Protocol) APIs. Further, the underlying network configurations can also 
vary significantly which can reduce portability within applications developed using a vertical stovepipe approach. 
What is lacking is a shared and systematic approach to design and development across communication applications. 
As a result, development continues in an ad-hoc manner creating a fragmented and non-reusable set of software 
products. This fundamental approach of vertical and stovepipe development, therefore, drives up the cost of 
development and deployment, limits the utility of the applications, and significantly slows down the pace of 
innovation of next generation communication applications. 
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Figure 1: UCM provides an abstraction that separates network complexity from application communication logic. 

 
Our UCM fundamentally changes the process of building communication applications from stovepipe 

development to horizontal middleware-based integration, which helps to streamline standardization. As illustrated in 
Figure 1, UCM provides a unified user-centric communication service to diverse upper-layer communication 
applications ranging from simple phone call and video conferencing to specialized communication applications like 
disaster management and telemedicine. UCM is well-positioned to serve as a client-side “middleware” that 
encapsulates the complexity of multimedia telecommunication. The key innovation of the UCM concept is a 
horizontal abstraction that separates and isolates the complexities of network-level communication control and 
media delivery from the diversity of application-dependent communication logic. UCM delivers this high-level 
abstraction by providing a uniform and easy-to-use API that follows the Façade design pattern1 [FHJV95]. Under 
this unified high-level abstraction, internally UCM utilizes the underlying network infrastructure, systems and 
libraries to ensure that basic communication tasks are carried out smoothly. 

Since the UCM solely targets its abstraction towards providing user-centric multimedia communication service, 
its API has a limited scope. We identify the scope of UCM more specifically to multimedia telecommunication 
between users. This reduced scope allows for a simple and easy-to-use UCM interface. It also allows for policy-
based self-management and autonomic behavior within the UCM. To show the value of UCM, we developed a 
prototype implementation of UCM in Java (UCM/J). We conducted a number of case studies using UCM/J (the 
results reported in later sections). Compared to previous abstractions for communication in Java, most notably the 
socket API in the Java network package, the signaling API of JAIN-SIP package [JAIN], and the real-time media 
delivery API in the JMF package [JMF], the UCM provides more coarse-grained reusability as well as ease-of-use. 
However, it sacrifices some flexibility due to its restricted scope of user-centric multimedia communication support 
for client-side applications (e.g., JMF can be used to implement a media streaming server). This is illustrated in 
Figure 2. 

In this paper, we investigate the minimum necessary requirements for the UCM abstraction, from the 
perspective of sophisticated communication applications, and provide an API that exemplifies this abstraction and 
supports dynamic multi-party and multimedia communications. We demonstrate how the extensible and self-
managing design of UCM supports dynamic adaptation in response to changes in network conditions and application 
requirements. Further, we discuss how UCM enables rapid development of portable communication applications 
that can be easily deployed over commodity IP-based networking infrastructure. We summarize the values of this 
unified UCM abstraction as follows:  
 
 

                                                 
1 Façade design pattern provides a simple interface to a complex system. 
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Figure 2. UCM abstraction and flexibility compared to JMF, JAIN-SIP, and Java Network Package. 

  
• Due to the high-level abstraction separating the application-dependent business logic from the network-

level basic communication services enabled by UCM, the applications are transparent to the details of 
underlying network protocols and infrastructure. They only deal with high-level application-dependent 
communication logic; which are relatively simple to express.  

• Since UCM is responsible only for the basic multimedia communication services that can be shared across 
applications, the high-level abstraction of UCM is independent of application business logic. As a result, a 
version of the UCM developed and optimized for a particular system and network configuration is 
reusable by a variety of communication applications.  

• The network infrastructure underlying the UCM can be heterogeneous, requiring different patterns of 
communication. For example, even for simple VoIP conferencing, the signaling procedure depends largely 
on the network infrastructure [LS03, Ros05]. With UCM, a change in the underlying network 
infrastructure does not affect the communication logic of applications; a unified UCM abstraction hides 
network heterogeneity from the applications so that applications can be easily ported to new network 
environments.  

The rest of this paper is organized as follows. In Section 2, we identify the set of requirements for the UCM 
abstraction and present a minimal API for UCM that reflects these requirements. In Section 3, we overview UCM’s 
internal architecture and design and show how this architecture realizes its API. In Section 4, we introduce the 
prototype implementation of UCM in Java and report some of our findings through the experiments we conducted 
using the prototype. Section 5 presents related work and Section 6 makes concluding remarks. 

2 UCM Abstraction and API 
The UCM abstraction is the key contribution of our work. In fact, we realized that finding the right level of 

abstraction is non-trivial. An abstraction that is too high-level can reduce the flexibility afforded to the application in 
the kind of functionality it provides to users. On the other hand, an abstraction that is too low-level, although 
providing a greater degree of flexibility to the application, can significantly complicate the task of the developer, 
increase development time, and also reduce portability. In determining the level of abstraction, we took into account 
the above factors as well as kept in mind the target class of applications that would use the abstraction: client-side 
multimedia communication applications. 

In this section, first, we identify the set of necessary requirements for the UCM abstraction. We then 
present an API that reflects the UCM abstraction. Finally, we provide a justification as to why we believe that the 
proposed UCM API reflects the minimum set of necessary requirements to deliver the UCM abstraction.  

 
2.1 UCM Abstraction Requirements 

We first look at the requirements of the UCM abstraction from the perspective of upper-layer applications. In 
contrast to traditional telephone networks, where end devices are “dumb” and all the complicated communication 
functions are controlled by servers/switches, in IP networks designed based on the end-to-end argument, 
applications on end-hosts can deliver sophisticated communication services. For example, in a simple traditional 
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person-to-person call, only one voice conversation needs to be supported at each end-host. With sophisticated next-
generation communication applications, a user at one end-host might simultaneously communicate with different 
groups of people using diverse media.  

To satisfy the communication needs of next generation multimedia communication applications, the UCM 
abstraction should support the basic concept of a user session and should allow for creation of multiple user sessions. 
We define a user session within UCM as a communication process that involves a number of participants, who can 
be added or removed dynamically. A user session thus represents a “multicast communication space”, within which 
each participant can send media to all the other session participants. In case one participant needs to communicate 
with only one of the other participants, a separate user session should be established.  Within each user session, the 
participant should be able to deliver various media on demand, such as send a document in the middle of a voice 
communication. One important requirement for the UCM abstraction is supporting multiple user sessions, which is 
necessary for sophisticated communication applications, such as disaster management. In response to a disaster, an 
administrator may initiate several user sessions from an end host to different groups, since different groups may 
have different communication topics, media types (e.g., voice communication in one user session and text chat in 
another), priorities and levels of secrecy. As another example, in a distance learning application, while all students 
participate in a user session of lecturing, one student may establish a private session to another student, asking for a 
document.  

Another requirement of the UCM abstraction is that it must comprehensively encapsulate the details of the 
end-host networking infrastructure. The abstraction should ensure that applications can be ported easily to different 
end-host hardware and different underlying network infrastructure. However, although the UCM encapsulates 
networking details, under certain circumstances, the upper-layer application may desire to be notified of the 
communication states, so that appropriate decisions can be made based on its application-dependant communication 
logic. Further, in some applications, the user may desire to dynamically control the behavior of UCM in session 
control and media delivery, according to his/her preferences, by specifying policies. The UCM abstraction must be 
flexible enough to support such requirements. We elaborate on these discussions further in Section 2.5.   

Given the above expectations from UCM as a user-centric middleware, we identify four major categories of 
requirements to be reflected by its interface providing the communication service: 

•  First, the interface must support the basic presence functionality so that a user can login to a signaling 
server, and be able to retrieve and modify his/her current contact-list.  

• Second, the interface must support the basic concept of communication by adequately capturing the notion 
of a communication user session among multiple participants using diverse media so that the set of 
participants and media can be dynamically controlled.  

• Third, the interface must provide a mechanism to expose low-level network and system events to the 
applications; essentially, enabling development of context-aware applications on top of UCM.  

• Fourth, the interface must provide the capability to specify high-level self-management policies to be used 
as guidance inside the UCM for controlling how media is exchanged and delivered.  

In the rest of this section, as a proof of concept, we introduce a UCM API as four functionally separated sets of 
operations that reflect the four requirements of the UCM abstraction.  

2.2 UCM Initialization and Presence Interface 
We first present the UCM initialization and presence interface that allows an application to register a user for 

communication purposes with a signaling server. The signaling server information is maintained within the UCM. 
Table 1 presents the proposed interface. 

 
Interface Description 

void launch(); 
void shutdown(); 
boolean login( String realm,  
 String userName, String  passwd); 
boolean logout(); 
boolean addContact( 
 String displayName, String identifier); 
boolean removeContact( 
 String displayName, String identifier); 

/* Configure UCM based on a configuration file */ 
/* Do cleanup for UCM */ 
/* Login at the signaling server */ 
 
/* Logout from the signaling server */ 
/* Add a new contact to the contact list */ 
 
/* Remove an existing contact from the contact List */ 
 

Table 1: UCM Initialization and Presence Interface. 
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2.3 UCM Session Interface 
The session interface provides an application with the ability to create multiple independent user 

communication sessions. Each user session can be configured to allow multiple participants and various media 
delivery on demand. The session interface is presented in Table 2. 

 
Interface Description 

int createSession(String comments); 
boolean destroySession(int sid) ; 
public boolean addParty(int sid, ArrayList parties); 
public boolean removeParty(int sid,  
 ArrayList parties); 
boolean addMedia(int sid,  
 String media_type, String media_location); 
boolean removeMedia(int sid,  
 String media_type, String media_location); 
boolean suspendMedia(int sid , String  media_type,      
 String media_location, String  direction); 
boolean resumeMedia(int sid , String  media_type, 
 String media_location, String  direction); 

/* Create a session for a new communication */ 
/* Destroy an existing session */ 
/* Add new parties to a session */ 
/* Remove parties from a session */ 
 
/* Add a new media to a session */ 
 
/* Remove an existing media from a session */ 
 
/* Suspend the data transmission for a media */ 
 
/* Resume the data transmission for a media */ 
 
 

Table 2: UCM Session Interface. 
 
 A session ID is returned by the UCM whenever a new session is created with the createSession call from 
the upper layer. The session ID is then used by the upper layer to uniquely identify a user session maintained within 
the local UCM, in the subsequent calls to add/remove participants and media into/from the user session.  

Each user session may involve several types of media. Each media delivery within a session is uniquely 
identified by the URI of the media. Diverse media types are supported (e.g., real-time audio/video, instant messages, 
and files). In addition, there is always a default medium, for continuous conversation. In traditional telephone or 
conferencing applications (such as those supported by Java Telephony API), the default medium is voice. However, 
if a user already has one session with voice as its default medium, it’s not desirable to have voice as the default 
medium for another concurrent user session on the same device. The UCM abstraction allows the upper-layer to 
specify application-dependent default medium (e.g., the application can establish a second session of text chat). In 
addition, the traditional telephone or conferencing applications assume the media delivery is always bi-directional. 
UCM supports both two-way (e.g., voice conversation) and one-way media transfer (e.g., file transfer and distance 
learning) with different media formats.  

2.4 UCM Callback Interface 
The UCM callback interface provides a mechanism by which the UCM can notify the application of 

specific events within the UCM. These are then used by the application in a custom fashion. 
 

Interface Description 
void networkFailure(String nwFailure); 
void contactStatus(String user, int status) 
void sessionStatus(int sid, String status); 
void partyStatus(int sid, String user,  
 int status); 
void media Status(int sid, String media_type,  
 String media_URI, int status); 

/* Notification of network failure */ 
/* Report the presence of a contact */ 
/* Report the status of a session (open, close etc.) */ 
/* Report the status of a participant in a session (busy-
tone, ring-tone, join, etc.) */ 
/* Report the status of a media in a session */ 

Table 3: UCM Callback Interface. 
 

The UCM callback interface presented in Table 3 allows UCM to report status of the network, session, 
participants, and media. Notifying session status to the upper-layer applications enhances UCM flexibility for 
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different application logic. As an example, at the caller side, after the caller dials the callee, he/she should receive 
either a “Busy-tone” or a “Ringing-tone”, indicating whether the remote device is busy/ready before the callee picks 
up the phone. When a “Ringing-tone” signaling message is received by the caller, the upper layer may select a 
presentation (e.g., a flashing icon) other than an audio ring on the speaker. This could be useful when the caller 
concurrently initiates several sessions in disaster management, or connect to several participants in one session. 
Thus, instead of encapsulating the “Ringing-tone” message and playing an audio ring on the speaker directly, the 
UCM simply notifies the session status to the upper-layer for application-dependent processing. 

2.5 UCM Self-Management Interface 
The UCM self-management interface allows application control over UCM behavior. The application can 

customize UCM behavior under specific network and system conditions, based on user or application preference. 
The interface takes as input an XML string which describes the policy for self-management. This API is presented in 
Table 4. 
 

Interface Description 
int applyPolicy(String xmlString); 
 

/* Apply the self-management policy specified by the 
xmlString */ 

Table 4: UCM Self-Management Interface. 
 
We developed an XML Schema to be able to specify high-level policies in XML documents. At a high-level, a 
UCM self-management policy can be interpreted as an “if <condition> then <action>” construct. An example of a 
self-optimization (a sub-category of self-management) policy in XML that is currently supported by the UCM is 
shown in Figure 3. The policy is specific to the session with ID # 24 and it dictates that when UCM detects a low 
network bandwidth condition, it should increase the video compression and vice-versa to maintain a steady frame-
rate. A specific experiment showing the following policy in action and providing further details is presented in 
Section 4. 
 

 

 
 
 

 
 

<session sessionID=”24”>   
<connectionConstraint condition=”networkBandwidthDecreasing”      
action=”decreaseVideoResolution” /> 
<connectionConstraint condition=”networkBandwidthIncreasing” 
action=”increaseVideoResolution” /> 

</session> 

 

Figure 3. Example self-optimization policy specification. 

2.6 UCM API Justification 
As mentioned earlier, the UCM API is limited to the scope of user-centric multimedia communication. 

However, it should be flexible enough to allow diverse and sophisticated user-centric communication logic. We 
claim that these set of requirements are necessary for the UCM that are required to keep the API simple, yet flexible. 
These requirements allow the UCM API to remain simple by providing bare minimum middleware support for 
multimedia telecommunication among users, while at the same time, providing such applications the flexibility of 
establishing full-featured communication user sessions with control over the number and identity of participants and 
the nature and timeliness of media exchanged during the session. Further, the API also provides a mechanism for 
reporting session states, error conditions, exceptions, as well as specific system and network events that the 
application may be interested in. The API also allows for policy-driven self-management, whereby an application 
can tailor the behavior of UCM under special or changed environment. This minimum API can already support a 
variety of next-generation communication applications.  We believe that with the UCM abstraction and API we have 
reached a higher-level of understanding about user-centric communication services. 

3 UCM Internal Architecture and Design  
In this section, we detail the UCM internal design that supports the unified high-level abstraction, deals with 

the complexity of communication, and encapsulates underlying networking heterogeneity. 
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3.1 UCM Design Issues 
UCM is a client-side middleware to be deployed on end hosts. Below the unified UCM abstraction, the 

UCM core translates a high-level communication task into a series of operations that control and coordinate the 
underlying networking facilities to deliver media to session participants. The UCM core is complex in that it 
coordinates both the control plane (i.e., signaling protocols negotiating the communication) and the data plane (i.e., 
transport protocols delivering media) according to the requirements of communication tasks, as well as the network 
configurations and conditions.  

The introduction of UCM will not affect or require changes to the existing protocols and network 
infrastructures. The communication between peer UCMs follows various protocol standards (e.g., SIP [HSSR99] for 
signaling, and RTP [SCFJ03] for delivering real-time media), and may rely on various communications 
infrastructures such as signaling servers and media gateways between peer UCMs. For example, an existing 
signaling server can process and forward signaling messages negotiating communication parameters such as media 
to be transmitted, encoding/decoding schemes, TCP/UDP port numbers, and device media capabilities. The standard 
protocols, such as SIP, can be adopted as the signaling mechanism between UCMs, or between UCM and signaling 
servers. The signaling servers also accept user registration and authenticate the users. The IP address of the signaling 
server and its port number for SIP signaling must be configured into the UCM during its initialization. In addition, 
there may be a media gateway converting diverse audio/video encoding schemes from different UCMs, and mixing 
real-time audio/video (sometimes called Multi-Point Control Unit, or MCU) for distributed multi-party conferencing. 
A mixer receives individual audio streams from all session participants and combines them into a single stream (by 
summing audio signals), which is then sent back to all participants. Without a mixer, the UCM of each participant 
has to establish point-to-point audio connections (i.e., a full mesh model) to all the other participants [LS03, Ros05]. 
These considerations reflect the design philosophy of not re-inventing the wheel in UCM design and implementation. 

The abstraction of UCM user session is a high-level and simple abstraction for multimedia and multi-party 
communication. While the application maintains and processes application-dependent states of a session, UCM 
maintains and processes the application-independent low-level communication states of a session. Just like a socket 
number and its associated port that hide the communication details of reliable/unreliable data delivery (e.g., data 
packetizing, packet sequencing, and acknowledgements), the UCM session ID encapsulates the complexity of 
multiparty, multimedia communication. To be more specific, although the session IDs are unique within each UCM, 
for the same user session involving multiple participants, the UCM session IDs may be different at different UCMs 
of different participants. The communication messages between different UCMs follow the standard networking 
protocol. The messages of these networking protocols may have their own notions of sessions or session IDs, and do 
not contain UCM session IDs. For example, a RTP session is a single media stream between two users; without a 
media mixer, one participant has to send his/her audio to all the other participants in duplicated streams, each of 
which may have different SIP session ID and RTP session ID. To encapsulate various network sessions in one 
abstracted user session for our user-centric middleware, UCM must internally maintain the mapping between the 
UCM session ID and the session IDs of the underlying protocols. In the rest of the paper, the term “session” is used 
to denote a UCM user session, unless otherwise stated.  

The UCM internal architecture has an extensible framework facilitating the integration of new communication 
functionality, new media types, and new networking primitives (e.g., QoS). The internal modules of UCM are 
designed to be extensible and reusable for different network configurations (e.g., with or without conferencing mixer 
discussed above; with or without NAT traversal [RWHM03]; different signaling protocols such as SIP [HSSR99] vs. 
H.323 [H232]). The UCM is also designed to be self-optimizing, so that the middleware can automatically adapt to 
dynamic network conditions, such as available bandwidth, packet loss rate, and energy consumption. 

3.2 UCM Internal Architecture 
Below the unified API, the internal architecture of UCM is outlined in Figure 4. It includes the following 

modules: 
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UCM Unified Application Programming Interface

 
Figure 4: The UCM Architecture. 

 
(a) UCM Manager:  

The UCM Manager is responsible for the initialization and the configuration of the UCM middleware.  The 
UCM configuration occurs when the UCM is initially launched and includes the signaling server information (IP 
address etc.). It is also responsible for registering the user account at the signaling server, providing the current 
address at which it can be reached for signaling messages. Upon receiving an application request for creating a new 
session (at the caller side), or a signaling message INVITE (at the callee side) from a remote user negotiating a new 
conversation, it creates a new Session Manager (see below) to handle the new communication session. The UCM 
maintains the list of Session Managers for all active sessions.  In addition, the UCM manager handles states relevant 
to all sessions that cannot be handled by individual Session Managers. For example, in case of multiple user sessions 
of voice communication, the UCM can activate one voice session and mute all the other voice sessions. The 
application can control the active session through the resumeMedia/suspendMedia interface given in section 
2.2, thus implementing the call-waiting service.  

 
(b) Session Manager:  

A session manager deals with a single user session. Since the states associated with a session include the call 
status, the participants, and the media transfer, this module further delegates the tasks to the “Call Processing”, 
“Session Participants”, and “Media Delivery” sub-modules within the Session Manager. The Session Participants 
module keeps the list of participants of this session.  
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Figure 5.  Signaling and Media Delivery. 

 
The Media Delivery module manages, at a high level (i.e., at the level of user sessions rather than network 

sessions), the transfer of media in a session, as demonstrated by Figure 5. It translates an “addMedia” call from the 
application into a number of internal invocations. It first relies on the Call Processing module (see below) to 
negotiate the transmission parameters (port number and encoding/decoding schemes) before the actual media 
transmission. It then controls on the “Media Processing and Transmission” module (see below) to actually deliver 
the media. Some media, such as short messages, can be delivered within the signaling message (e.g., SIP), and thus 
go through the Signaling module (see Figure 5). It also triggers the delivery of all session media to a new participant, 
when he/she just joins the session.  

The Call Processing module controls, at a high level (i.e., at the level of user sessions rather than network 
sessions), the call processing logic of a session. It maintains the mapping from a user session to low-level signaling 
sessions. It is based on the underlying Signaling module, which actually carries out the basic signaling. For instance, 
it translates a call of “addParticipant” from the upper layer into a number of operations independent of the 
user session, to be delegated to the underlying Signaling module to invite the remote participant. When receiving a 
signaling message indicating that a new participants joins the session, it calls the Participants module to update the 
participant list, and then reports the newly joined participant to the upper-layer (through the partyStatus 
callback interface in Table 3). For voice conferencing, the Call Processing module adjusts its signaling procedures 
based on the availability of a conferencing mixer, and appropriately instructs the Media Delivery module. 

 
(c) Media Processing and Transmission:  

The media will be pre-processed before transmitted at the sender side, and will be post-processed and recovered 
at the receiver side. The processing and transmission/reception depend largely on the media types and network 
configurations. The Media Processing and Transmission module maintains the supported media types and the 
corresponding encoding/decoding schemes, and carries out media processing and transmission, demonstrated in 
Figure 5. For voice conferencing, the participants either rely on a conferencing server mixing the voices from 
different senders, or use meshed audio connections with which each participant establishes audio connections to all 
the other participants [LS03, Ros05]. With the latter, this module must mix the received audio signals on the end 
host. Although the Media Delivery module (user-session dependent) under the Session Manager controls or 
configures whether mixing is turned on, based on the information from the Call Processing module, the actual 
mixing is conducted by the Media Processing and Transmission module. In contrast to the Media Delivery module, 
this module is fully unaware of the states of a user session.  

9 



As shown in Figure 5, the module has different processing paths for real-time media delivery and best-effort 
data delivery (e.g., files). For best-effort data delivery, everything can be blindly transmitted as a file, since no 
encoding/decoding is needed, and transmission control is independent of the media content. At the receiver side, the 
received file associated with a session will be stored at a specified directory (i.e., simple post-processing). Since the 
signaling modules has negotiated and reported the file type (e.g., PDF), the upper-layer can conduct application-
dependent processing, such as launching the corresponding document processing applications (e.g., Acrobat Reader) 
according to the file type.  

 
(d) Signaling:  

The Signaling module carries out the basic signaling operations according to the signaling protocols (e.g., SIP), 
such as registration, invite/disconnect a user, media type and parameter negotiation. In the middle of media delivery, 
it can also negotiate to temporarily suspend the media delivery in a session (e.g., through a SIP re-INVITE message 
with a connection address 0.0.0.0). The major difference between the Signaling module and the Call Processing sub-
module under the Session Manager is that the basic signaling activity is carried out by the Signaling module, and the 
Signaling module is independent of the states of a particular UCM user session. For example, the signaling module 
is unaware of the mapping between a user session and SIP signaling sessions. In contrast, the Call Processing 
module takes care of signaling issues depending on the states of the user session. On the other hand, the Signaling 
module encapsulates the signaling heterogeneity, such as different signaling protocols (SIP [HSSR99] vs. H.323 
[H232]), with or without NAT traversal [RWHM03].  

 
(e) QoS and Self Management:  

This module assists Media Delivery in automatically adapting transmission parameters or modes, seamlessly 
handling network transitioning, and hiding or reporting network faults.  The high-level policies guiding self-
optimization can be given by the interface defined in Section 2.5. The policy is made concrete and implemented 
inside the Session Manager. For example, if the available bandwidth is low, this module can either instruct the 
Media Delivery module to use an encoding scheme that provides less resolution and consumes less bandwidth, or 
report to the upper-layer for a high-level decision (e.g., instead of  voice communication, use a light-weight text 
chat). Our experiment results are presented in Section 4. 

 
(f) Presence 

A user X may need to know whether his/her friend Y is present in the system, indicated by login of Y at his/her 
signaling server. The user X may rely on mechanisms such as SUBSCRIBE/NOTIFY in SIP to request the 
registration server to “push” the information to the client-side UCM. Since this information does not belong to any 
established session, a separate module, Presence, is introduced for this purpose. 

3.3 Discussion 
As can be seen, one important criterion for the UCM design is separating a user-level session from the 

underlying network sessions, as indicated by the horizontal dotted line in Figure 4.  Each user session involves a 
number of network-level sessions (either signaling or media delivery sessions). Only the modules above the dotted 
line are aware of user sessions, while all the modules below that line are responsible for individual network-level 
sessions. Adding new features related to user sessions, such as “getLastMissedCall”, will only change the 
UCM Manager and the Session Manager above the dotted line in Figure 4. On the other hand, changing the 
underlying signaling protocols (e.g., from H.323 signaling protocol to SIP) will only affect the Signaling module 
under the dotted line.  

We are aware of the importance of other issues, such as security, energy consumption, and 
mobility support.  For example, each UCM session may have different security policies. 
However, the principal contribution of this paper is to demonstrate an extensible framework that 
facilitates hiding the communication complexity and heterogeneity, rather than new 
communication functionality. We do not envision any roadblocks to incorporating such advanced 
features once an extensible framework is established.   
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4 Prototype Implementation and Evaluation 
 
In order to evaluate the concept of UCM, we have developed a prototype of UCM in Java, called UCM/J. As 

the SIP protocol is accepted as a standard protocol for Voice over IP, we chose SIP as our signaling protocol. 
Among the implementations of the SIP protocol, we chose the open source JAIN SIP [JAIN] by NIST. We extended 
the SIP signaling protocol to negotiate transmission parameters (i.e., TCP port numbers) and file names for on-
demand file transfer bundled within a UCM session. However, most of the features provided by the UCM can be 
mapped to the existing protocol standard. For example, adding a medium in the middle of a session is supported by 
the SIP re-invite message. Negotiating unidirectional media transfer is implemented by the “send-only” or “recv-
only” attributes of Session Description Protocol (SDP) [HSSR99].  The signaling messages of UCM go through SIP 
Express Router, an open source SIP server (http://www.iptel.org/ser/). 

For real-time multimedia transmission on IP networks, RTP is used as the transport protocol. We developed 
our prototype based on the JMF [JMF], which uses RTP. In our prototype, files are transferred via TCP connections 
and instant messages are delivered via SIP Messages. The prototype follows an extensible design, so that it can 
easily incorporate new media. 

 
Application Based on JAIN_SIP/JMF Based on UCM 
Person-to-Person  
Voice Call 

JAIN-SIP-Applet-Phone UCM-based Voice Call 

Person-to-Person  
Video Communication 

SIP-COMMUNICATOR UCM-based Video Communication 

Table 5: Applications and Development. 
 

To justify the UCM concept, we developed two types of applications based on UCM: person-to-person voice 
call, and person-to-person video communication (including both video and audio). We compare these against two 
equivalent open source applications developed upon JAIN-SIP/JMF that we downloaded off the Internet: the JAIN-
SIP-Applet-Phone (https://jain-sip-applet-phone.dev.java.net/) for person–to-person voice call and the SIP-
Communicator (https://sip-communicator.dev.java.net/) for person to person video communication, shown in Table 
5. The encoding schemes used are G.711 and Motion JPEG, for audio and video, respectively. For each type of 
application, we did comparative experiments to evaluate the UCM. 

 
4.1 High-level UCM Abstraction 

By providing the high-level communication API, we claim that UCM makes it easier to develop 
communication applications. We used the lines of code (loc) metric to compare the above applications, with and 
without the UCM abstraction. The results are shown in Table 6. The development time for Person to Person Voice 
Call application based on UCM is about 5 hours (one developer). The development time for Person to Person Video 
Communication based on UCM is about 6 hours (one developer). We did not get the development times for the open 
source applications. However, based on the lines of code comparison with and without UCM, it is reasonable for us 
to conclude that the development time for communication applications without UCM would be significantly longer, 
probably requiring several days. The experiments show that in terms of the lines of code (loc) metric and the 
development cycle, the UCM API makes it significantly easier to develop user-centric multimedia communication 
applications. 

 
Application JAINSIP/JMF 

 (loc) 
UCM 
(loc) 

Person to Person Voice call 9478 435 
Person to Person Multimedia communication 16784 440 

Table 6: Lines of Code comparison for developing applications with/without the UCM abstraction. 
 

4.2 Performance Evaluation 
While providing a higher-level abstraction to communication applications, UCM could potentially introduce 

performance overhead. Although UCM does not touch the network protocols and infrastructure, it changes the 
paradigm of application development on end hosts. Therefore, it is very important to evaluate the UCM performance 
on end-hosts. We compare the CPU utilization as well as the network utilization of the applications developed with 
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and without UCM. Our results demonstrate that UCM can provide the higher-level abstraction without significantly 
compromising the performance.  

For person to person voice call, the average CPU utilization is around 0.237% with the JAIN_SIP-Applet-
Phone application, and 0.284% with the UCM-based equivalent application. For person to person video 
communication, the average CPU utilization is 35.417% with SIP-Communicator, and 34.912% with the UCM-
based equivalent application, as shown in Figure 6. The CPU utilizations are almost the same; that is, the 
performance overhead in terms of CPU utilization with UCM-based communication applications is negligible.  

In terms of network utilization, for person to person voice call, the average throughput is 73.8 kbps with the 
JAIN-SIP-Applet-Phone, and 73.2 kbps with the UCM-based equivalent application. For person to person video 
communication, the average network bandwidth of SIP-Communicator is 830 kbps, and 670 kbps for the UCM-
based application, due to an optimized image compression rate.  

 

 
 
   Figure 6. CPU Utilization with Person-to-Person Video Communication: (a) SIP-COMMUNICATOR                            
(b) UCM-based software. 
 

 CPU Utilization (%) CPU Utilization (%) 

4.3 Self-Management Experiments  
 
Next, we demonstrate how UCM supports self-optimization as one aspect of self-management. The high-

level policy from the upper-layer application reflects the user preferences: if the network bandwidth changes, then 
only modify the video resolution. This policy implies that the frame rate should be stable (in this case 13 fps). This 
high-level policy is expressed using the XML policy string as shown in Figure 3. The throughput of video traffic, 
limited by the available bandwidth, is the product of the frame-rate and the frame-size. The latter is further 
determined by the image compression rate. Without the self-managing policy for the sender, a decreased bandwidth 
will cause packet losses, and significantly reduce the frame-rate at the receiver side. With the above policy, the user 
can expresses his/her preference to maintain high frame-rate at the expense of more image compression: if the 
available bandwidth decreases, reduce frame resolution by increasing the image compression in order to make the 
frame rate stable; if the available bandwidth increases, increase frame resolution by reducing the image compression 
for full utilization of the network resource. Notably, before the image compression rate increases to a certain point, 
the difference in image quality is not discernable to many users. Second, frequent change in the compression rate 
may cause instability. The implementation details about setting difference thresholds are omitted due to space 
limitations. 

To simulate the change of bandwidth, we use NetPeeker (http://www.net-peeker.com/), a network speed 
limiter, to control the traffic. With NetPeeker, we simulate three network capacities: 1100KB/s, 500KB/s, and 
100KB/s. The results of this experiment are illustrated in Figure 7. The deep blue line shows the network bandwidth 
and the light blue line represents the throughput of video stream. As Figure 7 shows, UCM dynamically adjusts its 
throughput of video stream based on the change of available bandwidth. 
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Figure 7: The network bandwidth (deep blue line) and video stream (light blue line) over time. 

 

 
Figure 8: Frame rate changes with network bandwidth change. 

 
 

Finally, we performed the same experiment with the SIP-Communicator and compared its receiver-side 
frame-rate with an equivalent UCM-based application, shown in Figure 8. The red O symbols represent the frame 
rates for the SIP-Communicator at different network bandwidths while the blue X symbols represent the frame rates 
of UCM-based implementation. With the configured policy, the frame rate of UCM is stable when the network 
bandwidth decreases, due to the increased compression rate. With a fixed compression rate, the frame rate of SIP 
communicator decreases and sometimes the video freezes. Without the policy, the behavior of UCM is the same as 
SIP Communicator. 

5 Related Work  
Prior work related to UCM that can be categorized into three major groups: (1) multimedia communication 

applications, (2) protocols, APIs, and software frameworks for developing multimedia applications, and (3) adaptive 
middleware and toolkits for supporting self-management in multimedia applications. In the rest of this section, we 
briefly introduce projects in each category and discuss how they are related to UCM. 
 
Multimedia communication applications. Yahoo Messenger, MSN Messenger, AOL Instant Messenger, AIM, 
ICQ, IRC, Jabber, and Google Talk are among the numerous multimedia communication applications that are 
currently being used by millions of individuals and institutions around the world. These applications provide a one-
size-fit-all solution to multimedia communication and fail when there is a need for more specialized communication 
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requirements. For example, the requirements for domain-specific communication applications such as Telemedicine, 
Disaster Management, Business Conferencing, Scientific Collaboration, Distance Learning, and Battlefield 
Coordination can not be satisfied by the generic multimedia applications. Such generic multimedia applications can 
be developed rapidly using UCM without worrying about the complexity of network-level programming. The 
developer is only required to focus on the application communication logic leaving the complexity of network 
programming to UCM. As a proof of concept, we have developed a prototype for Telemedicine using UCM 
[DSC+04].  
There are other projects including Polycom, VRVS, Access Grid, and those of [LS03, GNCS04, Ros05] that propose 
various IP-based conferencing systems. We consider these approaches as complementary to UCM and we plan to 
benefit from their findings and incorporate some of their services. For example, we plan to use the VRVS reflectors 
to provide scalability in UCM. 
 
Protocols, APIs, and software frameworks. SIP [HSSR99], H.323 [H323], and MEGACO [GRR00] are among 
the signaling protocols for internet telephony, while RTP [SCFJ03] provides transport functions for transmitting 
real-time audio and video.  
JAIN SIP [JAIN] is a standardized Java interface to SIP. Java Media Framework [JMF] is a library for audio and 
video communication. The low-level APIs of these communication libraries are still significantly complex to use. 
For example, JAIN SIP facilitates the generation of SIP messages, and captures the SIP syntax of Transactions and 
Dialogues. The signaling logic is left to the application developers. The network-level session supported by JAIN 
SIP is far less usable than the user-centric session of UCM. JMF does not support instant messages and file transfer, 
and has no concept of user communication sessions. The Java Telephony API and Microsoft Telephony API are 
high-level APIs for traditional telephony applications. They do not support next-generation multimedia 
communication applications with sophisticated business logic. Eclipse Communication Framework (ECF) is a 
project that facilitates the creation of communications applications on the Eclipse Platform. The framework provides 
APIs for secure asynchronous and synchronous messaging for communication and collaboration. The ECF project 
does not separate the network-level communication control and information delivery from the complexity of 
application-oriented communication logic.  
[BCP+04, JZ98, ZGS04] discuss open software architectures for IP-based voice communication. Parlay is an API 
that enables the rapid creation of telecommunication services. ICEBERG project [ICEB] provides core network 
architecture for integrated communications. These frameworks mostly address the server-side architecture and the 
service creations. The server-side architecture has different concerns than the client-side middleware, which is the 
focus of UCM. Furthermore, in contrast to traditional telephone networks, where end devices are “dumb”, in IP 
networks, end-hosts are capable of sophisticated communication logic. Compared to UCM, none of the above 
contributions have established a unified software abstraction that allows diverse and sophisticated communication 
logic at the client side. The UCM concept facilitates the integration of new functions and features with diverse 
multimedia communication, responds to the dynamic network conditions and configurations, and enables easy 
encapsulation of complex, heterogeneous and dynamic network systems. 
 
Reflective and adaptive middleware and toolkits. In order to provide self-management in software, two general 
approaches have been used: parameter and compositional adaptation [MSKC04]. Parameter adaptation involves the 
modification of variables that determine program behavior. As described by Hiltunen and Schlichting [HS96], a 
well-known example of parameter adaptation is the way that the Internet’s TCP protocol adjusts its behavior by 
changing values that control window management and retransmission in response to apparent network congestion 
[KR01]. Recently, parameter adaptation has been used in many context-aware systems [SG02, DA00, KSPR01], in 
which software execution is directly affected by the external environment. A weakness of parameter adaptation is 
that it cannot adopt algorithms or components left unimplemented during the original design and construction of an 
application. That is, parameters can be tuned or an application can be directed to use a different existing strategy, but 
strategies implemented after the construction of the application cannot be adopted. 
In contrast, compositional adaptation results in the exchange of algorithmic or structural parts of the system with 
ones that improve a program’s fit to its current environment [HS96, AC03, Ven02, CHS01, RBH+98, MPAS03]. In 
comparison to parameter adaptation, compositional adaptation enables an application to adopt new algorithms for 
addressing concerns unforeseen during original design and construction. The flexibility of compositional adaptation 
enables more than simple tuning of program variables or strategy selection. Dynamic recomposition is needed when 
resource limitations (for example, memory in small devices) restrict the number of responding components that can 
be deployed simultaneously, or when adding new behavior to deployed systems to accommodate unanticipated 
conditions or requirements (for example, detection of and response to a new security attack). 
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In its internal design, UCM employs both parameterized and compositional adaptation. Instead of reinventing the 
wheel, UCM incorporates existing adaptive and reflective middleware toolkits to provide self-management using 
only a high-level guideline from communication applications. ACE, Ensemble, and Open ORB are among the 
projects that we closely follow to incorporate some of their services inside UCM. Adaptive Communication 
Environment (ACE) [Sch93, SH02] is a real-time object-oriented framework written in C++ that wraps many OS 
services and provides a variety of communication-related patterns for use by distributed applications.  
Ensemble [RBH+98] from Cornell University is a groupware communication toolkit that supports distributed 
applications with application-specific communication protocols. Central to the design is the construction of protocol 
stacks from fine-grained components, called micro-protocols. For example, to support QoS monitoring, Ensemble 
enables insertion of detectors in the protocol graph. These detectors can trigger dynamic adaptation by distributing a 
new protocol-graph specification to all involved participants using a reconfiguration protocol. Ensemble provides a 
number of reusable micro-protocols in its library, and new micro-protocols can also be developed and used in 
Ensemble. Similar to ACE, Ensemble provides a process-wide adaptation. 
In the Adapt Project, Blair et al. [BCD97] investigated middleware implementation for mobile multimedia 
applications that can be dynamically adapted in response to the environmental changes. In the OpenORB project 
[BCRP98], the successor to the Adapt project, Blair et al. focused on the role of computational reflection in 
middleware.  
Finally, in confronting a dynamic physical world, decision making in adaptive systems must modify software 
composition to better fit the current environment while preventing damage or loss of service. Decision makers must 
monitor both their physical and virtual environments using software and hardware sensors. Moreover, pervasive 
computing environments may require that software learn about and adapt to user behavior. Some existing decision 
makers use rule-based approaches [LJK+00], while others are supported by theoretical models, including those 
based on control theory [HS00], resource optimization [PSGS03], and those inspired by biological processes, such 
as the human nervous system [KC03] and emergent behavior in species that form colonies [WS00]. UCM currently 
employs a rule-based decision maker. In near future, we are planning to investigate the value of other decision 
makers in UCM. 

6 Conclusion and Future work 
We have proposed UCM, a unified high-level abstraction that isolates and separates the complexities of 

network-level communication control and media delivery from the application-dependent communication logic. We 
have identified the requirements of the UCM abstraction required for the class of user-centric multimedia 
communication applications. UCM facilitates rapid creation of portable communication applications.  The design of 
UCM is based on an extensible and reusable software framework that provides a unified communication interface to 
applications with diverse communication logic and using various media types, by providing an encapsulation of 
heterogeneous network environments. In the future, we plan to enhance the extensibility, reusability, and self-
management of UCM. . Also, the prototype will be improved with respect to performance and usability issues. 
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