
Realizing Multi-Dimensional Software Adaptation

P. K. McKinley, E. P. Kasten, S. M. Sadjadi, and Z. Zhou

Software Engineering and Network Systems Laboratory
Department of Computer Science and Engineering

Michigan State University
East Lansing, Michigan 48824�

mckinley,kasten,sadjadis,zhouzhin � @cse.msu.edu

ABSTRACT
This paper describes the use of programming language constructs
to support run-time software adaptation. A prototype language,
Adaptive Java, contains primitives that permit programs to modify
their own operation in a principled manner. In case studies, Adap-
tive Java is being used to support adaptation for different cross-
cutting concerns associated with heterogeneous mobile comput-
ing and critical infrastructure protection. Examples are described
in which Adaptive Java components support dynamic quality-of-
service on wireless networks, run-time energy management for hand-
held computers, and self-auditing of potential security threats in
distributed environments.

1. INTRODUCTION
Given today’s heterogeneous mobile computing infrastructure, many
distributed computing applications need to adapt to their environ-
ment in multiple ways. For example, communication software must
accommodate wireless networks that are far less reliable and sta-
ble than their wired counterparts. In addition, user interfaces must
conform to devices with widely varying display characteristics and
capabilities, from conventional workstations to palmtop devices.
Moreover, many systems must implement energy management ser-
vices, given the reliance of mobile devices on battery power. Fi-
nally, applications must confront the vulnerability of a connection-
less packet infrastructure by protecting themselves against intru-
sions and other security threats.

Adaptability can be implemented in different parts of the system.
One popular approach introduces a layer of adaptive middleware
between applications and underlying transport services, for exam-
ple, see [11, 13, 23, 24, 43]. An appropriate middleware platform
can help to insulate application components from platform and net-
work variability and can simplify the implementation of fault tol-
erance and security services. Many approaches to adaptive mid-
dleware design, and adaptive software design in general, involve
computational reflection [25, 38], which refers to the ability of a
computational process to reason about (and possibly alter) its own
behavior. A key issue that arises in the use of reflection, and one
of the major issues addressed in our work, is the degree to which
the system should be able to change its structure and operation.
A completely open implementation implies that an application can
be recomposed entirely at run-time, which may produce undesired
behavior. On the other hand, limiting adaptability also limits the
ability of the system to survive adverse situations.

Our interest in this problem arises from our work on RAPIDware,
an ONR-sponsored research project that addresses the design and
use of adaptive middleware for protection of critical infrastruc-
tures, such as power grids, nuclear facilities, and command and
control networks. The RAPIDware project focuses on develop-
ing unified software technologies, based on rigorous software en-
gineering principles, to support different dimensions of adaptabil-
ity while preserving functional properties of the code. Although
we primarily target interactive collaborative applications, the tech-
niques are general and could be applied to other domains, such as
high-performance distributed computing or operation of peer-to-
peer networks.

In an earlier paper [18], we proposed a new model for adaptive
components is based on the concept of providing separate com-
ponent interfaces for observing behavior (introspection) and for
changing behavior (intercession). This separation is intended to
simplify the development of adaptive functionality by restricting
the ways in which components can be manipulated, thereby help-
ing to ensure correctness and consistency. To further explore this
model, we implemented a programming language called Adaptive
Java, which supports dynamic reconfiguration of software compo-
nents. In this paper, we survey our activities in using Adaptive Java
to provide adaptable component behavior in three different cross-
cutting concerns: communication quality-of-service, energy man-
agement, and security.

The remainder of the paper is organized as follows. In Section 2,
we provide background on Adaptive Java, a particular adaptable
component called the MetaSocket, and the mobile computing testbed
on which we conducted our experiments. Section 3 describes the
use of MetaSockets to support adaptable error control, for both in-
teractive audio streaming and reliable multicasting, on wireless net-
works. Section 4 illustrates how adaptive communcation services
can be used to manage the energy consumption of small handheld
devices. Section 5 shows how Adaptive Java can be used to sup-
port adaptable auditing of security threats: effectively, any com-
ponent of an application can be turned into an “informer” at run
time. In each section, experimental results are presented. Section 6
discusses related work, and Section 7 presents our conclusions.

2. BACKGROUND

2.1 Adaptive Java.
The Adaptive Java language [18] is based on computational reflec-
tion [25, 38]. In reflective systems, typically, the base-level func-
tionality of the program is augmented with one or more meta levels,

base−level
 class

base−level
component

meta component

methods invocations

refraction

transmutation

absorbs metafy

Figure 1: Component absorption and metafication.

each of which observes and manipulates the base level. In object-
oriented environments, the entities at a meta level are called meta-
objects, and the collection of interfaces provided by a set of meta-
objects is called a meta-object protocol, or MOP.

The basic building blocks used in an Adaptive Java program are
components, which can be thought of as adaptable classes. The
key programming concept in Adaptive Java is to provide three sep-
arate component interfaces: one for performing normal imperative
operations on the object (computation), one for observing internal
behavior (introspection), and one for changing internal behavior
(intercession). Operations in the computation dimension are re-
ferred to as invocations. Operations in the introspection dimension
are called refractions: they offer a partial view of internal structure
and behavior, but are not allowed to change the state or behavior of
the component. Operations in the intercession dimension are called
transmutations: they are used to modify the computational behav-
ior of the component. Refractions and transmutations embody lim-
ited adaptive logic and are intended for defining how the base level
can be inspected and changed. The logic defining why and when
these operations should be used is provided at other meta levels or
by other components, such as decision makers.

An existing Java class is converted into an adaptable component in
two steps, as shown in Figure 1. First a base-level Adaptive Java
component is constructed from the Java class through an operation
called absorption, which uses the absorbs keyword. As part of
the absorption procedure, mutable methods called invocations are
created on the base-level component to expose the functionality of
the absorbed class. Invocations are mutable in the sense that they
can be added and removed from existing components at run-time
using meta-level transmutations. We emphasize that the relation-
ship between invocations on the base-level component and methods
on the base-level class need not be one-to-one. Some of the base-
level methods may be occluded or even combined under a single
invocation as the system’s form is modified. In this manner, the
base-level component defines explicitly those parts of the original
class are to be adaptable. For example, we might create a base-
level socket by absorbing a socket class. However, the base-level
socket may provide a customized interface for use in a particular
application domain.

In the second step, metafication enables the creation of refractions
and transmutations that operate on the base component, as shown
in Figure 1. Meta components are defined using the metafy key-
word. We emphasize that the meta-level can also be given a meta-

level, which can be used to refract and transmute the meta-level.
In theory, this reification of meta-levels for meta-levels could con-
tinue infinitely [25]. Continuing our socket example, a tranmuta-
tion might be defined to insert compression or encryption modules
into a socket, while a refraction might be used to observe traffic
patterns on behalf of an intrusion detection system.

Rather than considering MOPs as orthogonal portals into base-level
functionality [8], we propose an alternative model in which MOPs
are constructed from primitives, namely, refractions and transmuta-
tions. Figure 2 illustrates this concept. Different MOPs can be de-
fined for different cross-cutting concerns: communication quality-
of-service, fault tolerance, security, energy management, and so on.
We argue that defining different MOPs in terms of a common set
of primitives facilitates the coordination of their activities through
components such as decision makers and event mediators.

Meta Level

Base Level

MOPs

Figure 2: MOPs implemented with primitive operations.

We used CUP [15], a parser generator for Java, to implement Adap-
tive Java Version 1.0, which is used in this study. CUP takes our
grammar productions for the Adaptive Java extensions and gener-
ates an LALR parser, called ajc, which performs a source-to-source
conversion of Adaptive Java code into Java code. Semantic routines
were added to this parser such that the generated Java code could
then be compiled using a standard Java compiler.

2.2 MetaSockets
Given the importance of communication services to distributed com-
puting, the first component that we developed in Adaptive Java is
the “metamorphic” socket, or simply, MetaSocket. Using MetaSock-
ets instead of normal Java sockets enables that part of the applica-
tion (or middleware service) to dynamically observe and change

its behavior in response to external events. Figure 3 depicts the
structure of a MetaSocket component that has been configured
to perform two types of preprocessing, or filtering, on a data stream
before it it actually sent using the internal Java socket.

Socket

Send-
Socket

���������
	�������
Component

InsertFilter
RemoveFilter

GetStatusclose
send

filter with thread
�����������������

Figure 3: Structure of a MetaSocket component.

The base-level component, called SendSocket, was created by
absorbing the an existing Java socket class. (in most of our ex-
periments, we use the MulticastSocket class, but we ignore
that detail here). Certain public members and methods are made
accessible through invocations on SendSocket. This particular
instantiation is intended to be used only for sending data, so the
only invocations available to other components are send() and
close(). Hence, the application code using the computational
interface of a metamorphic socket looks similar to code that uses a
regular socket. The SendSocket was metafied to create a meta-
level component called MetaSocket. GetStatus() is a re-
fraction that is used to obtain the current configuration of filters.
InsertFilter() and RemoveFilter() are transmutations
that are used to modify the filter pipeline. MetaSockets and other
components can either change their own behavior or be acted upon
by other components.

In the remainder of this extended abstract, we briefly discuss our
experiments in adapting MetaSockets for different cross-cutting con-
cerns; details will be provided in the full paper. In our study, we
integrated MetaSockets into Pavilion [29], a collaborative comput-
ing application, and conducted experiments on a mobile computing
testbed. The testbed includes various types of mobile computers:
1Gz Dell laptop computers, Compaq iPAQ handheld systems, and
Xybernaut Mobile Assitant V wearable computers. These systems
currently communicate via an 11Mbps 802.11b wireless local area
network (WLAN), which is also connected to a a multi-cell WLAN
that covers many areas of the MSU Engineering Building and a
nearby courtyard; see Figure 3(b).

2.3 Experimental Environment
The RAPIDware project is largely experimental. All the software
techniques we are developing are implemented and evaluated on a
mobile computing testbed. The testbed includes various types of
mobile computers: several 1Gz Dell laptop computers (bootable
in either Windows 2000 or Linux), several Compaq iPAQ hand-
held systems (some runing Windows CE, others running Linux)
and three Xybernaut Mobile Assistant V wearable computers (each
with a 500 MHz processor and 256M memory). These systems

currently communicate via an 11Mbps 802.11b wireless local area
network (WLAN). Our local wireless cell is also connected to a a
multi-cell WLAN that covers many areas of the MSU Engineering
Building and its courtyard; see Figure 4.

Figure 4: Users of the mobile computing testbed in the court-
yard of the MSU Engineering Building.

To support our investigations of collaborative computing across
heterogeneous environments, we previously developed an object-
oriented groupware framework called Pavilion [29]. Pavilion is
written in Java and supports collaboration using off-the-shelf browsers
such as Netscape Navigator and Microsoft Internet Explorer. In
default mode, Pavilion operates as a collaborative web browser.
While browsing, the collaborating users can speak with each other
through real-time audio channels [31]. In addition to supporting
collaborative browsing, Pavilion components can be reused and ex-
tended in order to construct new collaborative applications. For
example, Pavilion has been used to develop VGuide [5], a collab-
orative virtual reality application that enables a user to select any
VRML file from the Internet and lead a group of users through that
virtual world.

Pavilion was originally designed for wired network environments.
We later extended Pavilion to wireless networks by constructing
proxy servers to meet the needs of mobile computers [31]. Al-
though these proxies support run-time adaptability, their adaptation
techniques are ad hoc, rather than supported by the language (Java)
or the run-time system. In the RAPIDware project, we seek prin-
cipled approaches, based on programming abstractions and rigor-
ous software engineering methods, to streamline the development
and maintenance of distributed computing systems, while enhanc-
ing their capability for automatic self-configuration and adaptation.
In the remainder of this paper, we describe Adaptive Java and how
we used it to realize adaptability in the Pavilion framework when
executed in heterogeneous wireless environments.

3. ADAPTABLE ERROR CONTROL
The characteristics of wireless networks are very different from
those of their wired counterparts. Factors such as signal strength,
interference, and antennae alignment produce dynamic and location-
dependent packet loss [30]. These problems affect multicast con-
nections more than unicast, since the 802.11b MAC layer does not
provide link-level acknowledgements for multicast frames. For-
ward error correction (FEC) can be used to improve reliability by
introducing redundancy into the data channel. As shown in Fig-

ure 5, an (�����) block erasure code converts � source packets into� encoded packets, such that any � of the � encoded packets can
be used to reconstruct the � source packets [26]. These codes are
particularly effective for multicast data streams, where a single par-
ity packet can be used to correct independent single-packet losses
among different receivers [36]. We have investigated the use of
MetaSockets to alter dynamically the quality of two different types
of multicast data streams: interactive audio and reliable multicast-
ing of files. Both studies involve run-time insertion and adaptation
of FEC filters in MetaSockets.

E
N

C
O

D
E

R

D
E

C
O

D
E

R

SOURCE���	�
� RECONSTRUCTED
DATA

RECEIVED���	�
�ENCODED���	�
�

Figure 5: Operation of FEC based on block erasure codes.

In the audio streaming experiments, the audio is recorded on a
wired workstation and transmitted to a wireless Xybernaut MA-
V wearable computer. The application code comprises two main
parts. On the sending station, the Recorder uses the javax.sound
package to read audio data from a system’s microphone and multi-
cast it on the network. On the receiving station, the Player receives
the audio data and plays it using the Java Sound API. Both appli-
cations were written in Adaptive Java and converted into pure Java
using ajc. They communicate using MetaSockets instead of regular
Java sockets.

The audio stream is transmitted over a 100 Mbps Ethernet LAN to a
wireless access point, where it is multicast on an 11 Mbps 802.11b
wireless LAN. The audio encoding uses a single channel with 8-bit
samples. Relatively small packets are necessary for delivering au-
dio data, in order to reduce jitter and minimize losses [31]. Hence,
each packet contains 256 bytes, or 32 msec of audio. In the ex-
periments, we used our interactive GUI, instead of an autonomous
decision maker component, to manipulate the metasockets. Fig-
ure 6 shows five superimposed traces, where we streamed audio
across the wireless LAN from a 1GHz laptop computer to a Xy-
bernaut MA-V wearable computer. In all traces, an FEC filter is
inserted at packet set 20 and removed it at packet set 40. As shown,
the filters are very effective in reducing the packet loss.

In the case of reliable multicast, we replaced Java sockets with
MetaSockets in WBRM [28], an application-level protocol that im-
plements reliability atop UDP/IP multicast. In this study, we again
insert FEC filters into MetaSockets at run time. Figure 7 shows
typical results near the cell periphery without FEC (dark indicates
packet loss, light indicates packet delivery). Using a simple (6,4)
FEC filter, the delivery rate increases dramatically. Moreover, the
performance using MetaSockets in this remote location is compa-
rable to what we can achieve with a tuned Java proxy server. We
report here only initial results here, and we are continuing our in-
vestigations. The use of MetaSockets (and Adaptive Java, in gen-

0%

10%

20%

30%

40%

50%

1 6 11 16 21 26 31 36 41 46 51 56���

! "#
$ %&' (
))*
%+#
%,
& "-
%

.0/2143 5	6 708
.0/2143 9	6 708
.0/2143 :<;	6 708
.0/2143 :<=	6 708
.0/2143 :<5	6 708

Figure 6: Dynamic insertion of FEC filter in audio stream.
eral) facilitates a cleaner separation of adaptive behavior from the
rest of the application code.

1 34 67 10
0

13
3

16
6

19
9

23
2

26
5

29
8

33
1

36
4

39
7

43
0

46
3

49
6

52
9

56
2

59
5

62
8

66
1

69
4

72
7

76
0

79
3

82
6

85
9

89
2

92
5

95
8

99
1>@?<ABADCFEF?@G0?DH2IF?DJ2K<?@LMI2N�OF?BP

QR SR TU
VWX SY
Z [\]UU
^Q _SY
` [a
`Y
`b c`
de fFg h i jFkFl mDnDj<k i jDo	pDi

250 f2g h i jDkFqMjDr�sDt�j<o
850

Figure 7: Reliable multicast trace.

4. ENERGY MANAGEMENT
Until fundamental breakthroughs are made in providing power to
handheld and wearable computers, battery lifetime will be a critical
issue for such devices. In addition to error control and quality of
service, the ability of the system to change the behavior of compo-
nents at run time may also be useful in managing the total energy
consumption of the device. To explore this hypothesis, we con-
ducted a study in which we measured the effect on battery power in
iPAQ H3670 handheld computers, each configured with a WLAN
interface card. We again used MetaSockets, but we emphasize that
any Adaptive Java component can potentially be adapted to address
energy consumption issues.

The main iPAQ battery pack contains a Lithium Ion Polymer bat-
tery and a monitor chip that exams the battery behavior and sta-
tus, such as voltage, temperature, chemistry, etc. We developed a
simple application to record the voltage as the system is running.
For reference in the following discussion, the measured voltage on
a fully charged iPAQ is approximately 950 mV. On an otherwise
idle system, the battery discharges linearly until it reaches approx-
imately 850 mV, at which point the system will not operate (details
of the second, external battery will be discussed in the full paper).

In our experiments, we used MetaSockets to receive different types
of data streams, with FEC decoding performed as needed by filters

configured in the MetaSockets. The iPAQ systems used in these
tests run Windows CE, although we are currently conducting ad-
ditional tests with Linux iPAQs. Figure 8(a) shows the results of
varying FEC parameters and receiving a live audio stream. (The
“Standby” curve is for an idle iPAQ equipped with an operational
network interface card.) Different FEC parameters affect the en-
ergy consumption of the device due to (1) receiving of additional
packets and (2) decoding of FEC groups. In Figure 8(a), the former
is more important, since the the receiving iPAQ is only a short dis-
tance from the wireless access point, where packet losses are low.
In Figure 8(b), we measured energy in two different locations. Lo-
cation A is near to the access point, where the the signal strength
is 100%, and Location B is outside the room containing the access
point and approximately 10 meters down a hallway, where the sig-
nal strength is only 30%. The FEC parameters are fixed at (8,4).
Although not shown, the packet loss rate after FEC decoding for
both locations is approximately 5%. The difference in energy con-
sumption is due to the additional invocations of the FEC decoder at
Location B.

����������	�
��������������� ���

900

910

920

930

940

950

960

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61��� ������� � !#"�$ �&%('

) *+ , -
./0 1
)2

Standby
n=8
n=16
n=24

(a) different FEC parameters

354�687:9�;=<�>54�?A@5B=C�D(E >54GFAD5HIE J:J(6K7L6�4�D�M5>�N�F�D EO>�4�?
@�?�EO4�9GP�35<RQ:SAT U�V

900
905
910
915
920
925
930
935
940
945
950
955

1 4 7 10 13 16 19 22 25 28 31W�EOB=6XQ:BGE 45@�D 6�?�V

Y Z[\]
^_
` a
Yb

cKd�e�f#gih dAj�k
cKd�e�f#gih dAjXl

(b) different locations

Figure 8: Energy consumption for different MetaSocket con-
figurations.

Even these sample results indicate that the manner in which com-
ponents are adapted has implications in terms of remaining battery

life. However, saving battery life may produce undesired conse-
quences in quality-of-service, security, and other cross-cutting as-
pects of the system. These trade-offs are the subject of our current
studies. In the full paper, we will present additional results, includ-
ing effects of different power saving modes in combination with
different MetaSocket parameters.

5. SELF-AUDITING FOR SECURITY
Designing a highly trusted component-based software system re-
quires that every component, in its turn, satisfies the security policy
defined for the entire system. A good security framework needs to
adapt to changing policies as well as respond to changing environ-
mental conditions, including perceived threats to the system. A key
part of any trusted system is the audit mechanism, which enables
information to be collected for both off-line and on-line analysis.
Traditionally, audit-related code is tangled with the base code of
the application, implying that the security policy and requirements
need to be known at development time. Recently, a number of im-
provements have been proposed, including the use of agent hierar-
chies [6], mobile agents [16, 35, 41], and compile-time weaving of
security code into applications using aspect-oriented programming
languages [44].

Adaptive Java provides an additional capability, namely, a means
to insert security-related code into a components as it executes. By
metafying a component with the appropriate set of refractions and
transmutations, effectively, any component of an application can
be turned into an “informer” at run time. Moreover, the nature
of the reported information can be adapted dynamically based on
changing conditions or directives from another authority, such as
an intrusion detection system. The ability to reconfigure the se-
curity aspects of components at run time is especially relevant to
mobile computing environments. In handheld and wearable sys-
tems, constant monitoring of all parameters of interest may be too
expensive in terms of computing resources and memory require-
ments. Rather, certain security checks associated with a component
should be loaded only as needed.

We have used Adaptive Java to develop an adaptable audit frame-
work. Besides informers, the framework includes several special
types of components. A decision maker (DM) controls all of the
nonfunctional behavior of the the subcomponents of its container
component. Depending on the rules and the current situation within
its subsystem, a DM might decide to transform a particular compo-
nent into an informer by metafying the component with a security-
oriented MOP. Once an informer is metafied, its DM can invoke
transmutations to start the logging of any part of the internal state
of the component. The logged information can be requested later
by way of refractions, or the informer can generate an event to
report items of interest. Our prototype system includes informa-
tion event mediators (IEMs), which decouple informer components
from those components that may be interested in a particular event.
A listener simply registers its interests with the IEM, and is notified
whenever the respective event has fired. Typically, one of the listen-
ers associated with events fired by informers will be a component
of an intrusion detection system (IDS).

To test the operation of our system, we conducted an experiment in
a MetaSocket is transformed into an informer that detects anoma-
lies in packet streams. In particular, we investigated the use of in-
former sockets to monitor the behavior of wireless audio channels
at run time. We used the same audio streaming application de-
scribed in Section 3. However, in this experiment we streamed the

data to wireless iPAQ handheld computers, instead of Xybernaut
wearables. Moreover, we introduced a second “malicious” source
of packets to the receivers. Figure 9 shows the physical configura-
tion of this experiment, where again interactive audio is sent over a
wireless LAN from a workstation to multiple iPAQ handheld com-
puters. As before, each packet contains 256 bytes, or 32 msec of
audio. This interpacket delay at the sender (and implicitly, the de-
lay between packets arriving at the receivers) stabilizes soon after
the channel is established. Hence, any significant changes in this
rate indicates either a malfunction or possible malicious behavior.

������� �	��
������� ...

Malicious/errant
Source

Figure 9: Physical experimental configuration.

When the application begins execution, the DM for the MetaSocket
at the receiver first calculates the initial expected rate of arriving
packets, based on input parameters to the application. The DM then
metafies the MetaSocket as a self-informer, creating several refrac-
tions (isInforms,getArrivalTimeVector,isNoiseDe-
tected and getPacketTimeTolerance) and transmutations
(setInforms,resetArrivalTimeVector, and setPack-
etTimeTolerance). The DM then uses setPacketTime-
Tolerance() to set the expected packet rate and an error tol-
erance. From this point, whenever the self-informer MetaSocket
detects a significant change in the arrival rate of the packets, the
MetaSocket will generate an event (NoiseDetectedEvent).

At a predetermined point in the experiment, we started the sec-
ond source of packets to the multicast address used by the iPAQs.
The informer socket monitors the slope of the packet arrival curve,
shown in Figure ??. The trace of the interpacket delay is shown in
Figure 10. When it detects a significant difference (as defined by
the application) in the slope for a specified interval of time, it fires
the event. In the experiment, additional packets begin arriving after
packet number 349. In this experiment, we simply used a second
source with the same packet size and interpacket delay as the orig-
inal source, resulting in a mean interpacket delay of approximately
16 milliseconds. The filter detects these noise packets at packet
number 379, which is promising. Of course, we might be able to
do even better, but we need to be careful not to fire false events to
“normal” variation in the packet arrival time.

The MetaSocket reports the event to the IEM, which forwards it the
DM for the MetaSocket. A rule in the DM indicates that an addi-
tional filter, NoiseRemover, should be inserted in the MetaSocket.
(Another rule could send an alarm message to an administrator, al-
though we did not implement this behavior.) The DM requests the
filter from the Component Loader, which forwards the request to
the Trader. In the current implementation, a simple unique identi-
fier, rather than a semantic description, is used to reference filters.

The DM inserts the returned filter into the MetaSocket using the
transmutation insertFilter, mentioned in Section ??. The
NoiseRemover filter uses a simple algorithm to identify packets not

associated with the original stream. Specifically, the filter removes
any packet whose application-level sequence number is outside a
small window. The mean interpacket delay quickly returns to 32
milliseconds. In this example, we assume the data is encrypted
and that it would be unlikely for an intruder, or an errant packet
source, to send packets with sequence numbers matching the orig-
inal stream. Those packets identified as noise are dropped, while
the others are passed to the receiving application.

� ��� ��������������� �!��" ��#

0

5

10

15

20

25

30

35

40

45

50

1 24 47 70 93 11
6

13
9

16
2

18
5

20
8

23
1

25
4

27
7

30
0

32
3

34
6

36
9

39
2

41
5

43
8

46
1

48
4

50
7

53
0

55
3

57
6

$�%'&)('*,+'-�.�/�0�*'1

2 34
567
89
: 54
; 5<
8 =
> ?
@<<@ A
59B
3
; AC

Figure 10: Trace of interpacket delay. A malicious source starts
at packet number 349, and the MetaSocket detects the anomaly
at packet number 379.

The reader might wonder why a developer would write MetaSocket
code that could deliver packets out of order to the application. More-
over, why do we need such a complicated framework simply to
filter noise packets from a data channel that exhibits well-defined
properties? Actually, these questions highlight precisely the advan-
tages of an adaptive run-time auditing framework. Prior to metafi-
cation, the base-level socket component is simply responsible for
receiving packets and delivering them to the application. It does
not, and should not, care about application-level semantics, includ-
ing sequence numbers. Moreover, the original developer might not
have anticipated all possible audits on that component. In the lan-
guage of aspect-oriented programming [20], the cross-cutting se-
curity code has been detangled from the code that implements the
functional behavior of the component. When the MetaSocket is
created through metafication, some basic checks are inserted into
the component, specific to its use for audio streaming. However,
to further inspect the data in the packet, including the application-
level header, is not necessarily warranted and would likely waste
computing resources. The proposed techniques enable all auditing
functionality to be completely tailorable to current conditions and
added only as needed.

6. RELATED WORK
In recent years, numerous research groups have addressed the is-
sue of adaptive middleware frameworks that can accommodate dy-
namic, heterogeneous infrastructures. Examples include Adapt [11],
MOST [14], Rover [17], MASH [27], TAO [23], dynamicTAO [21],
MobiWare [4], MCF [24], QuO [43], MPA [37], Odyssey [34],
DaCapo++ [40], RCSM [45], and Sync [33]. In addition, sev-
eral higher-level frameworks have been designed to support wear-
able/ubiquitous applications; examples include Hive [32], Ektara [9],
and Proem [22], Puppeteer [12], Aura [39], and the Context Toolkit [10].

These and related projects have greatly improved the understand-

ing of how a system can adapt to changes in the environment and
in user behavior and interactions. Our work in the RAPIDware
project complements such contributions by focusing on principled
approaches to adaptive software design that include programming
language support and rigorous software engineering methods. Such
support holds the promise that compile-time and run-time checks
can be performed on the adaptive code in order to help ensure con-
sistency and preservation of certain key properties as the system
changes. Moreover, these techniques facilitate the run-time adap-
tation of the system in ways not anticipated during the original de-
velopment.

Other researchers have addressed the use of programming language
constructs to realize adaptable behavior. For example, Andersson
and Ritzau [3] describe a method to support dynamic update of
Java programs, but that technique requires a modified JVM. Our
“weaving” of adaptive code with the base application is reminiscent
of aspect-oriented programming [20]. Although many projects in
the AOP community focus on compile-time weaving [19], a grow-
ing number of projects focus on run-time composition [2, 42]. By
defining a reflection-based component model, Adaptive Java also
supports run-time reconfiguration but is not restricted to the AOP
model that requires identification of predefined “pointcuts” at com-
pile time. A related concept is composition filters [7], which pro-
vide a mechanism for disentangling the cross-cutting concerns of
a software system. Besides filters, however, Adaptive Java can be
applied to components that interact in arbitrary ways, and therefore
is perhaps more general.

The PCL project [1] also focuses on language support for run-time
adaptability and is perhaps most closely related to our work. PCL
is intended for use directly by applications. Our concept of “wrap-
ping” classes with base components is similar to the use of Adap-
tors used in PCL. However, modification of the base class in PCL
appears to be limited to changing variable values, whereas Adap-
tive Java transmutations can modify arbitrary structures or subcom-
ponents. Moreover, by combining encapsulation with metafication,
Adaptive Java can be used to realize adaptations in multiple meta-
levels.

7. CONCLUSIONS
A major goal of the RAPIDware project is to explore software
mechanisms that enable coordinated adaptation to changing con-
ditions in multiple cross-cutting concerns: security, energy con-
sumption, fault tolerance, and quality of service. In this paper, we
described the use of the Adaptive Java programming language to
support the development of components that can be adapted in mul-
tiple ways. Specifically, we showed how MetaSocket components
can be adapted at run time for error control, energy management,
and security auditing. While the experiments conducted are rela-
tively simple, they serve as a proof-of-concept that it is possible
to transform components at run time such that they are adaptable
in different dimensions. Moreover, while we focused exclusively
on MetaSockets in this paper, we emphasize that the Adaptive Java
mechanisms are general. Currently, we are conducting several ad-
ditional RAPIDware subprojects where we are using Adaptive Java
to address other key areas where software adaptability is needed in
wearable computers and other mobile devices: dynamically chang-
ing the fault tolerance properties of components; adaptive security
policies dynamically woven across components; and mitigation of
the heterogeneity of system display characteristics. In addition, we
are developing additional language constructs that facilitate captur-
ing the relevant state of a component in order to support dynamic

changes in fault-tolerance requirements. Combined, these activi-
ties are intended to provide developers with tools and techniques to
develop adaptive software that can take advantage of compile-time
and run-time correctness checking.

Further Information. A number of related papers and technical
reports of the Software Engineering and Network Systems Labora-
tory can be found at the following URL:
http://www.cse.msu.edu/sens.

Acknowledgements. The authors would like to thank Kurt Stire-
walt, Rahul Kalaskar, and Udiyan Padmanabhan for their contribu-
tions to this work. This work was supported in part by the U.S. De-
partment of the Navy, Office of Naval Research under Grant No.
N00014-01-1-0744, and in part by National Science Foundation
grants CDA-9617310, NCR-9706285, CCR-9912407, EIA-0000433,
and EIA-0130724.

8. REFERENCES
[1] V. Adve, V. V. Lam, and B. Ensink. Language and compiler support

for adaptive distributed applications. In Proceedings of the ACM
SIGPLAN Workshop on Optimization of Middleware and Distributed
Systems (OM 2001), Snowbird, Utah, June 2001.

[2] F. Akkai, A. Bader, and T. Elrad. Dynamic weaving for building
reconfigurable software systems. In Proceedings of OOPSLA 2001
Workshop on Advanced Separation of Concerns in Object-Oriented
Systems, Tampa Bay, Florida, October 2001.

[3] J. Andersson and T. Ritzau. Dynamic code update in JDrums. In
Proceedings of the ICSE’00 Workshop on Software Engineering for
Wearable and Pervasive Computing, Limerick, Ireland, 2000.

[4] O. Angin, A. T. Campbell, M. E. Kounavis, and R.R.-F.M. Liao. The
Mobiware toolkit: Programmable support for adaptive mobile
networking. IEEE Personal Communications Magazine, Special
Issue on Adapting to Network and Client Variability, August 1998.

[5] J. Arango and P. K. McKinley. VGuide: Design and performance
evaluation of a synchronous collaborative virtual reality application.
In Proceedings of the IEEE International Conference on Multimedia
and Expo, New York, July 2000.

[6] J. S. Balasubramaniyan, J. O. Garcia-Fernandez, D. Isacoff,
E. Spafford, and D. Zamboni. Aspects for run-time component
integration. In Proceedings of the 14th Annual Computer Security
Applications Conference, pages 13–24, December 1998.

[7] L. Bergmans and M. Aksit. Composing crosscutting concerns using
composition filters. Communications of the ACM, 44(10):51–57,
October 2001.

[8] G. S. Blair, G. Coulson, P. Robin, and M. Papathomas. An
architecture for next generation middleware. In Proceedings of the
IFIP International Conference on Distributed Systems Platforms and
Open Distributed Processing (Middleware’98), The Lake District,
England, September 1998.

[9] R. W. DeVaul and A. Pentland. The Ektara architecture: The right
framework for context-aware wearable and ubiquitous computing
applications. The Media Laboratory, Massachusetts Institute of
Technology, unpublished, 2000.

[10] A. K. Dey and G. D. Abowd. The Context Toolkit: Aiding the
development of context-aware applications. In Proceedings of the
Workshop on Software Engineering for Wearable and Pervasive
Computing, Limerick, Ireland, June 2000.

[11] T. Fitzpatrick, G. Blair, G. Coulson, N. Davies, and P. Robin. A
software architecture for adaptive distributed multimedia
applications. IEE Proceedings - Software, 145(5):163–171, 1998.

[12] J. Flinn, E. de Lara, M. Satyanarayanan, D. S. Wallach, and
W. Zwaenepoel. Reducing the energy usage of office applications. In
Proceedings of the IFIP/ACM International Conference on

Distributed Systems Platforms (Middleware 2001), pages 252–272,
Heidelberg, Germany, November 2001.

[13] A. Fox, S. D. Gribble, Y. Chawathe, and E. A. Brewer. Adapting to
network and client variation using active proxies: Lessons and
perspectives. IEEE Personal Communications, August 1998.

[14] A. Friday, N. Davies, G. Blair, and K. Cheverst. Developing adaptive
applications: The MOST experience. Journal of Integrated
Computer-Aided Engineering, 6(2):143–157, 1999.

[15] S. E. Hudson, editor. CUP User’s Manual. Usability Center, Georgia
Institute of Technology, july 1999.

[16] W. Jansen, P. Mell, T. Karygiannis, and D. Marks. Mobile agents in
intrusion detection and response. In Proceedings of the 12th Annual
Canadian Information Technology Security Symposium, Ottawa,
Canada, 2000.

[17] A. D. Joseph, J. A. Tauber, and M. F. Kaashoek. Mobile computing
with the Rover toolkit. IEEE Transactions on Computers: Special
issue on Mobile Computing, 46(3), March 1997.

[18] E. Kasten, P. K. McKinley, S. Sadjadi, and R. Stirewalt. Separating
introspection and intercession in metamorphic distributed systems. In
Proceedings of the IEEE Workshop on Aspect-Oriented
Programming for Distributed Computing (with ICDCS’02), Vienna,
Austia, July 2002. to appear.

[19] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of aspectj. In ECOOP, pages 327–353, 2001.

[20] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming. In
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP). Springer-Verlag LNCS 1241, June 1997.

[21] F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, L. C. M. aes, and
R. H. Campbell. Monitoring, security, and dynamic configuration
with the dynamicTAO reflective ORB. In Proceedings of the
IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware 2000), New York, April 2000.

[22] G. Kortuem, J. Schneider, D. Preuitt, T. G. C. Thompson, S. Fickas,
and Z. Segall. When peer-to-peer comes face-to-face: Collaborative
peer-to-peer computing in mobile ad-hoc networks. In Proceedings
of the 2001 International Conference on Peer-to-Peer Computing
(P2P2001), Linköpings, Sweden, August 2001.

[23] F. Kuhns, C. O’Ryan, D. C. Schmidt, O. Othman, and J. Parsons. The
design and performance of a pluggable protocols framework for
object request broker middleware. In Proceedings of the IFIP Sixth
International Workshop on Protocols For High-Speed Networks
(PfHSN ’99), Salem, Massachusetts, August 1998.

[24] B. Li and K. Nahrstedt. A control-based middleware framework for
quality of service adaptations. IEEE Journal of Selected Areas in
Communications, 17(9), September 1999.

[25] P. Maes. Concepts and experiments in computational reflection. In
Proceedings of the ACM Conference on Object-Oriented Languages
(OOPSLA), dec 1987.

[26] A. J. McAuley. Reliable broadband communications using burst
erasure correcting code. In Proceedings of ACM SIGCOMM, pages
287–306, September 1990.

[27] S. McCanne, E. Brewer, R. Katz, L. Rowe, E. Amir, Y. Chawathe,
A. Coopersmith, K. Mayer-Patel, S. Raman, A. Schuett, D. Simpson,
A. Swan, T. Tung, D. Wu, and B. Smith. Toward a common
infrastructure for multimedia-networking middleware. In Proc. 7th
Intl. Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV ’97), St. Louis, Missouri, May
1997.

[28] P. K. McKinley, R. R. Barrios, and A. M. Malenfant. Design and
performance evaluation of a Java-based multicast browser tool. In
Proceedings of the 19th International Conference on Distributed
Computing Systems, pages 314–322, Austin, Texas, 1999.

[29] P. K. McKinley, A. M. Malenfant, and J. M. Arango. Pavilion: A
distributed middleware framework for collaborative web-based
applications. In Proceedings of the ACM SIGGROUP Conference on
Supporting Group Work, pages 179–188, November 1999.

[30] P. K. McKinley and A. P. Mani. An experimental study of adaptive
forward error correction for wireless collaborative computing. In
Proceedings of the IEEE 2001 Symposium on Applications and the
Internet (SAINT-01), San Diego-Mission Valley, California, January
2001.

[31] P. K. McKinley, U. I. Padmanabhan, and N. Ancha. Experiments in
composing proxy audio services for mobile users. In Proceedings of
the IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware 2001), pages 99–120, Heidelberg, Germany,
November 2001.

[32] N. Minar, M. Gray, O. Roup, R. Krikorian, and P. Maes. Hive:
Distributed agents for networking things. In Proceedings of
ASA/MA’99, the First International Symposium on Agent Systems
and Applications and Third International Symposium on Mobile
Agents, 1999.

[33] J. Munson and P. Dewan. Sync: A system for mobile collaborative
applications. IEEE Computer, 30(6):59–66, 1997.

[34] B. D. Noble and M. Satyanarayanan. Experience with adaptive
mobile applications in Odyssey. Mobile Networks and Applications,
4:245–254, 1999.

[35] T. Qian and R. Campbell. Dynamic agent-based security architecture
for mobile computers. In Proceedings of the International
Conference on Parallel and Distributed Computing and Networks
(PDCN’98), December 1998.

[36] L. Rizzo. Effective erasure codes for reliable computer
communication protocols. ACM Computer Communication Review,
April 1997.

[37] M. Roussopoulos, P. Maniatis, E. Swierk, K. Lai, G. Appenzeller,
and M. Baker. Person-level routing in the mobile people architecture.
In Proceedings of the 1999 USENIX Symposium on Internet
Technologies and Systems, Boulder, Colorado, October 1999.

[38] B. C. Smith. Reflection and semantics in Lisp. In Proceedings of 11th
ACM Symposium on Principles of Programming Languages, pages
23–35, 1984.

[39] J. P. Sousa and D. Garlan. Aura: an architectural framework for user
mobility in ubiquitous computing environments. In Proceedings of
the 3rd Working IEEE/IFIP Conference on Software Architecture,
Montreal, Canada, August 2000. to appear.

[40] B. Stiller, C. Class, M. Waldvogel, G. Caronni, and D. Bauer. A
flexible middleware for multimedia communication: Design
implementation, and experience. IEEE Journal of Selected Areas in
Communications, 17(9):1580–1598, September 1999.

[41] A. Tripathi, T. Ahmed, S. Pathak, A. Pathak, M. Carney, M. Koka,
and P. Dokas. Active monitoring of network systems using mobile
agents. In Proceedings of Networks 2002, Joint Conference of
ICWLHN 2002 and ICN 2002, August 2002. to appear.

[42] E. Truyen, B. N. Jörgensen, W. Joosen, and P. Verbaeten. Aspects for
run-time component integration. In Proceedings of the ECOOP 2000
Workshop on Aspects and Dimensions of Concerns, Sophia Antipolis
and Cannes, France, 2000.

[43] R. Vanegas, J. A. Zinky, J. P. Loyall, D. A. Karr, R. E. Schantz, and
D. E. Bakken. QuO’s runtime support for quality of service in
distributed objects. In Proceedings of the IFIP International
Conference on Distributed Systems Platforms and Open Distributed
Processing (Middleware’98), The Lake District, England, September
1998.

[44] J. Viega and D. Evans. Separation of concerns for security. In
Proceedings of the ICSE Workshop on Multidimensional Separation
of Concerns in Software Engineering, June 2000.

[45] S. S. Yau and F. Karim. Adaptive middleware for ubiquitous
computing environments. In Proceedings of IFIP WCC 2002 Stream
7 on Distributed and Parallel Embedded Systems (DIPES 2002),
Montreal, Canada, August 2002. to appear.

