Experiences Teaching Data Structures With Java

Mark Allen Weiss
School of Computer Science
Florida International University
Miami, FL 33199
weiss@fiu.edu

Abstract

This paper describes our experiences incorporating Java in
a Data Structures course. We describe the fedures of Java
that made for a more interesting course, the difficulti es that
we encountered, and compare Java to the prior langueges
used in this course, Ada and C++. All in all, we found Java
to be areasonable, but not overwhelming better, alternative.

Our students were particularly happy with the experiment.

Introduction

Among Computer Science elucaors, hardly any topic in-
spires more heaed debate than the choice of programming
language in the introductory sequence In the late 80s, the
uniformly accepted choice was Pascd, but since then, a
host of aternatives have cmme into use. C++ seems to have
emerged as the winner, while Pascd, C, Ada, Scheme, and
Modula-3 split most of the remaining market.

There gpea to be two overriding reasons for C++'s emer-
gence Firgt, principles guch as encgpsulation and informa-
tion hiding, that are important to tead in the CS I/1l cur-
riculum, are eaily demonstrated in C++. Much of the ugdli-
nessasvciated with C is easily avoided in C++ by the use
of a tiny set of clases: About al that is nealed is a
String and Vect or class Seoond, C++ has become an
industry standard (even though C++ is itself not yet stan-
dardized). Many universities are finding that they must
teat C++ at some paint, and given limitations on the num-
ber of courses that can be offered, they are finding it most
convenient to tead it ealy. C++, however, has its share of

problems; some of these problems will be discussed later.

Javais the new dternative to C++. It can be presented as a
simpler C++ that fixes many of C++'s bad feaures and
provides a primitive, but useful, GUI toolkit. One agument
for teading Java ealy isthat it is better to use an already-
defined language rather than attempt to subset a complex
language. While C++ is arguably the most complex lan-
guage ever to be widely adopted, it appeas that Java is
easily the most hyped language.

The Data Structures course & our University is a bit un-
usual. The vast majority of our students are upper-level
transfers from community college. As a result, most come
to us with much of their non-CS courses complete, and have
taken an introductory programming course, typicdly in
Pascd. The first course taken at XXX is formally entitled
Intermediate Programming. It is taught somewhere be-
tween CS-1 and CS-2; we cdl it CS-1.5. Since 199Q the
course has been taught in Ada. Data Structures foll ows
Intermediate Programming. However, we dso dfer a
course cdled Advanced Programming; it discusses C, C++,
and object-oriented concepts.

Although Advanced Programming is not a prerequisite to
Data Structures, many students eled to take it either prior
to, or concurrent with, Data Structures. As a result, al-
though Ada is the asaumed language for Data Structures,
many students want to program in C++ for the murse. We
have found that the language mnstructs of Ada and C++ are
acdually very similar, making this ressonable. Ada and C++
both have enoughsubtle “tricks’ that some dasstime needs
to be devoted to explaining both languages; this has be-
come somewhat of an annoyance One of the original moti-
vations for using Java was to avoid the problem of dueling

languages. Everybody would have to use Java in the course.

Aside from our own unwsua sequencing, Java seemed to
offer several other benefits. First, since Java mmes with a
built-in GUI todkit (the Abstract Window Toolkit, or
AWT) we oould allow the students to experiment with both
GUI (rather than line-at-a-time) input and graphicd objeds,
such as circles. Students could draw binary trees on a can-
vas, thus extending the range of programming assgnments
to include demos of the basic data structures and algo-
rithms. By having more cmplex projeds, with fancier in-
terfaces, it becane reasonable to ask students to work in
groups. This allowed us to introduce group work into the
curriculum somewhat ealier than usual. Seoond, it was
thought that students would be more motivated if they could
work in Java, since many of them were dso well-aware of
the hype. The motivation fador would also incresse be-
cause GUI programming is more exciting than terminal-
based programming. Finaly, there was the gped that per-

haps Java really was a significant improvement over C++.

Therest of this paper is organized as follows: First, we dis-
cussthe Java course materials that we used and devel oped.
Then we compare Java and C++, noting fewer significant
language differences than anticipated, and pdnting out

some subtle traps. Next we discuss sudent reacions, which
were very positive, and student performance, which was
mixed. Finally we discussour future plans, and explain how
Java will fit into our currialum.

How We Did It

The students did all the development using Symantec Café
inalab of 22 Pentium 60s (at the time Café was the only
development todl available). The mnsensus eamed to be
that Café worked well for the students, and the resource
editor was easy to use. The online help was deemed worth-
less however. Java compiles ource ®de (.java files) and
generates .class files; the students eventualy uploaded the
.classfiles to a UNIX web server to demo their applets.

In addition to the Data Structures textbodk [4], which the
students were instructed to purchase in either the Ada or
C++ version, the students were dso given some Java text-
bodk options. Two bodks [1,3] were ordered. [1] is for be-
ginners, and comes with a CD that contains Café Lite (Café
minus a few fedures). The dternative was [3], which is a
referenceintended for more experienced programmers. The
consensus among the students was that [1] was too ele-
mentary. The students that chose [3] were pleased. Much of
Java is documented on the internet through Sun's home
page. Few students chose the no-bodk aternative. Given
that the preferred bodk was also half as expensive, | would
recommend it for anyone teading the curse. Recantly, a
host of new Java bodks have gpeaed, including[2], which
is geared for the CS-1 market.

Four ledures encompassng two weeks of the course were
spent describing Java. The first ledure described basic
Java, including the environment, the built-in types, opera-
tors, public static functions, strings, and arrays. The second
ledure described objeds, classes, padages, and the java-
doc utility. The third class described inheritance and ab-
strad methods and classs. It included exceptions (as in
C++, an objed is thrown by the throw clause, but unlike
C++, only ohjeds that are subclasses of Thr owabl e can
be thrown), interfaces (the pretty alternative to multiple
inheritance), and a workaround for templates, which are
missng in Java. The fourth ledure described the Abstrac
Window Todlkit and applets. No attempt was made to ds-
cussthreals, though many students were inspired enoughto
lean it on their own. Ledure dides are avalable &
htt p: // wwv. xxx. edu/ ~xxxxx/ cop3530.

Although two weeks were invested ealy in the urse,
eventually they were made up becaise the Java program-
ming that relates to data structures is a little simpler, and
guestions were limited to one programming language. The
downside was that althoughthe same material was covered,
the material covered by the programming assgnments did
not include & much as usua (there were no programs on
sorting and graph algorithms). Whereas the second assgn-

Binary Heap Animation Applet

6 86
— - \ / \
56 94 174
o
a4 ’“
1| I -
F | Restart | Wi s
1 2 3 Delete
4 5 6 ! Insert. Message Field:
(8] Toss |
+ 0 |CE Fix Heap

Figure 1. This applet shows the insertion of 6 into a
binary heap. At this paint, 6 and 17 are exchanging
places to restore heap order (submitted by
Peterjohn Hugh and Alberto dela Serna).

ment would typicdly cover stacks, queues, etc, these topics
were not covered urtil the third assgnment, because of the
two weeks invested in discussng Java. The asgnments
that | eventually gave were agléows:

1. (Javawarm up) Implement aDat e classwith asimple
GUI to test subtraction of twiDat e objects.

2. Implement an applet that demonstrates the binary
search algorithm.

3. Implement an applet that demonstrates the operator-
precalence parsing algorithm, showing bath the op-
erator and operand stacks.

4. Implement an applet that prints a binary seach tree
after each insertion or deletion.

5. Implement an applet that demonstrates linea probing
and quadratic probing hash tables.

6. Implement an applet that demonstrates the basic binary
heap perations.

Students were dlowed to work either by themselves or in
groups of up to three About half the students worked by
themselves; the other half worked in groups of two. Stu-
dents in groups garted with a lower base grade ad had to
do afancier job to get an equivalent grade. | also required
students in groups to submit “timecads’ documenting who
spent what time doing what. Figure 1 shows a submisson
that was notable for using animation (animation was extra
credit).

As we found during the curse, the use of Java has both
good ponts, bad pants, (mostly) points that sound good,
but redly are not much better than C++, and also pdnts that
seamed like they would be bad, but were not. We list some
of the entries in each of the four categories.

Java Wins

Several areas of Java ae nice improvements to C++ and
simplify life. There is no denying their utility.

The first improvement is that the C++ header files and class
interface ae gone. This removes the annoying #i f ndef

#endi f idiom. The javadoc utility alows one to extrad a
meaningful documentation page from a properly com-
mented java dass My students were dso happy to know
that java programs must end in .java, in contrast to C++
programs which have differing suffixes (.cpp, .cc, etc.),
depending on the compiler and machine.

Another nice feaure is that the basic types have fixed
ranges. For instance an i nt is always 32 hts, and aways
ranges from -214783648to 214783647 This fixes an an-
noyance that seems to pop up when moving from SUN
workstations to PCs. There ae no unsigned types, which
saves lots of problems. Additionally, we do not have to
worry about “memory models’ that are common for C++
implementations on PCs. In particular, one can have 20006
node binary seach trees without claims of running out of
memory (however Java is a lot slower than C++!).

Java provides a simple mechanism for using GUIs and
drawing gaphics. Although it is not as powerful as the
MFC classs in Visual C++, it is certainly more than ade-
guate for use in an early CS course.

Java Wins That Are Less Significant

Java has a number of improvements to C++ that, while nice,
either have equivalent constructs in C++, or are not widely
used in a Data Structures course.

Java defines the bool ean built-in type, which makes
many of the @mmon C++ errors (for examplei f (X=Y))
go away. While there is no daubt of its utility, it is part of
Ada ad will be part of the new C++ standard, as bool .
Many C++ compilers already support it.

Java has a predefined St ri ng objed and an array objed
that includes bounds chedking. So does Ada. C++'s gan-
dard has these incorporated, and in the interim, it is a sim-
ple matter to write two small classs for this. Java's gring
objed also has me problems. Since it is not a built-in
type, the == operator does not return true if the two strings
are eual, but rather returns true if they refer to the same
objed. (Our textbodk had errors in which == was used in-
stead of the equal s method). The = operator for arraysis
simply a reference assgnment, rather than a wpy of array
elements. With C++ and Ada, strings and arrays can be
made first-class types.

Java does not have pointers. Thisis bill ed as a monumental
improvement. In redity, except for a built-in type, an objed
name is areference, and thus is adually a pointer. Thus, in
some respeds, al Java has is pointers. While it is true that

the avoidance of dired pointers will reduce programming
errors, in our course the most typicd use is in linked lists
and seach trees. Here one hardly sees a difference in the
Java, C++, or Ada mde. The other use of pointersis typi-
cdly to simulate arays and strings, but if the Vect or and
Stri ng classes are used, this goes away.

Java suppats garbage olledion, so one does not have to
perform delete or delete[] or (in Ada
Unchecked_Deal | ocati on. Once again, given that
arrays and strings in C++ will use a ¢assthat hides pointer
details, del et e[] bemmes unrecessry. The cmmon
use of del et e isin dynamic data structures. Here, using
del et e typicdly requires an insignificant extra two lines
of code (saving the pointer to the deleted oljed, and then
fredang the objead). Even if we accet that Java wins in this
instance, Java is not uniform about colleding carbage:
Programmers must remember to explicitly close open files
in Java (in C++ they are atomaticdly closed by a
destructor when the file strean exits <ope), and
programmers using G- aphi ¢s objeds in Java must cdl a
dispose routinexglicitly.

Another win for Java @ncerns the related isaues of copy
congtructors, initidizer lists, parameter passng mecha-
nisms, return mecdhanisms, and constant member functions,
al of which are neaded in C++, and none of which are part
of Java. Java passes and returns all built-in types by value,
and all other types (objeds) by reference Java does not
have the notion of an initidizer list or a @mnstant member
function. Constant member functions are adetail of C++
that students put on a par with commenting. Dedding on
the @rred parameter passng and return type anong value,
reference, and constant referenceis confusing for beginning
students, and at the very least, leads to a lot of typing.

Although Java simplifies C++ in this regard, professors can
simplify C++ themselves with the following strategy:

1. UseonlyStri ng andVect or

2. Do not usalel et e at all

3. Do not use initializer lists aronst at all

4. Do not implement copy constructorsaper at or =.

My own opinion is that only strategy 1 should be adopted;
the complexity of managing memory, using initializer lists,
worrying about const-ness and writing copy constructors
and oper at or = is not significantly overwhelming and
must eventually be mastered by C++ programmers anyway.
In many instances | simply disable the copy constructors
and oper at or = by pladng their prototypes in the private
section of the C++ class interface.

Java's implementation of inheritance is far superior to
C++'s. All binding is dynamic by default; we do not have to
clutter up the cde with virtual functions. Multiple inheri-
tance is not allowed, but an elegant alternative is provided

by the interface. However, inheritance is used relatively
sparingly in a data structures course. Those mntemplating
an extensive objed-oriented course might well find that
Java s handling of inheritanceis the single reason to choose
Java over C++ or Ada.

Java Problems That Were Not Huge Problems

The most glaring omissons from Java ae the lack of tem-
plates (or generics in Ada) and operator overloading. Since
both these fedures are present in both Ada aad C++, many
of our students were surprised to find out that they were
missing in a modern language like Java.

Not having operator overloading is annoying mostly be-
cause it means that the typicd examples of rational or com-
plex numbers can no longer be used seamlessly.

The ladk of operator overloading also means that we canot
rewrite our own array class to incorporate resizing. The
Vect or class which does resizing wses named methods
element At and insertEl ementAt instead of
operator[].It'snot an appeding aternative. Even so,
writing the aray doubling code ourselves requires only a
few lines of code that can be made apublic static method o
a utility class.

What redly seemed to be problematic was the ladk of
templates. Instead of writing a template stadk, one writes a
stack of Cbj ect. The ideais that since everything is an
objed, we can have astadk of anything. There ae some
problems though First, not everything is an objed (built-in
types are the exception). However, Java provides wrapper
clasesfor the aght built-in types. Second, when one does a
t op operation to accessthe topitem in the stads, the return
type is an Obj ect , which must then be type-converted to
what is adually on the stack. The syntax is thus a bit ugly,
but it is acceptable for the data structures course. For a
stadk of integers, we canpushani nt 3 onto astak S, and
extract it into the nt Val with:

Stack S = new Stack();
S. Push(new Integer(3));

Val = ((Integer)S.top()).intValue();

For a SearchTr ee, we store objeds that are of type
Conpar abl e, which is an interfacethat we provide. The
interfacespedfies a set of abstrad methods. A classimple-
ments the interfaceif it provides implementations for all of
these functions. This aternative to multiple inheritance
avoids the problem of inheriting multi ple implementations.
Only objeds that implement the Conpar abl e interface
(that is, provide some amparison routines) can be inserted
into the Sear chTr ee. Thisis an improvement over C++,
where the requirements of the template parameter can only
be given by comments, and Ada, in which the instantiation
types and the operations required by the types are provided
separately in the generic instantiation.

Java Annoyances

Java is by no means perfed. If you think al of C++'s
problems are gone, think again. A stray semicolon after a
while dause will still get an infinite loop, and the switch
statement with the default step-though to the next case re-
mains. Class methods can dedare locd objeds with the
same name & class data members, yielding hard-to-find
shadowing bugs. Java gplets have severe seaurity restric-
tions and cannot do much. Java gplicaions run slowly and
may be too slow for large data sets.

Text filesin Java ae harder to work with than in C++, asis
parsing input lines. It is no simple task to write aprogram
that reads two integers and echoes them bad. However,
one can lvays write a class to do the dirty work of 1/O.

Exceptions in Java work in a similar way as C++, but they
are much improved in some detail s, such as the throw list.
The fad that exceptions must be caight or propagated can

be annoying, as in the following code that empties a stack:

while(!'S.isEmty())
S. pop();

This code does not compile, if, as would be common, the
pop routine is written to throw an exception when the stadk
is empty. In this case, the pop must be exclosed inatry
block with a subsequent cat ch clause. This is good style
for large industrial type programs, but very annoying for
students, especially for smaller programs.

The GUIs in Java do not work predsely as advertised. Stu-
dents had a difficult time positioning things exadly as they
wanted; they typicdly settled for what the system would
give them. The repai nt method (when not using
threads) does not always get cdled immediately. Students
found that some de that was placal after the r epai nt
was being cdled prior to the adua repainting, leading to
lots of frustration. The fonts didn’t always fit into the text
fields as advertised. This semed to vary depending on
what platform the applet was viewed on.

In C++ and Ada, there is occasion to passa pointer by ref-
erence (meaning that where it pointsto can be dhanged). An
example is the C++ or Ada mde to insert into a treerooted
atT. The prototypes are:

voi d insert(TreeNode * & T)
procedure insert(T: in out PtrNode)

There is no equivalent for this in Java, requiring the C-like

TreeNode insert(TreeNode T)

In Java, to test if two oljeds have identicd contents, you
must use the equal s method. Thus the typicd error for
stringsisto use == instead of equal s. When defining rew
clases, the programmer must provide a definition of
equal s to override the one provided in Cbj ect. The
equal s in Obj ect always returns false. Unfortunately, it
is hard to remember that the signature must be

bool ean equal s(hject O herOhject);

Typically, a student will write for a new clabgC ass

bool ean equal s(Myd ass O her vj ect);

which leaves the neaded equal s function in tad (with a
return that is always false).

Debuggng Java programs was typicdly difficult. The
program aways ®eaned to crash with a
Nul | Poi nt er Excepti on, suggesting that not all
pointer problems have disappeared with Java. Applets that
worked in the provided appletviewer failed under Netscape,
and vice-versa. Applets that worked for an ealy version of
Netscape failed for later versions.

Student Evaluations

Prior to the beginning of the semester, rumors of Javain the
course had spread and most in the dassknew what was up.
Approximately double the erollment listed in the dass
appeaed for the first two weeks, just to hea about Java. As

will discuss advanced C++ feadures and oljed-oriented

concepts, and, given recent developments, will cover Java.

Although the Java experience was paositive, we airrently
have no plans to move the first course to Java. Having
taught C++ for a while, we have aset of teaders who now
know it well enough to avoid many of the cmmon past
mistakes. Furthermore, we believe that C++ is not going to
go away and will have to be learned eventually; we find that
playing with pointers redly is important; and we think that
the C++ compilers are much lessfragile and offer a better
development environment than they used to. We fed that a
safe C++ is roughly equivalent to Java. Furthermore, we
fed that both faaulty and students need some measure of
stability, and that it is unwise to change the @re of the aur-
riculum every time a new fad comes along.

During our transition period, which will extend for a while,
we will repea the Java eperiment. Eventually, Data
Structures will be taught in C++, though students who know
Java will have the option of using it. We exped that many
students will elea to take Advanced Programming prior to

soon as the class returned to Data Structures, the extras leftData Structures (as they have been), and then use Java for

The final class readion, based on written student evalua-
tions, was extremely positive. Not surprisingly, large num-
bers of students were excited to be leaning cutting-edge
technology. Although many students indicaed that they
worked harder in this course than any other, most seemed
eager to do so, because they felt they were leaning a mar-
ketable skill . Students had a high opinion of Java, and uni-

formly recommended that it be placed in the curriculum.

However, although many of the programming assgnments
were very impressve, performance on in-class exams,
which is esentially language independent, appeaed to be
identicd to previous smesters. Additionally, the drop-out
rate was esentially unchanged from previous ssmesters. In
fad, our experience suggests no significant differences in
basic CS knowledge mmpared to prior versions of the
course, althoughone culd argue that since the students had
the alditional burden of learning a new language, had they
already known Java, they would have done better in the
exams.

Future Plans

Prior to the summer, the Schod had voted to change the
curriculum. Esentialy, we found that we wanted to tead
more and more topics but were bound by a new state rule
that insisted that we not require alditional course work. As
a result, we reluctantly dropped Ada from the CS-1.5
course, and elected to start with C++.

Our CS-1.5 course will start with C++ but will avoid ad-
vanced C++ feaures auich as inheritance It will cover tem-
plates and exceptions and will i ncorporate Visual C++ and
GUI programming. The Advanced Programming course

the Data Structures course (in which case we'll be bad to
the two-language problem, but with two languages that are
somewhat closer to each other).

Conclusions

Allinal, Javais an excdlent language for Data Structures.
So is C++ and so0 is Ada. Java has the alvantage that its
core feaures can be quickly taught to students with C++
knowledge, it has a simple GUI interface students can
avoid thinking about some of the detail s required of C++
programmers, and it is the hot language this yea. It looks
like a keeper.

Additionally, we fed that universities that have moved to
C++ in CS-1 will stay with that choice but those who are
still using Pascal due to fears of C++ will move to Java.

More information on this course is available & the previ-
ously mentioned web site. Classledures, sample Java mde
for many data structures, as well as the dass assgnments
(and some submissions) can be found there.

References

1. Cornéll, G. and Horstmann, C., Core Java. Prentice-
Hall, NJ., 1996.

2. Deitel, H. and Deitel, P., Java: How To Program, Pren-
tice-Hall, NJ., 1997.

3. Flanagan, D., Java in a Nutshell. O'Reilly & Associates,
CA., 1996.

4. Weiss M. A., Data Sructures and Algorithm Analysisin

Ada. Addison-Wesley, Mass., 1993. (also in C++, 1994).

