
Experiences Teaching Data Structures With Java

Mark Allen Weiss
School of Computer Science

Florida International University
Miami, FL 33199
weiss@fiu.edu

Abstract

This paper describes our experiences incorporating Java in
a Data Structures course. We describe the features of Java
that made for a more interesting course, the diff iculties that
we encountered, and compare Java to the prior languages
used in this course, Ada and C++. All i n all , we found Java
to be a reasonable, but not overwhelming better, alternative.
Our students were particularly happy with the experiment.

Introduction

Among Computer Science educators, hardly any topic in-
spires more heated debate than the choice of programming
language in the introductory sequence. In the late 80s, the
uniformly accepted choice was Pascal, but since then, a
host of alternatives have come into use. C++ seems to have
emerged as the winner, while Pascal, C, Ada, Scheme, and
Modula-3 split most of the remaining market.

There appear to be two overriding reasons for C++’s emer-
gence. First, principles such as encapsulation and informa-
tion hiding, that are important to teach in the CS I/II cur-
riculum, are easily demonstrated in C++. Much of the ugli-
ness associated with C is easily avoided in C++ by the use
of a tiny set of classes: About all that is needed is a
String and Vector class. Second, C++ has become an
industry standard (even though C++ is itself not yet stan-
dardized). Many universities are finding that they must
teach C++ at some point, and given limitations on the num-
ber of courses that can be offered, they are finding it most
convenient to teach it early. C++, however, has its share of
problems; some of these problems will be discussed later.

Java is the new alternative to C++. It can be presented as a
simpler C++ that fixes many of C++’s bad features and
provides a primitive, but useful, GUI toolkit. One argument
for teaching Java early is that it is better to use an already-
defined language rather than attempt to subset a complex
language. While C++ is arguably the most complex lan-
guage ever to be widely adopted, it appears that Java is
easily the most hyped language.

The Data Structures course at our University is a bit un-
usual. The vast majority of our students are upper-level
transfers from community college. As a result, most come
to us with much of their non-CS courses complete, and have
taken an introductory programming course, typically in
Pascal. The first course taken at XXX is formally entitled
Intermediate Programming. It is taught somewhere be-
tween CS-1 and CS-2; we call it CS-1.5. Since 1990, the
course has been taught in Ada. Data Structures follows
Intermediate Programming. However, we also offer a
course called Advanced Programming; it discusses C, C++,
and object-oriented concepts.

Although Advanced Programming is not a prerequisite to
Data Structures, many students elect to take it either prior
to, or concurrent with, Data Structures. As a result, al-
though Ada is the assumed language for Data Structures,
many students want to program in C++ for the course. We
have found that the language constructs of Ada and C++ are
actually very similar, making this reasonable. Ada and C++
both have enough subtle “ tricks” that some class time needs
to be devoted to explaining both languages; this has be-
come somewhat of an annoyance. One of the original moti-
vations for using Java was to avoid the problem of dueling
languages. Everybody would have to use Java in the course.

Aside from our own unusual sequencing, Java seemed to
offer several other benefits. First, since Java comes with a
built -in GUI toolkit (the Abstract Window Toolkit, or
AWT) we could allow the students to experiment with both
GUI (rather than line-at-a-time) input and graphical objects,
such as circles. Students could draw binary trees on a can-
vas, thus extending the range of programming assignments
to include demos of the basic data structures and algo-
rithms. By having more complex projects, with fancier in-
terfaces, it became reasonable to ask students to work in
groups. This allowed us to introduce group work into the
curriculum somewhat earlier than usual. Second, it was
thought that students would be more motivated if they could
work in Java, since many of them were also well -aware of
the hype. The motivation factor would also increase be-
cause GUI programming is more exciting than terminal-
based programming. Finally, there was the appeal that per-
haps Java really was a significant improvement over C++.

The rest of this paper is organized as follows: First, we dis-
cuss the Java course materials that we used and developed.
Then we compare Java and C++, noting fewer significant
language differences than anticipated, and pointing out

some subtle traps. Next we discuss student reactions, which
were very positive, and student performance, which was
mixed. Finally we discuss our future plans, and explain how
Java will fit into our curriculum.

How We Did It

The students did all the development using Symantec Café
in a lab of 22 Pentium 60s (at the time Café was the only
development tool available). The consensus seemed to be
that Café worked well for the students, and the resource
editor was easy to use. The online help was deemed worth-
less, however. Java compiles source code (.java files) and
generates .class files; the students eventually uploaded the
.class files to a UNIX web server to demo their applets.

In addition to the Data Structures textbook [4], which the
students were instructed to purchase in either the Ada or
C++ version, the students were also given some Java text-
book options. Two books [1,3] were ordered. [1] is for be-
ginners, and comes with a CD that contains Café Lite (Café
minus a few features). The alternative was [3], which is a
reference intended for more experienced programmers. The
consensus among the students was that [1] was too ele-
mentary. The students that chose [3] were pleased. Much of
Java is documented on the internet through Sun’s home
page. Few students chose the no-book alternative. Given
that the preferred book was also half as expensive, I would
recommend it for anyone teaching the course. Recently, a
host of new Java books have appeared, including [2], which
is geared for the CS-1 market.

Four lectures encompassing two weeks of the course were
spent describing Java. The first lecture described basic
Java, including the environment, the built -in types, opera-
tors, public static functions, strings, and arrays. The second
lecture described objects, classes, packages, and the java-
doc utilit y. The third class described inheritance and ab-
stract methods and classes. It included exceptions (as in
C++, an object is thrown by the throw clause, but unlike
C++, only objects that are subclasses of Throwable can
be thrown), interfaces (the pretty alternative to multiple
inheritance), and a workaround for templates, which are
missing in Java. The fourth lecture described the Abstract
Window Toolkit and applets. No attempt was made to dis-
cuss threads, though many students were inspired enough to
learn it on their own. Lecture slides are available at
http://www.xxx.edu/~xxxxx/cop3530.

Although two weeks were invested early in the course,
eventually they were made up because the Java program-
ming that relates to data structures is a littl e simpler, and
questions were limited to one programming language. The
downside was that although the same material was covered,
the material covered by the programming assignments did
not include as much as usual (there were no programs on
sorting and graph algorithms). Whereas the second assign-

ment would typically cover stacks, queues, etc, these topics
were not covered until the third assignment, because of the
two weeks invested in discussing Java. The assignments
that I eventually gave were as follows:

1. (Java warm up) Implement a Date class with a simple
GUI to test subtraction of two Date objects.

2. Implement an applet that demonstrates the binary
search algorithm.

3. Implement an applet that demonstrates the operator-
precedence parsing algorithm, showing both the op-
erator and operand stacks.

4. Implement an applet that prints a binary search tree
after each insertion or deletion.

5. Implement an applet that demonstrates linear probing
and quadratic probing hash tables.

6. Implement an applet that demonstrates the basic binary
heap operations.

Students were allowed to work either by themselves or in
groups of up to three. About half the students worked by
themselves; the other half worked in groups of two. Stu-
dents in groups started with a lower base grade and had to
do a fancier job to get an equivalent grade. I also required
students in groups to submit “ timecards” documenting who
spent what time doing what. Figure 1 shows a submission
that was notable for using animation (animation was extra
credit).

As we found during the course, the use of Java has both
good points, bad points, (mostly) points that sound good,
but really are not much better than C++, and also points that
seemed like they would be bad, but were not. We list some
of the entries in each of the four categories.

Figure 1. This applet shows the insertion of 6 into a
binary heap. At this point, 6 and 17 are exchanging
places to restore heap order (submitted by
Peterjohn Hugh and Alberto de la Serna).

Java Wins

Several areas of Java are nice improvements to C++ and
simplify life. There is no denying their utility.

The first improvement is that the C++ header files and class
interface are gone. This removes the annoying #ifndef
#endif idiom. The javadoc utilit y allows one to extract a
meaningful documentation page from a properly com-
mented java class. My students were also happy to know
that java programs must end in .java, in contrast to C++
programs which have differing suff ixes (.cpp, .cc, etc.),
depending on the compiler and machine.

Another nice feature is that the basic types have fixed
ranges. For instance, an int is always 32 bits, and always
ranges from -214783648 to 214783647. This fixes an an-
noyance that seems to pop up when moving from SUN
workstations to PCs. There are no unsigned types, which
saves lots of problems. Additionally, we do not have to
worry about “memory models” that are common for C++
implementations on PCs. In particular, one can have 20000-
node binary search trees without claims of running out of
memory (however Java is a lot slower than C++!).

Java provides a simple mechanism for using GUIs and
drawing graphics. Although it is not as powerful as the
MFC classes in Visual C++, it is certainly more than ade-
quate for use in an early CS course.

Java Wins That Are Less Significant

Java has a number of improvements to C++ that, while nice,
either have equivalent constructs in C++, or are not widely
used in a Data Structures course.

Java defines the boolean built -in type, which makes
many of the common C++ errors (for example if(X=Y))
go away. While there is no doubt of its utilit y, it is part of
Ada and will be part of the new C++ standard, as bool.
Many C++ compilers already support it.

Java has a predefined String object and an array object
that includes bounds checking. So does Ada. C++’s stan-
dard has these incorporated, and in the interim, it is a sim-
ple matter to write two small classes for this. Java’s string
object also has some problems. Since it is not a built -in
type, the == operator does not return true if the two strings
are equal, but rather returns true if they refer to the same
object. (Our textbook had errors in which == was used in-
stead of the equals method). The = operator for arrays is
simply a reference assignment, rather than a copy of array
elements. With C++ and Ada, strings and arrays can be
made first-class types.

Java does not have pointers. This is bill ed as a monumental
improvement. In reality, except for a built -in type, an object
name is a reference, and thus is actually a pointer. Thus, in
some respects, all Java has is pointers. While it is true that

the avoidance of direct pointers will reduce programming
errors, in our course the most typical use is in linked lists
and search trees. Here one hardly sees a difference in the
Java, C++, or Ada code. The other use of pointers is typi-
cally to simulate arrays and strings, but if the Vector and
String classes are used, this goes away.

Java supports garbage collection, so one does not have to
perform delete or delete[] or (in Ada)
Unchecked_Deallocation. Once again, given that
arrays and strings in C++ will use a class that hides pointer
details, delete[] becomes unnecessary. The common
use of delete is in dynamic data structures. Here, using
delete typically requires an insignificant extra two lines
of code (saving the pointer to the deleted object, and then
freeing the object). Even if we accept that Java wins in this
instance, Java is not uniform about collecting garbage:
Programmers must remember to explicitly close open files
in Java (in C++ they are automatically closed by a
destructor when the file stream exits scope), and
programmers using Graphics objects in Java must call a
dispose routine explicitly.

Another win for Java concerns the related issues of copy
constructors, initializer lists, parameter passing mecha-
nisms, return mechanisms, and constant member functions,
all of which are needed in C++, and none of which are part
of Java. Java passes and returns all built -in types by value,
and all other types (objects) by reference. Java does not
have the notion of an initializer list or a constant member
function. Constant member functions are a detail of C++
that students put on a par with commenting. Deciding on
the correct parameter passing and return type among value,
reference, and constant reference is confusing for beginning
students, and at the very least, leads to a lot of typing.

Although Java simpli fies C++ in this regard, professors can
simplify C++ themselves with the following strategy:

1. Use only String and Vector

2. Do not use delete at all

3. Do not use initializer lists or const at all

4. Do not implement copy constructors or operator=.

My own opinion is that only strategy 1 should be adopted;
the complexity of managing memory, using initializer lists,
worrying about const-ness and writing copy constructors
and operator= is not significantly overwhelming and
must eventually be mastered by C++ programmers anyway.
In many instances I simply disable the copy constructors
and operator= by placing their prototypes in the private
section of the C++ class interface.

Java’s implementation of inheritance is far superior to
C++’s. All binding is dynamic by default; we do not have to
clutter up the code with virtual functions. Multiple inheri-
tance is not allowed, but an elegant alternative is provided

by the interface. However, inheritance is used relatively
sparingly in a data structures course. Those contemplating
an extensive object-oriented course might well find that
Java’s handling of inheritance is the single reason to choose
Java over C++ or Ada.

Java Problems That Were Not Huge Problems

The most glaring omissions from Java are the lack of tem-
plates (or generics in Ada) and operator overloading. Since
both these features are present in both Ada and C++, many
of our students were surprised to find out that they were
missing in a modern language like Java.

Not having operator overloading is annoying mostly be-
cause it means that the typical examples of rational or com-
plex numbers can no longer be used seamlessly.

The lack of operator overloading also means that we cannot
rewrite our own array class to incorporate resizing. The
Vector class, which does resizing uses named methods
elementAt and insertElementAt instead of
operator[]. It’s not an appealing alternative. Even so,
writing the array doubling code ourselves requires only a
few lines of code that can be made a public static method of
a utility class.

What really seemed to be problematic was the lack of
templates. Instead of writing a template stack, one writes a
stack of Object. The idea is that since everything is an
object, we can have a stack of anything. There are some
problems though. First, not everything is an object (built -in
types are the exception). However, Java provides wrapper
classes for the eight built -in types. Second, when one does a
top operation to access the top item in the stack, the return
type is an Object, which must then be type-converted to
what is actually on the stack. The syntax is thus a bit ugly,
but it is acceptable for the data structures course. For a
stack of integers, we can push an int 3 onto a stack S, and
extract it into the int Val with:

 Stack S = new Stack();
 S.Push(new Integer(3));
 Val = ((Integer)S.top()).intValue();

For a SearchTree, we store objects that are of type
Comparable, which is an interface that we provide. The
interface specifies a set of abstract methods. A class imple-
ments the interface if it provides implementations for all of
these functions. This alternative to multiple inheritance
avoids the problem of inheriting multiple implementations.
Only objects that implement the Comparable interface
(that is, provide some comparison routines) can be inserted
into the SearchTree. This is an improvement over C++,
where the requirements of the template parameter can only
be given by comments, and Ada, in which the instantiation
types and the operations required by the types are provided
separately in the generic instantiation.

Java Annoyances

Java is by no means perfect. If you think all of C++’s
problems are gone, think again. A stray semicolon after a
while clause will still get an infinite loop, and the switch
statement with the default step-though to the next case re-
mains. Class methods can declare local objects with the
same name as class data members, yielding hard-to-find
shadowing bugs. Java applets have severe security restric-
tions and cannot do much. Java applications run slowly and
may be too slow for large data sets.

Text files in Java are harder to work with than in C++, as is
parsing input lines. It is no simple task to write a program
that reads two integers and echoes them back. However,
one can always write a class to do the dirty work of I/O.

Exceptions in Java work in a similar way as C++, but they
are much improved in some details, such as the throw list.
The fact that exceptions must be caught or propagated can
be annoying, as in the following code that empties a stack:

 while(!S.isEmpty())
 S.pop();

This code does not compile, if, as would be common, the
pop routine is written to throw an exception when the stack
is empty. In this case, the pop must be enclosed in a try
block with a subsequent catch clause. This is good style
for large industrial type programs, but very annoying for
students, especially for smaller programs.

The GUIs in Java do not work precisely as advertised. Stu-
dents had a diff icult time positioning things exactly as they
wanted; they typically settled for what the system would
give them. The repaint method (when not using
threads) does not always get called immediately. Students
found that some code that was placed after the repaint
was being called prior to the actual repainting, leading to
lots of frustration. The fonts didn’ t always fit into the text
fields as advertised. This seemed to vary depending on
what platform the applet was viewed on.

In C++ and Ada, there is occasion to pass a pointer by ref-
erence (meaning that where it points to can be changed). An
example is the C++ or Ada code to insert into a tree rooted
at T. The prototypes are:

 void insert(TreeNode * & T)
 procedure insert(T: in out PtrNode)

There is no equivalent for this in Java, requiring the C-like

 TreeNode insert(TreeNode T)

In Java, to test if two objects have identical contents, you
must use the equals method. Thus the typical error for
strings is to use == instead of equals. When defining new
classes, the programmer must provide a definition of
equals to override the one provided in Object. The
equals in Object always returns false. Unfortunately, it
is hard to remember that the signature must be

 boolean equals(Object OtherObject);

Typically, a student will write for a new class MyClass

 boolean equals(MyClass OtherObject);

which leaves the needed equals function in tact (with a
return that is always false).

Debugging Java programs was typically diff icult. The
program always seemed to crash with a
NullPointerException, suggesting that not all
pointer problems have disappeared with Java. Applets that
worked in the provided appletviewer failed under Netscape,
and vice-versa. Applets that worked for an early version of
Netscape failed for later versions.

Student Evaluations

Prior to the beginning of the semester, rumors of Java in the
course had spread and most in the class knew what was up.
Approximately double the enrollment listed in the class
appeared for the first two weeks, just to hear about Java. As
soon as the class returned to Data Structures, the extras left.

The final class reaction, based on written student evalua-
tions, was extremely positive. Not surprisingly, large num-
bers of students were excited to be learning cutting-edge
technology. Although many students indicated that they
worked harder in this course than any other, most seemed
eager to do so, because they felt they were learning a mar-
ketable skill . Students had a high opinion of Java, and uni-
formly recommended that it be placed in the curriculum.

However, although many of the programming assignments
were very impressive, performance on in-class exams,
which is essentially language independent, appeared to be
identical to previous semesters. Additionally, the drop-out
rate was essentially unchanged from previous semesters. In
fact, our experience suggests no significant differences in
basic CS knowledge compared to prior versions of the
course, although one could argue that since the students had
the additional burden of learning a new language, had they
already known Java, they would have done better in the
exams.

Future Plans

Prior to the summer, the School had voted to change the
curriculum. Essentially, we found that we wanted to teach
more and more topics but were bound by a new state rule
that insisted that we not require additional course work. As
a result, we reluctantly dropped Ada from the CS-1.5
course, and elected to start with C++.

Our CS-1.5 course will start with C++ but will avoid ad-
vanced C++ features such as inheritance. It will cover tem-
plates and exceptions and will i ncorporate Visual C++ and
GUI programming. The Advanced Programming course

will discuss advanced C++ features and object-oriented
concepts, and, given recent developments, will cover Java.

Although the Java experience was positive, we currently
have no plans to move the first course to Java. Having
taught C++ for a while, we have a set of teachers who now
know it well enough to avoid many of the common past
mistakes. Furthermore, we believe that C++ is not going to
go away and will have to be learned eventually; we find that
playing with pointers really is important; and we think that
the C++ compilers are much less fragile and offer a better
development environment than they used to. We feel that a
safe C++ is roughly equivalent to Java. Furthermore, we
feel that both faculty and students need some measure of
stabilit y, and that it is unwise to change the core of the cur-
riculum every time a new fad comes along.

During our transition period, which will extend for a while,
we will repeat the Java experiment. Eventually, Data
Structures will be taught in C++, though students who know
Java will have the option of using it. We expect that many
students will elect to take Advanced Programming prior to
Data Structures (as they have been), and then use Java for
the Data Structures course (in which case we’ ll be back to
the two-language problem, but with two languages that are
somewhat closer to each other).

Conclusions

All i n all , Java is an excellent language for Data Structures.
So is C++ and so is Ada. Java has the advantage that its
core features can be quickly taught to students with C++
knowledge, it has a simple GUI interface, students can
avoid thinking about some of the details required of C++
programmers, and it is the hot language this year. It looks
like a keeper.

Additionally, we feel that universities that have moved to
C++ in CS-1 will stay with that choice, but those who are
still using Pascal due to fears of C++ will move to Java.

More information on this course is available at the previ-
ously mentioned web site. Class lectures, sample Java code
for many data structures, as well as the class assignments
(and some submissions) can be found there.

References

1. Cornell , G. and Horstmann, C., Core Java. Prentice-
Hall, NJ., 1996.

2. Deitel, H. and Deitel, P., Java: How To Program, Pren-
tice-Hall, NJ., 1997.

3. Flanagan, D., Java in a Nutshell. O’Reill y & Associates,
CA., 1996.

4. Weiss, M. A., Data Structures and Algorithm Analysis in
Ada. Addison-Wesley, Mass., 1993. (also in C++, 1994).

