Concepts of Database Management Eighth Edition

Chapter 2

The Relational Model 1: Introduction, QBE, and Relational Algebra

Relational Databases

- A relational database is a collection of tables
- Each entity is stored in its own table
- Attributes of an entity become the fields or columns in the table
- Relationships are implemented through common columns in two or more tables
- Should not permit multiple entries (repeating groups) in a table

Relational Databases (continued)

- **Relation**: two-dimensional table in which:
 - Entries are single-valued
 - Each column has a distinct name (called the attribute name)
 - All values in a column are values of the same attribute
 - Order of columns is immaterial
 - Each row is distinct
 - Order of rows is immaterial

Relational Databases (continued)

- Relational database: collection of relations
- Unnormalized relation
 - A structure that satisfies all properties of a relation except for the first item
 - Entries contain repeating groups; they are not single-valued

Relational Databases (continued)

- Database structure representation
 - Write name of the table followed by a list of all columns within parentheses
 - Each table should appear on its own line
 - Notation to be used with duplicate column names within a database: Tablename.Columnname
 - You **qualify** the column names
- **Primary key**: column or collection of columns of a table (relation) that uniquely identifies a given row in that table

Query-by-Example (QBE)

• **Query**: question represented in a way the DBMS can recognize and process

• Query-By-Example (QBE)

- Visual approach to writing queries
- Users ask their questions using an on-screen grid
- Data appears on the screen in tabular form

Query-by-Example (QBE) (continued)

- Query window in Access has two panes
 - Upper portion contains a field list for each table you want to query
 - Lower pane contains the **design grid**, where you specify:
 - Format of output
 - Fields to be included in the query results
 - Sort order for query results
 - Any criteria the records must satisfy

Simple Queries

- To include a field in an Access query, double-click the field in the field list to place it in the design grid
- Clicking Run button in Results group on the QUERY TOOLS DESIGN tab runs query and displays query results
- Add all fields from a table to the design grid by double-clicking the asterisk in the table's field list

Simple Queries (continued)

Click the Run button to view the query results

FIGURE 2-3: Fields added to the design grid

Simple Queries (continued)

FIGURE 2-4: Query results

Simple Criteria

- Criteria: conditions that data must satisfy
- Criterion: single condition that data must satisfy
- To enter a criterion for a field:
 - Include field in the design grid
 - Enter criterion in Criteria row for that field

Simple Criteria (continued)

Comparison operator

- Also called a **relational operator**
- Used to find something other than an exact match
- = (equal to)
- > (greater than)
- < (less than)
- >= (greater than or equal to)
- <= (less than or equal to)
- NOT (not equal to)

Compound Criteria

- Compound criteria, or compound conditions
 - AND criterion: both criteria must be true for the compound criterion to be true
 - OR criterion: either criteria must be true for the compound criterion to be true
- To create an AND criterion in QBE:
 - Place the criteria for multiple fields on the same Criteria row in the design grid
- To create an OR criterion in QBE:
 - Place the criteria for multiple fields on different
 Criteria rows in the design grid

Compound Criteria (continued)

FIGURE 2-9: Query that uses an AND criterion

Compound Criteria (continued)

FIGURE 2-11: Query that uses an OR criterion

Computed Fields

Computed field or calculated field

- Result of a calculation on one or more existing fields
- To include a computed field in a query:
 - Enter a name for the computed field, followed by a colon, followed by an expression in one of the columns in the Field row
- Alternative method
 - Right-click the column in the Field row, and then click Zoom to open the Zoom dialog box
 - Type the expression in the Zoom dialog box

Computed Fields (continued)

FIGURE 2-15: Query that uses a computed field

Functions

- Built-in **functions**
 - Called aggregate functions in Access
 - Count
 - Sum
 - Avg (average)
 - Max (largest value)
 - Min (smallest value)

- StDev (standard deviation)
- Var (variance)
- First
- Last

Functions (continued)

FIGURE 2-17: Query to count records

Functions (continued)

FIGURE 2-18: Query results

Grouping

- **Grouping**: creating groups of records that share some common characteristic
- To group records in Access:
 - Select Group By operator in the Total row for the field on which to group

Grouping (continued)

FIGURE 2-21: Query to group records

Sorting

- **Sorting**: listing records in query results in an ordered way
- Sort key: field on which records are sorted
- Major sort key
 - Also called the **primary sort key**
 - First sort field, when sorting records by more than one field
- Minor sort key
 - Also called the **secondary sort key**
 - Second sort field, when sorting records by more than one field

Sorting (continued)

		[
		Field:	CustomerNum	CustomerName	Balance	RepNum		
	1	Table:	Customer	Customer	Customer	Customer		
		Sort:		Ascending				
	5	Show: [✓	^ ✓	✓	✓		
	Cr	riteria:						
		or:						
S	Sort row		As order	cending sort specified for the				
			Custo	merName field				
						•		

FIGURE 2-23: Query to sort records

Sorting on Multiple Keys

- Specifying more than one sort key in a query
- Major (primary) sort key
 - Sort key on the left in the design grid
- Minor (secondary) sort key
 - Sort key on the right in the design grid

Sorting on Multiple Keys (continued)

FIGURE 2-27: Correct query design to sort by RepNum and then by CustomerName

Joining Tables

- Queries to select data from more than one table
- Join the tables based on matching fields in corresponding columns
- Join line
 - Line drawn by Access between matching fields in the two tables
 - Indicates that the tables are related

Joining Tables (continued)

FIGURE 2-29: Query design to join two tables

Joining Multiple Tables

- Joining three or more tables is similar to joining two tables
- To join three or more tables:
 - Add the field lists for all tables in the join to upper pane
 - Add the fields to appear in query results to design grid in the desired order

Using an Update Query

- Update query: a query that changes data
 - Makes a specified change to all records satisfying the criteria in the query
- To change a query to an update query:
 - Click Update button in the Query Type group on the QUERY TOOLS DESIGN tab
- Update To row is added when an update query is created
 - Used to indicate how to update data selected by the query

Using an Update Query (continued)

FIGURE 2-35: Query design to update data

Using a Delete Query

- **Delete query**: permanently deletes all records satisfying the criteria entered in the query
- To change query type to a delete query:
 - Click Delete button in the Query Type group on the QUERY TOOLS DESIGN tab
- Delete row is added
 - Indicates this is a delete query

Using a Delete Query (continued)

FIGURE 2-36: Query design to delete records

Using a Make-Table Query

- Make-table query: creates a new table using results of a query
- Records added to new table are separate from the original table
- To change the query type to a make-table query:
 - Click Make Table button in the Query Type group on the QUERY TOOLS DESIGN tab
 - In Make Table dialog box, enter the new table's name and choose where to create it

Using a Make-Table Query (continued)

FIGURE 2-38: Make Table dialog box

Relational Algebra

- Theoretical way of manipulating a relational database
- Includes operations that act on existing tables to produce new tables
- Each command ends with a GIVING clause, followed by a table name
 - Clause requests the result of the command to be placed in a temporary table with the specified name

Select

- Takes a horizontal subset of a table
- Retrieves certain rows from an existing table (based on criteria) and saves them as a new table
- Includes the word WHERE followed by a condition
- Example:

SELECT Customer WHERE CustomerNum=586 GIVING Answer

Project

- Takes a vertical subset of a table
- Causes only certain columns to be included in the new table
- Includes the word OVER followed by a list of the columns to be included
- Example:

PROJECT Customer OVER (CustomerNum, CustomerName) GIVING Answer

Join

- Allows extraction of data from more than one table
- Two tables being joined
 - Join column: common column on which two tables are joined
 - Rows in new table will be the concatenation (combination) of rows from each original table
- Natural join: joins records from each original table that is common to both tables
- **Outer join**: joins records from each original table including records not common to both tables

Normal Set Operations

- Union of tables A and B
 - Table containing all rows that are in either table A or table B or in both table A and table B
- Intersection of tables A and B
 - Table containing all rows that are common in both table A and table B
- Difference of tables A and B
 - Referred to as A minus B
 - Set of all rows that are in table A but that are not in table B

Union

- Two tables are **union compatible** when:
 - They have the same number of columns
 - Corresponding columns represent the same type of data

```
JOIN Orders, Customer
WHERE Orders.CustomerNum=Customer.CustomerNum
GIVING Temp1
PROJECT Temp1 OVER CustomerNum, CustomerName
GIVING Temp2
SELECT Customer WHERE RepNum='30'
GIVING Temp3
PROJECT Temp3 OVER CustomerNum, CustomerName
GIVING Temp4
UNION Temp2 WITH Temp4 GIVING Answer
```

Intersection

• Performed by the **INTERSECT** command

JOIN Orders, Customer

WHERE Orders.CustomerNum=Customer.CustomerNum

GIVING Templ

PROJECT Temp1 OVER CustomerNum, CustomerName

GIVING Temp2

SELECT Customer WHERE RepNum='30'

GIVING Temp3

PROJECT Temp3 OVER CustomerNum, CustomerName

GIVING Temp4

INTERSECT Temp2 WITH Temp4 GIVING Answer

Difference

• Performed by the **SUBTRACT** command

JOIN Orders, Customer

WHERE Orders.CustomerNum=Customer.CustomerNum

GIVING Temp1

PROJECT Temp1 OVER CustomerNum, CustomerName

GIVING Temp2

SELECT Customer WHERE RepNum='30'

GIVING Temp3

PROJECT Temp3 OVER CustomerNum, CustomerName

GIVING Temp4

SUBTRACT Temp4 FROM Temp2 GIVING Answer

Product

- Mathematically called the Cartesian product
- Table obtained by concatenating every row in first table with every row in second table

Orders			ltem						
OrderNum	OrderDat	e	PartNum		Description				
51608	10/12/201	5	AH74		Patience				
51610	10/12/201	5	BR23		Skittles				
51613	10/13/201	5							
Product of C	Product of Orders and Item								
OrderNum	OrderDate	Part	Num	Description					
51608	10/12/2015	AH7	4	Patience					
51608	10/12/2015	BR23	3	Skittles					
51610	10/12/2015	AH7	4	Patien	ce				
51610	10/12/2015	BR23	3	Skittle	S				
51613	10/13/2015	AH7	4	Patien	ce				
51613	10/13/2015	BR23	3	Skittle	s				

FIGURE 2-43: Product of two tables

Division

- Best illustrated by considering division of a table with two columns by a table with a single column
- Result contains quotient

OrderLine				ltem	Result of dividing OrderLine by Item		
	OrderNum	ItemNum		PartNum	OrderNum		
	51608	CD33		KL78	51610		
	51610	KL78		TR40			
	51610	TR40					
	51613	DL51					
	51629	KL78					
	51630	DL51					
	51630	TR40					

1. 6 1. . .

FIGURE 2-44: Dividing one table by another