Introducing Databases

WHAT YOU WILL LEARN IN THIS CHAPTER:

> What a database is and which databases are typically used with
ASP.NET pages

> What SQL is, how it looks, and how you use it to manipulate data
> What database relationships are and why they are important

> Which tools you have available in VWD to manage objects (such as
tables) and how to use them

Being able to use a database in your ASP.NET 4 web sites is just as critical as understanding
HTML and CSS: it’s almost impossible to build a modern, full-featured web site without it.
Databases are useful because they enable you to store and retrieve data in a structured way.
The biggest benefit of databases is that they can be accessed at runtime, which means you
are no longer limited to just the relatively static files you create at design time in Visual Web
Developer. You can use a database to store reviews, musical genres, pictures, information about
users (usernames, e-mail addresses, passwords, and so on), log information about who reads
your reviews, news articles, and much more, and then access that data from your ASPX pages.

This gives you great flexibility in the data you present, and the way you present it, enabling
you to create highly dynamic web sites that can adapt to your visitors’ preferences, to the con-
tent your site has to offer, or even to the roles or access rights that your users have.

To successfully work with a database in an ASPX page, this chapter teaches you how to access
databases using a query language called SOL — or Structured Query Language. This language
enables you to retrieve and manipulate data stored in a database. You also see how to use the
database tools in VWD to create tables and queries.

Although ASP.NET and the .NET Framework offer you many tools and technologies that
enable you to work with databases without requiring a firm knowledge of the underlying

404 | CHAPTER12 INTRODUCING DATABASES

concepts like SQL, it’s still important to understand them. Once you know how to access a data-
base, you’ll find it easier to understand and appreciate other technologies, like the ADO.NET Entity
Framework (discussed in Chapter 14), which provides easier access to database operations directly
from code.

In the chapters that follow, you apply the things you learn in this chapter. In Chapter 13, you see
how to use built-in controls to work with data in your database. In Chapter 14, you learn how to
use the ADO.NET Entity Framework as an additional layer on top of your database to access data in
an object-oriented way with minimal code. Chapter 135, the last of the data-focused chapters, shows
you advanced techniques for working with data.

In the following sections, you see what a database is, and what different kinds of databases are
available to you.

WHAT IS A DATABASE?

By its simplest definition, a database is a collection of data that is arranged so it can easily be
accessed, managed, and updated. For the purposes of this book, and the web sites you will build,
it’s also safe to assume that the data in the database is stored in an electronic format.

The most popular type of database is the relational database. It’s the type of database that is fre-
quently used in web sites and is also the type of database that is used in the remainder of this book.
However, the relational database is not the only one. Other types exist, including flat-file, object-
relational, and object-oriented databases, but these are less common in Internet applications.

A relational database has the notion of tables where data is stored in rows and columns, much like
a spreadsheet. Each row in a table contains the complete information about an item that is stored
in the table. Each column, on the other hand, contains information about a specific property of the
records in the table.

The term “relational” refers to the way the different tables in the database can be related to each
other. Instead of duplicating the same data over and over again, you store repeating data in its own
table and then create a relationship to that data from other tables. Consider the table called Review
in Figure 12-1. This table could store the CD or concert reviews that are presented on the Planet
Wrox web site.

.
Crreewrereereae

[Leenre Cawataliske Tims =
DI Tierta - Ekements ol Lite Teehna BT 008 Gt 2900 Pl
Geafh Bagnelic trp Lislalicy LT T L TrERr s FREEEY (Y] E
ey &t dpe by The Kilker = Boeilent slbum, but is it Deiter than beforet e Rock 11 O0A. & 00056 Ewi

LI Ll s Pap 1/34/2009 BTIS5 PH

7 Réve Hake & Theédh TReie s risl By The Wan Déandisd Alirmabae Bi L5000 Lkl P
i The Paing of Besma Pure 8 Heard - One of the best new Briink Bands frem jhe R8T Inse Bpri 3000 4500 PR -

1 I F H P Cell B Raad Oy,

FIGURE 12-1

As you can see in Figure 12-1, each review is assigned to a musical genre such as Pop, Indie Rock,
or Techno. But what if you wanted to rename the genre Techno to something like Hardcore Techno?

Using SQL to Work with Database Data | 405

You would need to update all the records that have this genre assigned. If you had other tables that
stored a genre, you would need to visit those tables as well and manually make the changes.

A much better solution would be to use a separate table and call it Genre, for example. This table
could store the name of a genre and an ID (a sequential number for example) that uniquely identi-
fies each genre. The Review table then has a relationship to the Genre table and stores only its ID
instead of the entire name. Figure 12-2 shows the conceptual model for this change.

Rewview | Genre

T id -
Tl Hane
Summany
Dy
Gera el e
CreaielwieTime
UpdateduteTime

FIGURE 12-2

With just the ID of the genre now stored in the Review table, it’s easy to rename a genre. All you
need to do is change the name of the genre in the Genre table, and all tables with a relationship to
that genre pick up the change automatically. Later in this chapter, you see how to create and make
use of relationships in your relational database.

DIFFERENT KINDS OF RELATIONAL DATABASES

You can use many different kinds of databases in your ASP.NET projects, including Microsoft Access,
SQL Server, Oracle, and MySQL. However, the most commonly used database in ASP.NET 4 web
sites is probably Microsoft SQL Server. This book focuses on using Microsoft SQL Server 2008
Express edition, because it comes free with VWD and has a lot to offer out of the box. Also, because
the database engine is identical to that of the commercial versions of SQL Server 2008, it’s easy to
upgrade to those versions at a later stage in the development cycle. This upgrade path is described in
more detail in Appendix B. Even if you already have a different version of SQL Server 2008 installed,
it’s still recommended to install a copy of the 2008 Express edition as well. This makes it easy

to follow along with the examples in this book, and with many examples you find on the Internet,
which often assume you’re using the Express edition.

To work with the data in the database, SQL Server (and all other relational database systems) sup-
ports a query language called SQL.

USING SQL TO WORK WITH DATABASE DATA

To get data in and out of a database, you need to use Structured Query Language (SQL). This is

the de facto language for querying relational databases that almost all relational database systems
understand. A number of clear standards exist, with the most popular one being the ANSI 92 SQL
standard. Besides the grammar that this standard supports, many database vendors have added their
own extensions to the language, giving it a lot more flexibility and power on their own system, at
the cost of decreased interoperability with other systems.

406 | CHAPTER12 INTRODUCING DATABASES

Microsoft SQL Server 2008 is no exception, and supports most of the grammar that has been
defined in the ANSI 92 SQL Standard. On top of this standard, Microsoft has added some propri-
etary extensions. Collectively, the two are referred to as T-SQL, or Transact SQL. I'll stick to the
term SQL for the remainder of this book.

In the following sections, you see how to use SQL targeting a SQL Server 2008 database to retrieve
and manipulate data in your database. However, before you can write your first SQL statement, you
need to know how to connect to your database first. The following exercise shows you how to con-
nect to the sample database that comes with the downloadable code for this book.

Connecting to the SQL Server Sample Database

In this exercise you learn how to connect to and work with a database from within VWD. To give you
something to work with, the code download for this chapter comes with a sample database that con-
tains a few tables. To be able to access the database from within VWD, the account that you use to log
on to your Windows machine needs at least read and write permissions to the folder where the database
resides. If you are logged on as an Administrator, there’s a fair chance this is already the case. When
you get errors while accessing the database in the next exercise, refer to Chapter 19, in the section
“Understanding Security in IIS” for detailed instructions about setting up the proper permissions.

1. For this Try It Out exercise you need a brand new web site, which you can create by choosing
File &> New Web Site (or File @& New = Web Site) in VWD and then choose the ASP.NET Web Site
template. Don’t follow this exercise with the Planet Wrox web site you’ve been working on so far
or you’ll get in trouble later when a database with the same name is used. You can save the web
site in a folder like C: \BegASPNET\DatabaseTest. If you use a different location, make note of it
because you need it in the next step.

2. After you have created the new web site, ensure that your W T ey

account has sufficient permissions to write to its App_ [l] oo B -
Data folder. Because VWD, and thus the built-in web i TR
server, runs under the account that you use to log in _
. w"mw
to Windows, you need to make sure that your account [MAswrocandtoon |
has the correct permissions. To this end, open Windows _&:T"'L", W -
Explorer (not VWD’s Solution Explorer), and locate the 4, sz (Win VPO Lisers)
folder c: \BegASPNET\DatabaseTest. Right—click the To chargm permmorn dick Felt [r—p—
App_]?ata folder and choose Properties. Switch to the Ewwiniorn fr Ao} o
Security tab, and ensure that your account (or a group 7l corts -]
. . Hr 1
you have been asmgnec! to) has at least the Modify per- iz A I
mission, as shown in Figure 12-3. st T cortarts
Fead |
If you don’t have a Security tab, or your account or the - 2
. . . F s '
Users group is not listed, refer to the Try It Out entitled ety el
“NTEFS Settings for Planet Wrox” in Chapter 19 for £ s socen coev ord perranies
d}f-tai!ed instructions on adding your own account to i
this list.

FIGURE 12-3

Retrieving and Manipulating Data with SQL | 407

3. Open the Resources folder at C: \BegASPNET\Resources using Windows Explorer. If you don’t
have this folder, refer to the Introduction of this book to learn how to acquire the code that comes
with this book. Then open the chapter 12 folder and select the file Planetwrox.mdf. Arrange
VWD and the Windows Explorer side by side and then drag the file from the Windows Explorer
into the App_bata folder of your web site in VWD. Remember, if drag and drop doesn’t work,
you can accomplish the same thing using copy and paste. This .mdf file is the actual database and
contains tables, records, and so on. When you start working with the database, you may also see
an .1df file appear in the App_bata folder on disk. This file is used by SQL Server to keep track of
changes made to the database. If you are using SQL Server 2005 Express edition, you should get

the database from the sq12005 folder instead.

4. Double-click the database file in the Solution Explorer in VWD. Doing so opens the database in the
Database Explorer (called the Server Explorer in the commercial versions of Visual Studio).

5. You can now expand the connected database to access its objects, such as the tables and columns it

contains, shown in Figure 12-4.

How It Works

To be able to access a database from within VWD, it needs to be registered
in the Database Explorer window under Data Connections. In most cases,
adding a database is as simple as adding the database to your App_bata
folder and double-clicking it. However, when security on your system is
tight, or you are not connecting to a physical SQL Server data file located
in your web site, connecting to a database may be a bit trickier. In those
cases, refer to the section “Understanding Security in IIS” in Chapter 19
and to Appendix B for more details about configuring your system. The
App_Data folder is used only for data that is used at the server, such as
databases and text files. Because the web server blocks access to this folder
for remote browsers, you can’t use it to store files such as images that must
be downloaded by the client.

Databate Enploiet

DT |
a gl Dot Canntchand
a [Planstaomal

Fl

el CElEBm hsgrame
l Tables
ol J Gernire
i 1
1] Hame
@ sencuda
2 Review
o warwi
4 Stoeed Procedures
ll Funcisse
4 Synanymie
2| Tymes

) ELUFREDFL

FIGURE 12-4

When you have a connection to your database in the Database Explorer, you can work with the
objects in the database. In a later exercise you see how to store the information about the connection
to the database (called the connection string) in the web.config file of your web site so you can use

the database from code and with ASP.NET controls.

However, first you need to understand how you can access and change the data in your database.

RETRIEVING AND MANIPULATING DATA WITH SQL

When interacting with databases, you’ll spend a good deal of time retrieving and manipulating data.
Most of it comes down to four distinct types of operations, grouped under the CRUD acronym:

Create, Read, Update, and Delete.

Because these data operations are so crucial, the next couple of sections show you how to use them

in detail.

408 | CHAPTER12 INTRODUCING DATABASES

Reading Data

To read data from a database, you typically use a few different concepts. First, you need the ability
to indicate the columns that you want to retrieve from the table you are querying. You do that with
the SELECT statement. You need to indicate the table(s) you want to select the data from using the
FrROM keyword. Then you need a way to filter the data, making sure only the records you’re inter-
ested in are returned. You can filter the data using the wHERE clause in the SQL statement. Finally,
you can order your results using the ORDER BY clause.

Selecting Data

To read data from one or more database tables, you use the SELECT statement. In its most basic
form, the SELECT statement looks like this:

SELECT ColumnName [, AnotherColumnName] FROM TableName

Here, the parts between the square brackets are considered optional. For example, to retrieve all
rows from the Genre table and only select their 1d and Name columns you use this SQL statement:

SELECT Id, Name FROM Genre

Right after the SELECT statement comes a comma-separated list of column names. You can have
only one or as many columns as you like here. Instead of explicitly specifying the column names,
you can also use the asterisk (*) character to indicate you want all columns to be returned. However,
using SELECT * is usually considered a poor programming practice so it’s better to explicitly define
each column you want to retrieve.

Right after the FrRoM keyword, you specify the name of the table from which you want to retrieve
data. The previous example showed only one table (the Genre table), but you see later that you can
also specify multiple tables using joins.

NOTE Although the SQL language is not case sensitive, it’s common practice to
write all keywords such as SELECT and FROM in all caps. Additionally, this book
uses Pascal casing — where each new word is capitalized — for names of tables,
columns, and so on. For example, the date and time a certain review is created
are stored in a column called CreateDateTime in the Review table.

Filtering Data

To filter data, you use the WHERE clause, with which you indicate the criteria that you want your data
to match. For example, to retrieve the ID of the Grunge genre you use the following SQL statement:

SELECT Id FROM Genre WHERE Name = 'Grunge'

Note that the word Grunge is wrapped in single quotes. This is required for text data types and
dates when you filter data or want to send values to an INSERT or UPDATE statement that enables

Retrieving and Manipulating Data with SQL | 409

you to create new or change existing records, as explained later. You can’t use them for numeric or
Boolean types, though, so to get the name of the genre with an ID of 8 you would use the following
statement:

SELECT Name FROM Genre WHERE Id = 8

The preceding two examples show a WHERE clause that uses the equals operator for an exact match.
However, you can also use other operators for different criteria. The following table lists a few pop-
ular comparison operators you can use in your WHERE clauses.

OPERATOR DESCRIPTION

= The equals operator matches only when the left side and the right side of the com-
parison are identical.

> The greater than operator matches when the left side of the comparison represents a
larger value than the right side.

>= The greater than or equal operator matches when the left side of the comparison is
equal to or larger than the right side.

< The less than operator matches when the left side of the comparison represents a
value smaller than the right side.

<= The less than or equal operator matches when the left side of the comparison is
equal to or smaller than the right side.

<> The not equals operator does the reverse of the equals operator and matches when
the left side and the right side of the comparison are different.

To combine multiple WHERE criteria, the SQL language supports a number of logical operators such
as AND and oRr. In addition, it supports other operators to search for text and to specify ranges. The
following table lists a few of the operators and describes what they are used for.

OPERATOR DESCRIPTION

AND Enables you to join two expressions. For example, the WHERE clause
..WHERE Id > 20 AND Id < 30
gives you all records with IDs that fall between 20 and 30 (with 20 and 30 themselves
not included).

OR Enables you to define multiple criteria of which only one has to match (although more
matches are allowed). For example, this WHERE clause
..WHERE Id = 12 OR Id = 27

gives you all the records with an ID of 12 or 27.

continues

410 | CHAPTER12 INTRODUCING DATABASES

(continued)
OPERATOR DESCRIPTION
BETWEEN Enables you to specify a range of values that you want to match with a lower and upper
bound. For example,
..WHERE Id BETWEEN 10 AND 35
gives you all records whose IDs are between 10 and 35 (including 10 and 35 them-

selves if they exist in the database).

LIKE Used to determine if a value matches a specific pattern. You can use wildcards like
% to match any string of zero or more characters, and the underscore (_) to match a
single character. For example, the following WHERE clause

... WHERE Name LIKE '$%rock%'

returns all genres that have rock in their name, including Indie Rock, Hard Rock, and
so on.

If no records match the WHERE clause, you don’t get an error, but you simply get zero results back.

After you have defined your filtering requirements with the wHERE clause, you may want to change
the order in which the results are returned from the database. You do this with the oRDER BY clause.

Ordering Data

The oRDER BY clause comes at the end of the SQL statement and can contain one or more column
names or expressions, which can optionally include Asc or DESC to determine if items are sorted in
ascending order (with asc, which is the default if you leave out the keyword) or in descending order
(using DESC).

For example, to retrieve all genres from the Genre table and sort them alphabetically by their name
in ascending order, you can use this SQL statement:

SELECT Id, Name FROM Genre ORDER BY Name

Because ascending is the default order, you don’t need to specify the asc keyword explicitly,
although you could if you wanted to. The next example is functionally equivalent to the preceding
example:

SELECT Id, Name FROM Genre ORDER BY Name ASC

If you wanted to return the same records but sort them in reverse order on their Sortorder column,
you use this syntax:

SELECT Id, Name FROM Genre ORDER BY SortOrder DESC

Notice how you can order by columns in the ORDER BY statement that are not part of the SELECT
statement as is the case with the sortorder column. So, even though a specific column is not part of
the final result set, you can still use it to order on.

Retrieving and Manipulating Data with SQL | 411

In the next exercise, you see how to perform a number of queries against the sample database, giv-
ing you a good idea of how different queries affect the results returned from the database.

Selecting Data from the Sample Database

In this exercise you use the database that you connected to in an earlier exercise. This database is used
only for the samples in this chapter, so don’t worry if you mess things up.

1.

Open the Database Explorer (or the Server Explorer in the paid ver-

. . i . . I.'llf.lb\.l:.nllpluln = O3 §
sions of Visual Studio) by choosing View ©> Database Explorer. ReiE" |
Locate the Data Connection that you added earlier, expand it, and =R —
then expand the Tables node. You should see two tables, Genre and T Uatabinit Diagrems

. . [Tabd
Review, as shown in Figure 12-5. ,;'1:'
1 Review
Right-click the Genre table and choose Show Table Data. In the i Views
. . . .) Steved Pradedures
Document Window you should now see a list with all the available 3 Fundsemn
. . . | Symarym
genres in the Genre table, shown in Figure 12-6. 3 e
At mEdiry
e —————— FIGURE 12-5
] Hare SariOrder I
]] Fap wnd Hip-Hag 14 E_
Fap 17
Jazz B
4 Haid Radk B -
;,: {§ |1 12 F M P» Cell i Feas Oy,
FIGURE 12-6

Note that this is not just a list with all the records in the Genre table. It’s actually the result of a
SQL SELECT query that is executed when you open the window. To see the query behind this list,
ensure that the Query Designer toolbar, shown in Figure 12-7, is displayed onscreen. If the toolbar
isn’t visible, right-click an existing toolbar and choose Query Designer.

Diagram SQL Change type Verify SQL Add
Pane Pane of Query Syntax Table

B J‘ﬂ =1 TChang‘eT}_’pe'| T saL |[tz |4}jﬁ

Criteria Results Execute Add Add
Pane Pane SQL Group Derived
By Table
FIGURE 12-7

On this toolbar, click the Diagram pane, the Criteria pane, and the SQL pane buttons to open
their respective windows. The first four buttons on the toolbar should now be in a pressed state
and the Document Window is split in four regions, with each region corresponding to one of the
buttons on the toolbar. Figure 12-8 shows the entire Document Window with the four panes.

412 | CHAPTER 12

INTRODUCING DATABASES

Diagram Pane

Criteria Pane

— SQL Pane

Results Pane

Gerge Quaryiwin . S PLANETWROLMDT] =
Grme - __._!
b | Columna)
L]
Hame
ariCrder
] '
Lalumn Al Tkl Chilp Sail Trar Tail Oider Filler *
L3 Ei
a -
['
SILECT
FROM Enre
Id Fiame Sortlrser =
|] 1 Hap and Hip. Hap 111
Pop 12
MAEE 2
Hard Eorci 1
Indie Aok 7 i
L al il |k k| k Cimll it Erad Oindy
FIGURE 12-8

The SQL pane displays the SQL statement that is used to retrieve the genres that are displayed in
the Results pane. In this case, the SQL statement reads SELECT * FROM Genre to retrieve all col-
umns and records from the table, but you can easily change that.

In the SQL pane, position your cursor right after the word Genre, press Enter once, and then type
WHERE Id > 4. Your complete SQL statement should end up like this:

SELECT * FROM Genre WHERE Id > 4

In your SQL pane, the query is split over multiple lines. That’s fine, because SQL enables you to
spread your statements over multiple lines without the need for a line continuation character.

To make sure the SQL statement is valid, click the Verify SQL Syntax button on the toolbar and fix
any errors your SQL statement may contain. Next, click the Execute SQL button (the one with the
red exclamation mark on it) or press Ctrl+R. In both cases, the SQL statement is executed and the
Results pane is updated to show all genres with an ID larger than 4.

In addition to showing the results, VWD also changed your query. Instead of SELECT =, it has listed
each column in your table explicitly. Now take a look at the Diagram pane — the top part of the
dialog box in Figure 12-8 that shows your entire table. In the Diagram pane you can check and
uncheck column names to determine whether they end up in the query. Deselect the Sortorder col-
umn (don’t accidentally change the check mark of the Output column in the Criteria pane instead).
Note that it also gets removed from the Criteria pane (visible in Figure 12-9) and the SQL statement

in the SQL pane.

| Ciobumn Akay Tubie
! ¥ iy G fare
! Hamp e I
1

FIGURE 12-9

Onuipui

o

|

Sort Type 5ot Ovder Fiker
v

Retrieving and Manipulating Data with SQL | 413

Take a look at the Criteria pane in Figure 12-9. It shows the two columns you are selecting. In the
Filter column it shows the expression that filters all genres with an ID larger than 4.

In this pane you can modify the query without manually writing a lot of code. To see how you
can apply an additional filter, type LIKE '%rock%' in the Filter cell for the Name row. This limits
the results to all genres that contain the word rock and that have an ID that is larger than 4. If
you press Ctrl+R again the Results pane is updated to reflect the change in the query.

To determine the sort order, you can use the Sort Type column. You can do this for visible col-
umns (for example, those that have their Output check box checked and end up in the final result
set) but also for other columns. To order by the sortorder column, click the cell under Name once.
It changes and now shows a drop-down list instead. Choose sortorder from the drop-down list.
When you click or tab away from the field, VWD places a check mark in the Output column. You
can click that check mark to remove the column again from the output so it remains available for
ordering and filtering, but won’t show up in the query results. However, for this exercise it’s okay
to leave the column selected.

In the Sort Type column choose Descending from the drop-down list for the sortorder. Your final
Criteria pane now looks like Figure 12-10.

| Catumn aeag Tubile Output SortType Som Orcer Fier

I It fienre ¥ » 4
M Enre e LIEL Mwa k™
Sorblrder {enre £ Descending 1

FIGURE 12-10

While you make your changes using the Diagram and Criteria panes, VWD continuously updates
the SQL pane. Your final SQL statement should now include the extra wHERE clause and the ORDER
BY statement:

SELECT Id, Name, SortOrder

FROM Genre

WHERE (Id > 4) AND (Name LIKE '$rock%')
ORDER BY SortOrder DESC

Press Ctrl+R again (or click the Execute SQL button on the toolbar) and the Results pane shows
the records from the Genre table that match your criteria, visible in Figure 12-11.

r
CoTTTTwTTE———

5] teare SortDnder £
¥ g Altermaine Ro] B
L Indis Eaih)
Rizeic - -
1 af3 |k M P w) | R Peas Dy,
FIGURE 12-11

Note that the records are now sorted in descending order based on the sortorder column.

414 | CHAPTER 12 INTRODUCING DATABASES

How It Works

The Query Designer in VWD is a very helpful tool for creating new queries against your database. Instead
of hand coding the entire SQL statement in the SQL pane, you use the Diagram and Criteria panes to
create your queries visually. Of course, you can still use the SQL pane to make manual tweaks to the
SQL code that VWD generates for you.

The final query you executed returned all the records that contain the word rock and that had an ID
larger than 4. The query shown in step 8 has a WHERE clause that consists of two parts: the first part
limits the records returned to those with an ID larger than 4. The second part filtered the records

to those that contain the text rock. The two criteria are both applied at the same time using the AND
keyword, so only records with an ID larger than 4 and the word rock in their name are returned.
Effectively, this returns the Alternative Rock, Indie Rock, and Rock genres, while leaving out the Hard
Rock genre because it has an ID of 4.

At the end, the result set is sorted in descending order on the Sortorder column using the syntax
ORDER BY SortOrder DESC. Notice that Sortorder is an arbitrarily chosen name. You can easily give
this column a different name, or order on a different column like the Name column to retrieve the genres
in alphabetical order.

In this example, you saw how to retrieve data from a single table. However, in most real-world
applications you get your data from multiple tables that are somehow related to each other. You
define this relationship in your SQL syntax using the J0IN keyword.

Joining Data

A JOIN in your query enables you to express a relationship between one or more tables. For example,
you can use a JOIN to find all the reviews from the Review table that have been published in a specific
genre and then select some columns from the Review table together with the Name of the genre.

The basic syntax for a 501N looks like the following bolded code:

SELECT
SomeColumn
FROM
LeftTable
INNER JOIN RightTable ON LeftTable.SomeColumn = RightTable.SomeColumn

The first part is the standard sELECT part of the query that you saw earlier, and the second part
introduces the keywords INNER JOIN to express the relationship between the two tables. This query
only returns the records in the table LeftTable with a corresponding record in RightTable. For
example, to return the ID and the title of a review together with the name of the genre it belongs to,
you use this SQL statement:

SELECT
Review.Id, Review.Title, Genre.Name
FROM
Review
INNER JOIN Genre ON Review.GenrelId = Genre.Id

Retrieving and Manipulating Data with SQL | 415

Note that in the SELECT statement each column is prefixed with the table name. This makes it clear
what table you are referring to and avoids conflicts when multiple tables have similar column names
(like the 1d column that exists in both tables).

In addition to an INNER JOIN that only returns matching records, you can also use an OUTER JOIN.
The OUTER JOIN enables you to retrieve records from one table regardless of whether they have a
matching record in another table. The following example returns a list with all the genres in the sys-
tem together with the reviews in each genre:

SELECT
Genre.Id, Genre.Name, Review.Title
FROM
Genre
LEFT OUTER JOIN Review ON Genre.Id = Review.GenreId

For each review assigned to a genre, a unique row is returned that contains the review’s title.
However, even if a genre has no reviews assigned, the row is still returned.

fere e srercon -

| Celumn Ay falie Qulpul $an Trpe 391t Order FiREr gr. -
v [Genre J C
; Hidarer TarTing o
Title R &

.i[lh'l' @enneld, Genrefame, Rewiew Tiie
FROM Senne LEFT SUTER 1O
Rrwirw K Gernirc g = Beveva Grnneld

a Hame Tt =
rdin Moo 2ot Fouthe The Ebgindl - Taked Limg 19 gel uicd B8 then
ndie Ao Farm by Dineaur jr

[Suni Jini Cenbary Dreakdown by Gueen Doy

Li]

wr Aok Rewe Hale & Then Thee's yau by The Van Bamdies -
m]
M 4 |1 FERE R i) | Call is Baad DAy,

FIGURE 12-12

In Figure 12-12 you can see that the genre Indie Rock is repeated multiple times, for each review in
the Review table that has been assigned to that genre. The Punk genre has only one review attached
to it, so it’s listed only once. Finally, the Rock and Grunge genres have no reviews associated with
them. However, because the SQL statement uses a LEFT OUTER JOIN, those two genres (listed on
the left side of the Jo1N) are still returned. Instead of the Title of a review, that column now con-
tains a NULL value to indicate there is no associated review.

Besides the LEFT OUTER JOIN, there is also a RIGHT OUTER JOIN that returns all the records from
the table listed at the right side of the JOIN. LEFT and RIGHT OUTER JOIN statements are very simi-
lar, and in most cases you’ll see the LEFT OUTER JOIN.

In addition, there are other joins including cross joins and self joins. For a detailed descrip-
tion of these types of joins, pick up a copy of the book Beginning Microsoft SOL Server 2008
Programming by Robert Vieira (ISBN: 978-0-470-25701-2).

You see how to use a very common type of join, the INNER JOIN, in the next Try It Out.

416 | CHAPTER12 INTRODUCING DATABASES

A ellal Joining Data

To join data from two tables, you need to write a JOIN statement in your code. To help you write the
code, VWD adds a Jo1IN for you whenever you add a table to the Diagram pane. However, sometimes
this JOIN is not correct, so you’ll need to check the code to see if it’s okay.

1. Still in your test site, on the Database Explorer (or Server Explorer), right-click the Review table
and choose Show Table Data. You’ll see all the reviews in the table appear. Next, enable the
Diagram, Criteria, and SQL panes by clicking their respective buttons on the Query Designer
toolbar.

2. Right-click an open spot of the Diagram pane next to the Review table and choose Add Table.
Alternatively, choose Query Designer = Add Table from the main menu.

3. In the dialog box that opens, click the Genre table and then click the Add button. Finally, click Close.
4. The SQL statement that VWD generated looks like this:

SELECT * FROM Review
INNER JOIN Genre ON Review.GenrelId = Genre.Id

VWD correctly detected the relationship defined in the database between the Genre1d column
of the Review table and the 1d column of the Genre table, and applied the correct Jo1N for you.
Later you see how to define these relationships yourself.

5. To see how you can create JOINs yourself without writing code directly, you’ll manually recreate
the go1n. First, right-click the line that is drawn between the two tables in the Diagram pane and
choose Remove. The SQL statement now contains a CROSS JOTN.

6. Next, click the GenreId column of the Review table in the Diagram pane once and drag it onto the
1d column of the Genre table. As soon as you release the mouse, VWD creates a new INNER JOIN
in the SQL pane for you with the exact same code as you saw earlier.

7. In the Criteria pane, click the left margin of the first row that contains the asterisk (*) symbol to
select the entire row and then press the Delete key or right-click the left margin and choose Delete.
This removes the asterisk from the SQL statement. Alternatively, you can delete the asterisk from
the SQL pane directly.

8. In the Diagram pane place a check mark in front of the 1d and Title columns of the Review table
and in front of the Name column of the Genre table.

9. Finally, press Ctrl+R to execute the query. Your Document Window should now look like
Figure 12-13, showing the results of the query at the bottom of the screen in the Results pane.

How It Works

By using a JoIN in your SQL statement, you tell the database how to relate records to each other. In this
example, you joined the GenreId column of the Review table to the actual 1d of the Genre table:

SELECT
Review.Id, Review.Title, Genre.Name
FROM
Review
INNER JOIN Genre ON Review.GenrelId = Genre.Id

Retrieving and Manipulating Data with SQL | 417

With this JOIN, you can retrieve data from multiple tables and present them in a single result set. SQL
Server returns the correct genre name for each review, as is shown in Figure 12-13.

revew. aurmmen. srerroon. -«

|* [AM Colamng)
| _|ia
|u# Ttle /) ot |Pame
| Jummary \ |SatOndei
Closay =

Colurn Al Tahls hilp... %ot Type o Order Fille

|- 1 - ¢
Title: Rewiew o
Hipme Genre o =

‘g 1. ol !
SELECT Revicwd, Rewiew THir, Geoer, Hame
FROM Review INNER JOM

Derde OM Révesw, renreld = Géreedd

] %] Tile Harme =
* (T ko Toull: Coapdresmn Halion bwe @ Ezundhnuse, Lomsdan Indie Boue :]
e | Sonic fouth Taydresm bistion isse ot Lowiands. Biddeghuizen Indie R
e Rlavah barses - Kol Too Labr lags
e E1 Tiwilsh - I Sfanih &P Sunndé i Tedhng
O Tiesbo « Clemenér of Lfe Techno
H Firalts hannefi by Ml Hasl Brik =
H 4|1 d22 F H F 5 | Cl ki Bead Dnly,

FIGURE 12-13

Besides selecting data, you also need to be able to insert data into the database. You do this with the
INSERT statement.

Creating Data

To insert new records in a SQL Server table, you use the INSERT statement. It comes in a few differ-
ent flavors, but in its simplest form it looks like this:

INSERT INTO TableName (Columnl [, Column2]) VALUES (Valuel [, ValueZ2])

Just as with the wHERE clause, you need to enclose string and date values in single quotes, but you
can enter numbers and Boolean values directly in your SQL statement. The following snippet shows
how to insert a new row in the Genre table:

INSERT INTO Genre (Name, SortOrder) VALUES ('Tribal House', 20)

After you have created some data, you may want to edit it again. You do this with the upDATE
statement.

418 | CHAPTER12 INTRODUCING DATABASES

Updating Data

To update data in a table, you use the UPDATE statement:

UPDATE TableName SET Columnl = NewValuel [, Column2 = NewValue2Z] WHERE
Column3 = Value3

With the UPDATE statement, you use Column = Value constructs to indicate the new value of the
specified column. You can have as many of these constructs as you want, with a maximum of one
per column in the table. To limit the number of items that get updated, you use the WHERE clause,
just as with selecting data as you saw earlier.

The following example updates the record that was inserted with the INSERT statement you saw ear-
lier. It sets the Name to Trance and updates the sortorder to 5 to move the item up a little in sorted
lists. It also uses the unique ID of the new record (13 in this example) in the WHERE clause to limit
the number of records that get affected with the UPDATE statement.

UPDATE Genre SET Name = 'Trance', SortOrder = 5 WHERE Id = 13

Obviously, you may also have the need to delete existing records. It should come as no surprise that
the SQL language uses the DELETE statement for this.

Deleting Data

Just as with the SELECT and UPDATE statements, you can use the WHERE clause in a DELETE statement
to limit the number of records that get deleted. This wHERE clause is often very important, because
you will otherwise wipe out the entire table instead of just deleting a few records.

When you write a DELETE statement, you don’t need to specify any column names. All you need to
do is indicate the table that you want to delete records from and an (optional) WHERE clause to limit
the number of records that get deleted. The following example deletes the record that was inserted
and updated in the previous two examples:

DELETE FROM Genre WHERE Id = 13

If you leave out the WHERE clause, all records will be deleted from the table.

You see these SQL statements at work in the next exercise.

Working with Data in the Sample Database

In this exercise, you put everything you learned so far into practice. In a series of steps, you see how to

create a new record in the Genre table, select it again to find out its new ID, update it using the UPDATE

statement, and finally delete the genre from the database. Although the examples themselves may seem

pretty trivial, they are at the core of how SQL works. If you understand the examples from this section,
you’ll be able to work with the remaining SQL statements in this and coming chapters.

1. Open the Database Explorer window in your temporary test site and locate the Genre table in the
database. Right-click it and choose Show Table Data. If the table was already open with an old
query, you need to close it first by pressing Ctrl+F4. This gets rid of the existing SQL statement.

Retrieving and Manipulating Data with SQL | 419

10.

1".

Click the first three buttons on the Query Designer toolbar (Diagram, Criteria, and SQL pane) to
open up their respective panes.

In the Diagram pane, check the columns Name and sortorder. Make sure you S _ |

leave 1d unchecked, as shown in Figure 12-14. * il Cahurr)
d
|
Because the 1d column gets an auto-generated value from the database, you |l scrtoer
cannot supply an explicit value for it in an INSERT statement.
FIGURE 12-14

On the Query Designer toolbar click the Change Type button and choose the
third option: Insert Values. The query in the SQL pane is updated and now
contains a template for the INSERT statement:

INSERT INTO Genre (Name, SortOrder) VALUES (,)

Between the parentheses for the VALUES, enter a name (between apostrophes) and a sort order for
your genre separated by a comma:

VALUES ('Folk', 15)

Press Ctrl+R to execute the query. You should get a dialog Microsoht Visual Wab Developer 2010 Express ms]
box that tells you that your action caused one row to be
affected as shown in Figure 12-15.

Click OK to dismiss the dialog box.

0 1 romr aflecbed by last query

Clear out the entire SQL statement from the SQL pane (you
can use Ctrl+A to select the entire SQL statement and then FIGURE 12-15
press the Delete key to delete it) and replace it with this code,

which selects all the genres and sorts them in descending order:

SELECT Id, Name FROM Genre ORDER BY Id DESC

Press Ctrl+R to execute this SELECT statement. The Results pane shows a list of genres with the one
you just inserted at the top of the list. Note the ID of the newly inserted record. It should be 13 if
you haven’t inserted any record before although it’s okay if you have a different ID.

Click the Change Type button on the toolbar again, this time choosing Update. Complete the SQL
statement that VWD created for you so it looks like this:

UPDATE
Genre
SET
Name = 'British Folk',
SortOrder = 5
WHERE
Id = 13

Don’t forget to replace the number 13 in the SQL statement with the ID you determined in step 9.

Press Ctrl+R again to execute the query and you’ll get a dialog box informing you that one record

has been modified.

420 | CHAPTER12 INTRODUCING DATABASES

12. Once again, clear the SQL pane and then enter and execute the following query by pressing Ctrl+R:

SELECT Id, Name FROM Genre WHERE Id = 13

Replace the 1d in the wHERE clause with the ID of the record you determined in step 9. You should
see the updated record appear.

13. On the Query Designer toolbar, click the Change Type button and choose Delete. VWD changes
the SQL statement so it is now set up to delete the record with an ID of 13:

DELETE FROM Genre WHERE (Id = 13)

14. Press Ctrl+R to execute the query and delete the record from the database. Click OK to dismiss the
confirmation dialog.

15. To confirm that the record is really deleted, click the Change Type button once more and choose
Select. Then choose one or more columns of the Genre table in the Diagram pane and press Ctrl+R
again. You’ll see that this time no records are returned, confirming the newly inserted genre has
indeed been deleted from the database.

How It Works

In this short exercise, you carried out all four parts of the CRUD acronym, which gave you a look at
the life cycle of data in a SQL Server database from creation to deletion.

You started off with an INSERT statement:

INSERT INTO Genre (Name, SortOrder) VALUES ('Folk', 15)

This creates a new record in the Genre table. As you see in the next section, the 1d column of the Genre
table is an identity column, which means that each new record gets a new, sequential ID assigned
automatically.

To retrieve that ID, you used a SELECT statement with an ORDER BY clause that orders the records on
their IDs in descending order, so the most recent ID was put on top of the list. Retrieving the new ID
like this in a busy application is not reliable because you may end up with someone else’s ID. You see
later in the book how to retrieve the ID in a reliable way, but for the purposes of this exercise, the
ORDER BY method works well enough.

Armed with the new ID, you executed an UPDATE statement to change the Name and Sortorder of the
newly inserted genre. If you only want to update a single column with the UPDATE statement — say you
want to change only the Name — you can simply leave out the other columns. For example, the following
UPDATE statement changes only the Name, leaving all other columns at their original values:

UPDATE

Genre
SET

Name = 'British Folk'
WHERE

Id = 13

Creating Your Own Tables | 421

Finally, at the end of the exercise, you executed a DELETE statement to get rid of the new record. It’s
always important to specify a WHERE clause when executing a DELETE or an UPDATE statement to stop
you from clearing the entire table or from assigning the same value to all records.

DELETE FROM Genre WHERE (Id = 13)

This SQL statement simply deletes the record with an ID of 13. If the record exists, it gets deleted. If the
record does not exist, no error is raised, but the dialog box in VWD shows you that zero records have
been affected. The parentheses are not required in this example, but help in determining precedence
when you have multiple conditions in your WHERE clause.

Up to this point, you have seen how to work with existing tables in a database. However, it’s also
important to understand how to create new tables with relationships yourself. This is discussed in
the next section.

CREATING YOUR OWN TABLES

Creating tables in a SQL Server 2008 database is easy using the built-in database tools that are part
of VWD. You see how you can create your own tables in the database after the next section, which
briefly introduces you to the data types you have at your disposal in SQL Server 2008 and up.

Data Types in SQL Server

Just as with programming languages like Visual Basic .NET and C#, a SQL Server database uses
different data types to store its data. SQL Server 2008 supports more than 30 different data types,
most of which look similar to the types used in .NET. The following table lists the most common
SQL Server data types together with a description and their .NET counterparts.

SQL 2008 DATA TYPE DESCRIPTION .NET DATA TYPE

bit Stores Boolean values in a 0/ 1format. (1= True, System.Boolean
0 = False)

char / nchar Contains fixed-length text. When you store text System.String

shorter than the defined length, the text is padded
with spaces. The nchar stores the data in Unicode
format, which enables you to store data for many
foreign languages.

datetime Stores a date and a time. System.DateTime

datetime2 Similar to the datetime type, but with a greater System.DateTime
precision and range.

date Stores a date without the time element. System.DateTime
time Stores a time without the date element. System.TimeSpan

continues

422 | CHAPTER12 INTRODUCING DATABASES

(continued)

SQL 2008 DATA TYPE DESCRIPTION .NET DATA TYPE
decimal Enables you to store large, fractional numbers. System.Decimal
float Enables you to store large, fractional numbers. System.Double
image Enables you to store large binary objects such as System.Bytel[]

files. Although the name suggests that you can

only use it to store images, this is not the case.

You can use it to store any kind of document or
other binary object.

tinyint Used to store integer numbers ranging from O to 255. System.Byte

smallint Used to store integer numbers ranging from System.Intl6
—32,768 to 32,767.

int Used to store integer numbers ranging from System.Int32

—2,147,483,648 to 2,147,483,647.

bigint Used to store large integer numbers ranging from System.Int64
—9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

text / ntext Used to store large amounts of text. System.String
varchar / Used to store text with a variable length. The System.String
nvarchar nvarchar stores the data in Unicode format, which

enables you to store data for many foreign languages.

uniqueidentifier Stores globally unique identifiers. System.Guid

For a complete list of all the supported data types in SQL Server 2008, check out the MSDN docu-
mentation at http://tinyurl.com/SqglDataTypes.

Some of these data types enable you to specify the maximum length. When you define a column of
type char, nchar, varchar, or nvarchar you need to specify the length in characters. For example,
an nvarchar (10) allows you to store a maximum of 10 characters. Starting with SQL Server 20035,
the version of SQL Server before SQL Server 2008, these data types also enable you to specify mMax
as the maximum size. With the MaX specifier, you can store data up to 2GB in a single column. For
large pieces of text, like the body of a review, you should consider the nvarchar (max) data type. If
you have a clear idea about the maximum length for a column (like a zip code or a phone number)
or you want to explicitly limit the length of it, you should specify that length instead. For example,
the title of a review could be stored in an nvarchar (200) column to allow up to 200 characters.

Understanding Primary Keys and Identities

To uniquely identify a record in a table, you can set up a primary key. A primary key consists of one
or more columns in a table that contains a value that is unique across all records. When you identify

Creating Your Own Tables | 423

a column as a primary key, the database engine ensures that no two records can end up with the
same value. A primary key can consist of just a single column (for example, a numeric column that
contains unique numbers for each record in the table) or it can span multiple columns, where the
columns together form a unique ID for the entire record.

SQL Server also supports identity columns. An identity column is a numeric column whose sequen-
tial values are generated automatically whenever a new record is inserted. They are often used as
the primary key for a table. You see how this works in the next section when you create your own
tables.

It’s not a requirement to give each table a primary key, but it makes your life as a database program-
mer a lot easier, so it’s recommended to always add one to your tables.

Creating tables, primary keys, and identity columns is really easy with VWD’s database tools, as
you see in the next Try It Out.

Creating Tables in the Table Designer

In this exercise you add two tables to a new database that you add to the Planet Wrox project. You
should carry out the exercises in the Planet Wrox web site you have been building in the past chapters.
You can close and delete the test site you created at the beginning of this chapter because you don’t
need it anymore. This exercise assumes you’re creating tables for a local database (stored in the app_
Data folder). If you are using a separate, remote SQL Server database you can’t use VWD Express to do
so. Instead, you need to get a copy of the SQL Server Management Studio Express edition that you can
download from www.microsoft.com/sgl/express.

1. Open up the Planet Wrox web site from C: \BegASPNET\Site in VWD, right-click the App_Data
folder, and choose Add New Item. In the dialog box that follows, click SQL Server Database, type
PlanetWrox.mdf as the name, and then click Add to add the database to your site. The Database
Explorer (or Server Explorer) should open automatically showing you the new database. If it
doesn’t, double-click Planetwrox.mdf in the Solution Explorer.

2. On the Database Explorer, right-click the Tables node and choose Add New Table, as shown in
Figure 12-16.

3. In the dialog box that follows, you can enter column names and data types that together make up
the table definition. Create three columns for the Id, Name, and Sortorder of the Genre table so
the dialog box ends up as shown in Figure 12-17.

Ditabaie Enplsdes L=k 4
FfEL" |
4 _|I Cats Connsclians

4 [, PaneiWroondl

r
3 Datszate Diageam [st Faniei: Tabie... TAVANETWROX MOFY 3¢ _

3 Tapiss

i Add Hrw Talile [-I.i.“ Column hame Data Type falitrar hiul
s B k| id int

A Fu I

=3 5yl (2] Refresh (i e ranGnanacd)

2 Tl 5 Froperties it =Frey | SertGrder e

0 [T S——— |

FIGURE 12-16 FIGURE 12-17

424 | CHAPTER12 INTRODUCING DATABASES

Make sure you clear the check box for all three items in the Allow Nulls column. This column
determines if fields are optional or required. In the case of the Genre table, all three columns will
be required, so you need to clear the Allow Nulls check box.

4. Next, select the entire row for the 1d by clicking in the margin on the left (identified by the black
arrow in Figure 12-17) and then on the Table Designer toolbar, visible in Figure 12-18, click the
second button from the left (with the yellow key on it) to turn the 1d column into a primary key.

Generate Manage Manage Manage
Change Indexes Fulltext Spatial
Script and Keys Index Indexes

g A A .’ Spatial Indexes...

=
= i

Set Manage Manage
Primary XML Check
Key Indexes Constraints

Relationships
FIGURE 12-18

5. Below the table definition you see the Column Properties, a panel that looks similar to the Properties
Grid in VWD. With the 1d column still selected, scroll down a bit on the Column Properties Grid
until you see Identity Specification. Expand the item and then set (Is Identity) to Yes, as shown in
Figure 12-19.

|
proreswereas

Ceburmr Hame Data T Ligea bingily &
¥ ia [, I 5
[PRrCHB TN
Sablindr i

Colamn Prageriien

Blug
Full-les Sp=poafimteen M1 @

vy fpecfiestien L]

Liwrmivty Sard k3 [
Ta bawenib
FIGURE 12-19

6. DPress Ctrl+S to save your changes. A dialog box pops up that enables you to provide a name for the
table. Type Genre as the name and click OK to apply your changes.

7. Create another table by following steps 2 and 3, but this time create a table with the following
specifications to hold the CD and concert reviews for the Planet Wrox web site.

Creating Your Own Tables | 425

10.

1.

COLUMN NAME DATA TYPE ALLOW DESCRIPTION

NULLS
Id int No The primary key and identity of the table.
Title nvarchar (200) No Contains the title of the review.
Summary nvarchar (max) No Contains a short summary or teaser text

for the review.

Body nvarchar (max) Yes Contains the full body text of the review.

GenreId int No Contains the ID of a genre that the
review belongs to.

Authorized bit No Determines whether the review is
authorized for publication by an admin-
istrator. Unauthorized reviews will not
be visible on the web site.

CreateDateTime datetime No The date and time the review is created.
UpdateDateTime datetime No The date and time the review is last
updated.

Make the 1d column the primary key again, and set its (Is Identity) property to Yes just as you did

in steps 4 and 5.

Click the createpateTime column once and then on the Column Properties Grid, type getdate ()
in the field for the Default Value or Binding property, as shown in Figure 12-20.

etz e merencror

C dhamn Mars Dits Type Al Madll
Baay v rharAA) "
rirvinid i
AARAITEY Bt
B CeenlaDiteComg il it
Upastriistrlime dalriise -

Colusn Mopreter
Fla
|';"'J
PR —
Maree] LrealeCaftlclome L
e il o
Data Trpr A rimr
(et varoe s imieg RN

a b Devegret

Dot Wabue of Barusing

FIGURE 12-20

Repeat the preceding step for the UpdateDateTime column.

When you’re done, press Ctrl+S to save the table and call it Review.

426 | CHAPTER12 INTRODUCING DATABASES

How It Works

The Table Designer in VWD is pretty straightforward. You simply type new column names and define
a data type for the column, and you’re pretty much done. Some columns, such as the 1d column in
the Genre and Review tables, require a bit more work. For those columns, you set (Is Identity) to Yes.
This means that SQL Server automatically assigns a new sequential number to each new record that
you insert. By default, the first record in the table gets an ID of 1, and the ID of subsequent records is
increased by one. You can change the default behavior by setting the Identity Increment and Identity
Seed in the Identity Specification element for the column.

You also assigned a default value to the createDateTime and UpdateDateTime columns of the Review
table. Default values are inserted by the database when you don’t supply one explicitly in your SQL
statements. This means that if your TNSERT statement does not contain a value for the CreateDateTime
or UpdateDateTime column, the database will insert a default value for you automatically. In the pre-
ceding Try It Out, this default value was getdate (), which inserts today’s date and time automatically.
This way, you can easily track when a review was created. In later chapters you see how to update the
UpdateDateTime column when reviews are updated.

If you’re unsure whether you followed all the steps correctly, take a look at the database that comes with
the source for this chapter. It contains the correct tables that already have a few records in them. To look at
the database, create a new temporary web site in VWD and then drag the database files into the app_pata
folder. You can then access the database using the Database Explorer. You’ll find a version specific to SQL
Server 2005 in the Resources folder for this chapter as you saw earlier in this chapter.

In addition to relationships that are only defined in your own SQL queries as you saw before with
the SELECT and JOIN statements, you can also create relationships in the database. The benefits of
relationships and how you can create them in your database are discussed in the next section.

Creating Relationships Between Tables

Consider the tables you have created so far. You created a Genre table with an 1d column to
uniquely identify a genre record. You also created a Review table with a Genrerd column. Clearly,
this column should contain an 1d that points to a record in the Genre table so you know to which
genre a review belongs. Now imagine that you delete a record from the Genre table that has reviews
attached to it. Without a relationship, the database will let you do that. However, this is causing a
great deal of trouble. If you now try to display the genre together with a review, it will fail because
there is no longer a matching genre. Similarly, if you want to list all the reviews in your system
grouped by genre, you’ll miss the ones that belong to the deleted genre.

To avoid these kinds of problems and keep your database in a healthy and consistent state, you can
create a relationship between two tables. With a proper relationship set up, the database will stop
you from accidentally deleting records in one table that still have other records attached to it.

Besides the protection of data, relationships also make your data model clearer. If you look at the
database through a diagram (which you use in the next exercise), you’ll find that relationships
between tables help you better understand how tables are connected, and what data they represent.

You can define a relationship by creating one between the primary key of one table, and a column
in another table. The column in this second table is referred to as a foreign key. In the case of the

Creating Your Own Tables | 427

Review and Genre tables, the Genre1d column of the Review table points to the primary key col-
umn Id of the Genre table, thus making Genre1d a foreign key. In the next exercise you see how to
create a relationship between two tables and then execute a SQL statement that shows how the rela-
tionship is helping you to protect your data.

Creating a Relationship between Two Tables

Before you can visually add a relationship between two tables, you need to add a diagram to your data-
base. A diagram is a visual tool that helps you understand and define your database. On the diagram,
you can drag a column from one table to another to create the relationship. In this exercise, you create
a relationship between the Review and Genre tables.

1.

Open the Database Explorer again for the Planet Wrox site. Right-click the Database Diagrams
element (visible in Figure 12-16) and click Add New Diagram. If this is the first time you are add-
ing a diagram to the database, you may get a dialog box asking if you want VWD to make you the
owner of the database. Click Yes to proceed. Don’t worry if you don’t get this prompt; things will
work fine without it. The prompt may be followed by another that indicates that in order to work
with diagrams, VWD needs to create a few required objects. Again, click Yes to proceed.

In the Add Table dialog box that follows, select both tables you created in the previous Try It Out
(hold down the Ctrl key while you click each item), click Add to add the tables to the diagram, and
then click Close to dismiss the Add Table dialog box.

If necessary, arrange the tables in the diagram using drag and drop so they are positioned next to
each other.

On the Genre table, click the left margin of the 1d column (it should contain the yellow key to
indicate this is the primary key of the table) and then drag it onto the Genre1d column of the
Review table and release your mouse.

Two dialog boxes pop up that enable you to customize the defaults for the relation. In the top-most
window, confirm that 1d is selected from Genre as the Primary Key Table and that Genre1d is selected
from Review as the Foreign Key Table. Click OK to dismiss the top window and confirm the columns
that participate in the relationship. In the dialog box that remains, visible in Figure 12-21, notice how
Enforce Foreign Key Constraint is set to Yes. This property ensures that you cannot delete a record
from the Genre table if it still has reviews attached to it. Click OK to dismiss this dialog box as well.

* | Forelgn Key
“Sebprted Brlstaan g
i Rpres G pren”| T osting preparha for new rfiabioraiep. Tre Taoiey An Colomne
Eprrdushan preparhy PEE01 R0 e RllEE 0 B L g Nl Ieighonthap el
B scorpted
o (Cuerses o)

Cheei Exinting Datn On Crastssn O B Enabing 1Ry
Nabier Anad Cobamn. Spechicatan

o [Calabaes Carwgrer
Infaice For Repioatan LY

ETE I R -]
ISIRT And UPDATT Speolicatsan
& laenty
Hamej FE_Review_Genue
Dk idnigbideni
| — | | e

FIGURE 12-21

428 | CHAPTER 12

INTRODUCING DATABASES

The diagram window should now show a line between the two tables. At the side of the Genre
table, you should see a yellow key to indicate this table contains the primary key for the relation-
ship. At the other end, you should see the infinity symbol (the number 8 turned 90 degrees) to indi-
cate that the Review table can have many records that use the same GenreId. You see the diagram

in Figure 12-22.

por———— |

Rewiew * g Genre *

? 14 9 I3
Title Hame
Summany SortOrder

Bazdly

Geraehd

Anghanasd

Crealebatelme

Wpdatelulelme

L« |
FIGURE 12-22

Note that the line between the two tables doesn’t
necessarily point to the correct columns. This can be
confusing sometimes because you may think that
other columns are actually related. To confirm the
columns participating in the relationship, right-click
the line between the two tables and choose
Properties. The Table and Columns Specification
item shows which columns and tables participate in
the relationship, shown in Figure 12-23.

oM
Piapeieei = [0
[Rrd] M Rrvarw Grrer -
1] (5 S .
Enlasir Faicssn Key Comifiamd L] -

+ INSERT &nd LFDATL Speciication

’
Fargign ey Bale Tabie =1 AT
Fareign Eey Colummns o #TiNER] =
Frimany, Ungur Ery Bair Table

Frmany Lsegue Key Columm

Tatdey Ared Codomun Spexification

FIGURE 12-23

Press Ctrl+S to save the changes to the diagram. You can leave the name set to its default of Diagram1
or you can enter a more descriptive name such as Reviews and Genres and click OK. You’ll get
another warning that states that you are about to make changes to the Review and Genre tables.

Click Yes to apply the changes.

Go back to the Database Explorer, right-click the Genre table, and choose Show Table Data. Enter
a few different genres by typing a Name and a sortorder. When you press Tab in the Sortorder
field to tab away from the current row, the row is inserted in the database, and the Td column is
filled with a unique, sequential number. You should end up with a list similar to the one shown in

Figure 12-24.

Creating Your Own Tables | 429

10.

i
KOG T SO FLATIC T U W) B _

[Hame S
Fap L2
bz [} E
1 #eard Radk 1
5 Bt Rock 7
Punk |
Rack d -
|14 4| efl2 F H F &1 | Sl ki Read Dnly.
FIGURE 12-24

Open the Review table from the Database Explorer using the Show Table Data command and
enter a few review records. For the Genre1d, supply some of the new IDs you got when you
inserted records in the Genre table. You can just make up the Title, Summary, and Body fields for
now and set Authorized to True. Remember, you don’t have to enter a value for the date columns.
If you leave them out, the database will insert the default value for you. Notice that you can’t insert
a value in the 1d column yourself. Because this column is an Identity field, the database supplies
values for you automatically. If you get an error about missing values for the date columns, ensure
that you entered a proper default value in the previous exercise. When you’re done entering a row,
click outside the row (on the new, empty row below it, for example) and press Ctrl+R to insert the
row in the table. Your list of records should look similar to Figure 12-235, although your content
for the columns, of course, may be different.

| Mervinie G, A ALARTARCLMOR X _

| Tith SamImAly Uy erreld Authonaed =
% Traveiling the Fece of the CRabe by Oi Va Vi - & 3. D24 i, the mew alum MULL 2 Trug
Hallle Bai e bun By Micebo - Perdibfy 1he Geil al.. Talki sboul the new PL.. STITL | Tiue
v ¥ Sonic Youth: Toe Eteenad < Taies teme to et umed . The latest 5% CD AL § True L
| I ' ozl b MoP]
FIGURE 12-25
Right-click the Genre table again and choose | Microscl Visisal Wab Daveloper 2010 Exprass =
Show Table Data. Click the SQL pane button
. S0 Execubon Emor,
on the Query Designer toolbar and then use ﬂ
the Change Type button on the same toolbar ';lx"‘"t”d Y, st DELETE Vivk ety IS e
to create a DELETE query. Modify the query Ener Stufce: Mt SgCHnt Datas Provider

Eror Message: The DELETE stsiement conficted with the

so it looks hke this; REFERENCE constrant "FK._Fewew_Genre™, The conflicl
occumed in daizbaze
“CABEGASPNETSITEAPF_DETAPLANETWRON MOF™, Lable
"dba Resdiew”™, column ‘Gnreld

The stalement haa been lerrmmaled

DELETE FROM Genre WHERE Id = 5

This code will attempt to delete the Indie
Rock genre. However, because reviews are [t [t
connected to it, the delete action should fail.
Make sure that the 1d in the WHERE clause FIGURE 12-26

430 | CHAPTER12 INTRODUCING DATABASES

matches one of the genre IDs you used in step 9 to link the reviews to. Press Ctrl+R to execute the
query. Instead of deleting the record from the Genre table, VWD now shows you the dialog box
you see Figure 12-26.

How It Works

When you create a relationship between two tables, the database will enforce this relationship when
you try to insert, update, or delete data. In this example, records in the Review table have a genre that
exists in the Genre table. When you try to delete a record from the Genre table, the database sees that
the genre is used by a record in the Review table and cancels the delete operation. In Chapter 15 you
learn how to handle this situation in your web site and present your user with a friendly error message.

Now that you’ve seen the underlying concepts in dealing with databases, you’re ready for the next
chapter, which shows you how to work with your database using the many available ASP.NET data
controls.

PRACTICAL DATABASE TIPS

The following list provides some practical tips on working with databases:

>

Because the database is often at the heart of a web site, you need to carefully consider its design.
It’s especially important to think of a good design up front, before you start building your site
on top of it. When you have a number of pages that access your database, it will become harder
to make changes — such as removing tables or renaming columns — to the data model.

Always consider the primary key for your table. I prefer to give each table a column called
1d. The underlying data type is then an int and an identity, which gives each record a unique
ID automatically. Instead of an int, you can also consider the uniqueidentifier data type,
which ensures uniqueness even across database or application boundaries.

Give your database objects such as tables and columns logical names. Avoid characters
such as spaces, underscores, and dashes. A name like Genre1d is much easier to read than
colGen_ID_3.

Don’t use SELECT * to get all columns from a database. By using SELECT * you may be
selecting more columns that you actually need. By explicitly defining the columns you want
to retrieve, you make your intentions to others clearer and increase the performance of your
queries at the same time.

Always create relationships between tables when appropriate. Although querying for the
reviews and genres you saw in this chapter without a relationship between the two tables
works just fine, relationships help you enforce the quality of your data. With proper relation-
ships, you minimize the chance of ending up with orphaned or incorrect data.

Summary | 431

SUMMARY

The ability to work with databases is a good addition to your set of web development skills. Most of
today’s dynamic web sites use databases, so it’s important to understand how to work with them.

To access and manipulate data in a relational database, you use a language called Structured Query
Language, or SQL for short. Among other elements, this language defines four important keywords
that enable you to perform CRUD — Create, Read, Update, Delete — operations against a database.

The sSELECT statement enables you to retrieve data from one or more tables. To access more than
one table, you can use one of the available J0IN types to define a relationship between the tables.
To limit the number of records returned by a query, you can use a WHERE clause. To order the items
in the result set returned by your query, you use the ORDER BY clause. To create new records in
your database you use the INSERT statement, and you need an UPDATE statement to change existing
records. Finally, to delete records that you no longer need, you use the DELETE statement. Just like
the SELECT and UPDATE statements, DELETE takes an optional WHERE clause that enables you to limit
the number of records that get deleted.

The second part of this chapter showed you how to use the built-in database tools to create tables
with relationships between them. In addition, you saw how a relationship between two tables
enables you to protect your data from becoming corrupt or orphaned.

Although this chapter had a strong focus on the SQL that you need to write to access a database,
you see in the next chapter that in many cases VWD makes accessing databases pretty easy by gen-
erating most of the code for you. However, a solid knowledge of SQL helps you in understanding
and tweaking the code that VWD writes for you.

EXERCISES

1.

If you try to delete a record from the Genre table that has matching records in the Review table,
the DELETE statement fails. How is this possible?

If you try to delete a record from the Review table that has its GenreId set to the 1d of an existing
genre in the Genre table, the DELETE statement succeeds. Why?

Imagine you want to clean up your database and decide to delete all records from the Review
table that have an 1a of 100 or less. Write a SQL statement that deletes these records.

Imagine you want to delete the genre with an ID of 4. But before you delete the genre, you want
to reassign reviews assigned to this genre to another genre with an ID of 11. What SQL statements

do you need to accomplish this?

Write a SQL statement that updates the Rock genre to read Punk Rock instead. There are at least
two ways to write the WHERE clause for this statement.

Answers to Exercises can be found in Appendix A.

432 | CHAPTER 12

INTRODUCING DATABASES

» WHAT YOU LEARNED IN THIS CHAPTER

CRUD

Foreign key

Identity

JOIN
Primary key
Relational
database

Relationship

Table

The four basic SQL operations to work with data in a database: Create, Read,
Update, and Delete

Identifies a column in a table that refers to the primary key of another table to
enforce referential integrity

An automatic, sequential number assigned to new records

Enables you to express the relationship between two or more tables in a query to
find related data

Consists of one or more columns in a table that uniquely identify a record in that
table

A type of database where data is stored in separate, spreadsheet-like tables that
can refer to each other

Defines the relation between one or more tables and helps you enforce referential
integrity

An object in a database that enables you to store data

