
Building an ASP.NET Website
WHAT YOU WILL LEARN IN THIS CHAPTER:

 ‰ The diff erent project types you can choose from as a starting point
for your ASP.NET websites

 ‰ The diff erent project templates that are available to jump-start your
site development

 ‰ The numerous fi le types available in ASP.NET and what they are
used for

 ‰ Ways to create structured websites that are easy to manage, now
and in the future

 ‰ How to use the designer tools to create formatted web pages

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can fi nd the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/remtitle.cgi?isbn=1118311809. The code is in the Chapter 2 download.

To create good-looking, functional, and successful websites, you have to understand a number
of important technologies and languages, including HyperText M arkup Language (H TM L),
ASP.N ET, cascading style sheets (CSS), a server-side programming language such as C# or
VB, and a client-side language such as JavaScript. This and upcoming chapters provide a solid
foundation in these technologies, so you should be comfortable with the most important con-
cepts once you’ve fi nished this book.

Besides these technologies, you also have to understand the Visual Studio IDE that was intro-
duced in the previous chapter. You need to know how to create sites, add pages, and manage
all the toolbars and windows that Visual Studio (VS) offers you. In addition, you need to
know how to build and design web pages in VS with H TM L and server controls.

2

c02.indd 33c02.indd 33 10/8/2012 9:43:36 AM10/8/2012 9:43:36 AM

34 x CHAPTER 2 BUILDING AN ASP.NET WEBSITE

This chapter shows you, in detail, how to create and manage your websites. It also shows you how
to create your ASP.N ET web pages and add markup to them, enabling you to create useful web
pages that can present information to users and react to their response.

Although you already created your fi rst ASP.N ET website in the previous chapter, this chapter starts
off with another in-depth look at creating a new website. Because you have many choices to make
when you start a new site, it’s important to understand all the different options and pick the right
one for your scenario.

CREATING WEBSITES WITH VISUAL STUDIO 2012
The preceding chapter gave you a quick overview of creating a website in VS. You simply chose New
Web Site from the File menu, selected a language, selected the standard ASP.N ET Web Forms Site
template, and clicked OK. However, there’s more to the New Web Site dialog box than you saw in
the previous chapter. You may have noticed that you can choose among a number of different tem-
plates that enable you to create different kinds of sites. But before looking at the different templates
on which you can base your new website, you need to know a lit tle more about the different project
types that are available in VS.

Diff erent Project Types
In Visual Studio 2012 you can choose between two types of projects for creating ASP.N ET Web
Forms websites: W eb A pplication Projects and W eb Site Projects.

Web Application Projects
Web Application Projects make it easier for developers who work in teams or who need more con-
trol over the contents of the site and their compilation and deployment processes to build websites
with VS. The whole website is managed as a project, with a single project fi le that keeps track of all
the content of the website.

In VS, you create a new Web Application Project through the File Í N ew Project dialog box. In
that dialog box, click your preferred programming language (either Visual Basic or Visual C#)
and click the Web category, where you’ll fi nd a number of ASP.N ET web application templates.
O ne of the available project templates is the ASP.N ET M VC 4 Web Application, which creates an
application based on the M odel V iew Controller pat tern, another popular style of web application
development. M VC is not used or discussed in this book, but if you want to learn more, check out
www.asp.net/mvc.

Web Site Projects
Web Site Projects represent a project in VS for a website. You create a new Web Site Project by
choosing File Í New Web Site or File Í New Í Web Site from Visual Studio’s main menu.

A Web Site Project site is simply a Windows folder with a bunch of fi les and subfolders in it. There is no
collective fi le (known as the project fi le with a .vbproj or .csproj extension) that keeps track of all
the individual fi les in the website. You just point VS to a folder, and it instantly opens it as a website.
This makes it very easy to create copies of the site, move them, and share them with others, because no
dependencies exist with fi les on your local system. Because of the lack of a central project fi le, Web Site
Projects are usually simply referred to as websites, which is the term I use in the remainder of this book.

Creating Websites with Visual Studio 2012 x 35

Choosing between Web Site Projects and Web Application Projects
Because you have two options to choose from, you may be wondering which project type you should
pick. In general, the Web Site Project is a bit easier to work with. Because it’s just a folder, it’s easier
to copy the fi les to a different location, such as another development workstation or a production
server. Also, changes to the code fi les are picked up by the web server and applied automatically
without a formal deployment process. The Web Application Project, on the other hand, works better
if you work with a team of developers on the same site, because it dictates a more formal develop-
ment and deployment process and has better support for working with Source Control versioning
systems, such as M icrosoft’s Team Foundation Server.

This book uses the Web Site Project model because it’s easier to work with if you’re new to ASP
.N ET. However, you’ll fi nd that sites built using the Web Application Project model have a lot in
common with Web Site Projects, which means you can use the knowledge you gain from this book
to build sites with the Web Application Project model as well. You must use the Web Site Project
model if you want to follow along with this book. When not referring to a specifi c project type, I’ll
use the terms website and web application interchangeably throughout this book when referring to
websites in general.

Now that you know about the different project models, the next thing to consider is the different
website tem plates and their options.

Choosing the Right Website Template
The New Web Site dialog box in VS contains different website templates, each one serving a distinct
purpose.

Figure 2-1 shows the New Web Site dialog box in VS. You can open this dialog box by choosing File
Í New Web Site or File Í N ew Í Web Site, depending on your version of VS. If your dialog box
doesn’t look like Figure 2-1, make sure you chose File Í New Web Site and not File Í New Project.

FIGURE 2-1

c02.indd 35c02.indd 35 10/8/2012 9:43:42 AM10/8/2012 9:43:42 AM

36 x CHAPTER 2 BUILDING AN ASP.NET WEBSITE

In the left-hand section you can choose between Visual Basic and Visual C# as the programming
language for your site. The section in the middle shows the ASP.N ET website templates that are
installed by default. Each of them is discussed in the next section. When you have created your own
templates (which you learn how to do in Chapter 6), or have templates installed from other parties,
they show up in this area as well.

The ASP.N ET Empty Web Site template is used throughout this book for the Planet Wrox website.
The others are described briefl y in the following sections so you know how they can be used. The
exact list of installed templates on your system depends on the version of Visual Studio and the
installed components. Don’t worry if you have other templates as long as you have the ASP.N ET
Web Forms Site and the ASP.N ET Empty Web Site items.

ASP.NET Web Forms Site
This template enables you to set up a basic ASP.N ET website. It contains a number of fi les and fold-
ers to jump-start the development of your site. The different fi le types are all discussed later in this
chapter. The special App_Data folder and the functionality of the pages in the Account folder are
discussed later in this book.

This template is a good starting point once you start developing real-world ASP.N ET websites.

ASP.NET Web Site (Razor v1 / Razor v2)
You use these templates to create sites using M icrosoft’s Web Pages framework. You can learn more
about Web Pages in my book Beginning A SP.N ET W eb Pages w ith W ebM atrix (Wrox, 2011, ISBN:
978-1-118-05048-4).

ASP.NET Empty Web Site
The ASP.N ET Empty Web Site template gives you nothing but a single confi guration fi le (Web
.config). The ASP.N ET Empty Web Site template is useful if you have a bunch of existing fi les you
want to use to create a new website or when you want to create your site from scratch. You use this
template as the basis for the sample website you build in the book and add fi les and folders as you
progress through the book.

ASP.NET Dynamic Data Entities Web Site
This template enables you to create a fl exible yet powerful website to manage data in a database
without a lot of manual code. This template is not discussed in this book, but you learn more about
the M icrosoft ADO.N ET Entity Framework that is used by the template in Chapter 14.

WCF Service
This template enables you to create a website containing one or more Windows Communication
Foundation (WCF) Services. A WCF Service is somewhat similar to a web service in that it enables
you to create methods that are callable over a network. However, WCF Services go much further
than simple web services and offer you a lot more fl exibility. You see how to create and consume a
web service from a browser in Chapter 10.

Creating Websites with Visual Studio 2012 x 37

Although it seems you have to make a clear choice up front for the right website template, this isn’t
really the case. Because an ASP.N ET website in VS is essentially just a reference to a folder, it’s easy
to add types from one template to another. For example, it’s perfectly acceptable (and very common)
to add a web service fi le to a standard ASP.N ET Web Forms Site or an ASP.N ET Empty Web Site, as
you see in Chapter 10.

Creating and Opening a New Website
You have a number of different ways to create new and open existing websites. The choices you have
here are largely infl uenced by the way you access the website (either on your local machine with
Visual Studio on it or on a remote machine), and whether you want to use IIS Ex press (the built-in
web server that ships with VS) or the full version of IIS—the web server that comes with Windows.

All the examples in this book assume that you open sites from your local hard drive and that you
use IIS Express, a trimmed down version of IIS, because it’s very convenient to develop sites with it.
However, Chapter 19 shows you how to use and confi gure the full version of Internet Inform ation
Services, or IIS for short. This advanced web server comes with most editions of Windows and is
mostly used for production hosting of your websites on the server editions of Windows, because it’s
capable of serving web pages in high-traffi c scenarios.

Creating New Websites
The next Try It O ut section guides you through creating the Planet Wrox website, which is the proj-
ect you work on in this book. All exercises in the remainder of the book assume you have this web-
site open in VS, except where stated otherwise. The exercise instructs you to store your website in a
folder called C:\BegASPNET\Site. Take note of this folder name, because it’s used throughout this
book. If you decide to use a different folder, be sure to use your own location whenever you see this
folder name in the book. Also make sure you don’t use special characters like the hash (#) or insert
a space in the folder name because you’ll run into trouble when developing your site. Finally, make
sure you don’t create this folder under your Windows Documents folder (typically at C:\Users\
UserName\Documents), because you’ll run into problems later when accounts other than your own
need access to your site.

TRY IT OUT Creating a New ASP.NET 4.5 Website

 1. Start by creating a folder called BegASPNET in the root of your C drive using Windows Explorer
or My Computer. Inside the folder, create another folder called Site. You should end up with a
folder called C:\BegASPNET\Site. If you followed the instructions from the “ Introduction” sec-
tion of this book and unpacked the source for this book, you already have the BegASPNET folder,
which in turn contains the Source and Resources folders. You still need to create the Site folder,
though. If you want to follow along with VB.NET and C# at the same time, you can create two
folders, BegASPNETVB and BegASPNETCS, and use two instances of Visual Studio.

 2. Start Visual Studio and choose File Í New Web Site or File Í New Í Web Site, depending on
your version of VS.

38 x CHAPTER 2 BUILDING AN ASP.NET WEBSITE

COMMON MISTAKES Don’t mistakenly create a new Web Application Project
using File Í New Project, because this project template is not compatible with
the exercises in this book.

 3. In the target framework drop-down list at the top of the screen, select .NET Framework 4.5.

 4. In the Installed Templates area on the left, choose between Visual Basic and Visual C#. All the
examples in this book are shown in both programming languages, so you can choose the one you
like best.

 5. In the area in the middle select ASP.NET Empty Web Site.

 6. In the Web Location drop-down list, make sure that File System is selected. The other two options
(HTTP and FTP) enable you to open a site running on IIS (either on your local machine or on a
remote server using the so-called Microsoft FrontPage Server Extensions) and open a site from an
FTP server, respectively.

 7. Click the Browse button next to the location text box, browse to C:\BegASPNET\Site (the folder
you created in the fi rst step of this exercise), and click Open.

Your fi nal screen should look like the one in Figure 2-2 , except that you may have chosen Visual
C# instead of Visual Basic.

FIGURE 2-2

 8. Click OK and VS creates the new site for you.

Creating Websites with Visual Studio 2012 x 39

How It Works

As soon as you click OK, VS creates a new, empty website for you. This
new website contains nothing but a confi guration fi le (called Web.con-
fig). In the Solution Explorer, your website now looks like Figure 2-3.
If you don’t see the top-level Solution node, choose Tools Í Options
in VS, and in the Projects and Solutions category select Always Show
Solution.

Because a website based on the Empty Web Site template is just a simple Windows folder that VS looks
at, the actual folder on disk contains the same fi le. No additional fi les are used to create the site, as
shown in Figure 2-4, which shows File Explorer displaying the fi les in the folder C:\BegASPNET\Site.

FIGURE 2-4

If you don’t see the .config extension of the web fi le, don’t worry. You see how to view fi le exten-
sions in a later exercise.

As you progress through this book, you’ll add new fi les and folders to the site. These additional
fi les and folders show up in the Solution Explorer and will appear in the Windows folder at C:\
BegASPNET\Site as well.

Opening websites based on the Web Site Project template is very similar to creating new ones. In the
next section, you get a quick overview of opening existing sites in VS.

Opening Existing Websites
Just as with creating new sites, opening an existing site in VS gives you a few options with regard
to the source location of the website. You can choose to open a site from the local fi lesystem, from
a local IIS web server, from a remote server using FTP, from a remote site using the M icrosoft
FrontPage Server Extensions, or from a central Source Control system such as M icrosoft’s Team
Foundation Server. Figure 2-5 shows the Open Web Site dialog box in VS.

FIGURE 2-3

40 x CHAPTER 2 BUILDING AN ASP.NET WEBSITE

FIGURE 2-5

To get to this dialog box, choose File Í Open Web Site in VS (don’t accidentally choose File Í Open
Project because that menu item is used to open Web Application Projects instead). All the examples
in the book assume that you always open the Planet Wrox website from the local fi lesystem, using
the File System button, which is the fi rst button in the left column of the window. Then in the right
pane, locate your website (C:\BegASPNET\Site in this example) and click the Open button.

The site you created in the previous Try It O ut is a very bare-bones site. To make it more useful, you
need to add fi les to it. The many fi le types you have at your disposal and the way they are added to
the site are the next topics of discussion.

WORKING WITH FILES IN YOUR WEBSITE
An ASP.N ET 4.5 Web Forms Site consists of at least a single Web Form (a fi le with an .aspx exten-
sion), but usually it consists of a larger number of fi les. M any different fi le types are available in VS,
each offering a distinct functionality. In the next section, you see the most important fi le types that
are used in VS. In addition, you learn a few different ways to add these fi les to your site.

Working with Files in Your Website x 41

The Many File Types of an ASP.NET 4.5 Website
To give you an idea of how many different fi les you can use in ASP.N ET, Figure 2-6 shows the dia-
log box that enables you to add new fi les to the site (accessible by right-clicking your website in the
Solution Explorer and choosing Add Í Add New Item or by choosing Website Í Add New Item
from the main menu).

FIGURE 2-6

To make it easier to fi nd the type of fi le you’re looking for, you can use the search box at the top-
right corner of the dialog box. Simply enter a few letters of the type you’re looking for and hit Enter.
VS fi lters the list of fi les to those matching your search phrase.

The fi les you can add to a site can be grouped in a few different categories. The most important
fi les—the ones you use throughout the examples in this book—are discussed next.

Web Files
Web fi les are specifi c to web applications and can either be requested by a browser directly, or are
used to build up part of the web page that is requested in the browser. The following table lists the
various web fi les you typically use in an ASP.N ET Web Forms website and their extensions, and
describes how each fi le is used.

c02.indd 41c02.indd 41 10/8/2012 9:43:43 AM10/8/2012 9:43:43 AM

42 x CHAPTER 2 BUILDING AN ASP.NET WEBSITE

FILE TYPE EXTENSION DESCRIPTION

Web Form .aspx The workhorse of any ASP.NET website; represents the
pages that your users view in their browsers.

Master Page .master Enables you to defi ne the global structure and the look and
feel of a website. You see how it can be used in Chapter 6.

Web User Control .ascx Contains page fragments that can be reused in multiple
pages in your site. Chapter 8 is entirely devoted to user
controls.

HTML Page .htm /.html Can be used to display static HTML in your website.

Style Sheet .css Contains CSS code that enables you to style and format
your website. You learn more about CSS in Chapter 3.

Web Confi guration
File

.config Contains global confi guration information that is used
throughout the site. You see how to use the Web.config
later in this book, starting with Chapter 4.

Site Map .sitemap Contains a hierarchical representation of fi les in your site in
an XML format. The site map is used for navigation and is
discussed in Chapter 7.

JavaScript File .js Contains JavaScript that can be executed in the client’s
browser.

Skin File .skin Contains design information for controls in your website.
Skins are discussed in Chapter 6.

The next Try It O ut exercise shows you how to add a new master page to the site, which is used
throughout the book.

TRY IT OUT Adding Files to Your Site

 1. If it is not still open, open the Planet Wrox website you created earlier by choosing File Í Open
Web Site. Make sure that you open the site from the fi lesystem, locate the folder that contains your
site (C:\BegASPNET\Site), and click the Open button.

 2. In the Solution Explorer, right-click your site and choose Add Í New Folder.

COMMON MISTAKES Make sure you click the actual site and not the
Web.config fi le or the Solution node at the top (see Figure 2-3) or you won’t get
the correct menu item.

Working with Files in Your Website x 43

 3. Type MasterPages as the name of the folder and press Enter. Then right-click this new folder
and choose Add Í Add New Item. Alternatively, you can choose File Í New File or Website Í
Add New Item from Visual Studio’s main menu, or you can click the new folder in the Solution
Explorer once to put the focus on it and then press Ctrl+Shift+A.

 4. In the dialog box that appears, click Master Page and type Frontend as the name. VS automati-
cally adds the .master extension for you when you add the fi le. Verify that under Installed
Templates you have selected the language you want to use for this site and that Place Code in
Separate File in the bottom-right corner is checked. Finally, click the Add button. The master page
is added to the site, and is opened automatically for you in the Document Window.

How It Works

This simple exercise showed you how to add a new item to your website. Although at this stage the
site isn’t very exciting yet, the fi le you added forms the basis for the rest of the book. The next sections
briefl y look at the remainder of the fi le types.

Code Files
Adding code fi les to the site is identical to how you add web fi les. The following table describes the
various types of code fi les.

FILE TYPE EXTENSION DESCRIPTION

WCF Service .svc Can be called by other systems, including browsers,
and can contain code that can be executed on your
server. WCF services are covered in Chapter 10.

Class .cs /.vb Can contain code to program your website. Note that
Code Behind fi les (discussed later) also have this
extension because they are essentially class fi les. C#
uses fi les with the .cs extension and Visual Basic uses
.vb fi les.

Global Application
Class

.asax Can contain code that is fi red in response to interesting
things that happen in your site, such as the start of the
application or when an error occurs somewhere in the
site. You see how to use this fi le in Chapters 11 and 18.

Besides the Code Files category, there is one more group of fi les worth looking into: Data Files.

44 x CHAPTER 2 BUILDING AN ASP.NET WEBSITE

Data Files
Data fi les are used to store data that can be used in your site and in other applications. The group
consists of the XM L fi les, database fi les, and fi les related to working with data.

FILE TYPE EXTENSION DESCRIPTION

XML File .xml Used to store data in XML format. In addition to plain XML fi les,
ASP.NET supports a few more XML-based fi les, two of which you
briefl y saw before: Web.config and the site map.

SQL Server
Database

.mdf Files with an .mdf extension are databases that are used by
Microsoft SQL Server. Databases are discussed in Chapter 12
and later.

ADO.NET
Entity Data
Model

.edmx Used to access databases declaratively, without the need to
write a lot of repetitive code. Technically, this is not a data fi le,
because it does not contain the actual data. However, because
it is tied to the database so closely, it makes sense to group it
under this header. You learn more about the ADO.NET Entity
Framework in Chapter 14.

As you saw in the previous Try It O ut, adding a new fi le of any of these types is really easy. It’s just
as easy to add existing fi les to the site.

Adding Existing Files
Not every fi le you create in your website has to be brand new. In some cases it makes sense to reuse
fi les from other projects. For example, you may want to reuse a logo or a CSS fi le across multiple
sites. You can easily add existing fi les by right-clicking the website in the Solution Explorer and
choosing Add Í Add Existing Item. In the dialog box that appears, you can browse for the fi les,
and optionally select multiple fi les by holding down the Ctrl key. Finally, when you click Add, the
fi les are added to the website. You can also use copy and paste to copy fi les from a folder on your
local disk to a website in VS. Simply highlight the fi les in Windows Explorer, press Ctrl+C to copy
the fi les, switch to VS, click the website in the Solution Explorer (or on a subfolder of your site), and
press Ctrl+V. The fi les are then copied into your website’s folder.

However, there is an even easier way to add fi les to the site, which can be a great time saver when
you need to add multiple existing fi les and folders to your site: drag and drop. The following Try It
O ut shows you how this works.

TRY IT OUT Adding Existing Files to Your Site

 1. In Windows, minimize all open applications, right-click your desktop, and choose New Í Text
Document. If you don’t see this option, simply create a new text document using Notepad and save
it on your desktop.

Working with Files in Your Website x 45

 2. Rename the fi le Styles.css. Make sure the .txt extension is replaced by .css. If you don’t see
the initial .txt extension and the icon of the fi le doesn’t change from a text fi le to a CSS fi le (by
default this is the same icon as a text fi le with a gear symbol on top of it, but you may have soft-
ware installed that changed the icon for CSS fi les), Windows is confi gured to hide extensions for
known fi le types. If that’s the case, open up Windows Explorer in Windows 7, click the Organize
button, and then choose Folder and Search Options. Switch to the View tab and deselect the option
labeled Hide Extensions for Known File Types. For Windows 8 you fi nd the option called File
Name Extensions on the View tab of the Ribbon bar of the File Explorer, shown in Figure 2-4.
You now may need to change the name of the fi le from Styles.css.txt to Styles.css.

When you change the fi le extension from .txt to .css, Windows may give you a warning that
the fi le becomes unusable if you proceed. You can safely answer Yes to this question to continue.

 3. Rearrange VS so you can see part of the desktop with the CSS fi le as well. You can use the Restore
Down button next to the Close button on the Windows title bar of VS to get it out of full screen
mode.

 4. Click the CSS fi le on the desktop and, while holding down the mouse button, drag the fi le into the
Solution Explorer. Make sure you drag the fi le into the Solution Explorer and not into other parts
of VS, or the fi le won’t be added. For example, when you drag it into the Document Window, VS
simply opens the fi le for you, but doesn’t add it to the site.

 5. When you release the mouse while over the website node or an existing fi le in the Solution
Explorer, the CSS fi le is added to your site.

NOTE If you are using Windows 7 and run VS as an administrator, this might
not work because Windows doesn’t allow the Windows Explorer and VS to com-
municate. In that case, add existing fi les using the Add Existing Item menu dis-
cussed earlier or use copy and paste.

How It Works

Although this seems to be a simple exercise that uses basic Windows skills, it serves to show that VS
creates a copy of the fi le when it adds it to the site. So, the original Styles.css fi le on the desktop is
not affected when you make changes to the copy in VS. This way, it’s easy to drag and drop fi les from
existing websites into your new one without affecting the originals. The same applies to fi les you add
using the Add Existing Item dialog box in VS.

If you have added fi les to your website’s folder outside of VS, they may not show up right away.
You can get a fresh copy of the fi le list by clicking the Refresh button on the Solution Explorer’s
toolbar.

c02.indd 45c02.indd 45 10/8/2012 9:43:44 AM10/8/2012 9:43:44 AM

46 x CHAPTER 2 BUILDING AN ASP.NET WEBSITE

Organizing Your Site
Because of the many fi les that make up your site, it’s often a good idea to group them by function in
separate folders. For example, all style sheet fi les could go in a folder called Styles, .js fi les could
go in Scripts, user controls could go in a Controls folder, and master pages could be stored in a
folder called MasterPages. This is a matter of personal preference, but structured and well-orga-
nized sites are easier to manage and understand. The next Try It O ut explains how you can move
fi les around into new folders to organize your site.

TRY IT OUT Organizing Your Website

 1. Right-click the Planet Wrox site in the Solution Explorer and choose Add Í New Folder.

 2. Type Styles as the new folder name and press Enter.

 3. Create another folder, called Controls. These two folders are used in the remainder of this book.

 4. Drag the Styles.css fi le that you added earlier and drop it into the Styles folder.

If everything went well, your Solution Explorer should look like Figure 2-7.

FIGURE 2-7

If your Solution Explorer looks different from the one shown in Figure 2-7, follow this Try It O ut
again until your site looks exactly the same, with the same folder structure and fi les in it. Future
Try It O ut exercises in this book assume you have the correct folders and fi les in your website.

How It Works

Structure and organization are important to keep your sites manageable. Although you may be tempted
to add all of your fi les to the root of your project, it’s better not to do this. With a very small site, you
may not notice any difference, but as soon as your site begins to grow, you’ll fi nd it becomes a lot
harder to manage when it lacks structure. Placing related fi les in separate folders is the fi rst step to an
organized site. Storing fi les of the same type in a single folder is only one way to optimize your site. In
later chapters, you see that separate folders are also used to group fi les with similar functionality. For
example, all fi les that are accessible only by an administrator of the site are grouped in a folder called
Management.

c02.indd 46c02.indd 46 10/8/2012 9:43:44 AM10/8/2012 9:43:44 AM

Working with Web Forms x 47

The drag-and-drop features of VS make it easy to reorganize your site. Simply pick up one fi le or
multiple fi les and drop them in their new location. If you continue to apply these kinds of organiza-
tion practices while expanding your site, you’ll fi nd that tomorrow or six months from now, you
won’t have any problems locating the right fi le when you need it.

Special File Types
Some of the fi les listed in the previous section require that you put them in a special folder instead of
the proposed optional organizational folder structure. The IDE warns you when you try to add a fi le
outside of its special folder, and offers to create the folder and put the fi le there. For example, when
you try to add a class fi le (with a .vb or .cs extension), you get the warning shown in Figure 2-8.

FIGURE 2-8

When you get this dialog box, always click Yes. O therwise, your fi le won’t function correctly. You
get similar dialog boxes for other fi le types, including skin and database fi les.

Now that you have a good understanding of the different types of fi les that make up your website,
it’s time to look at one of them in much more detail: .aspx fi les, also known as Web Forms.

WORKING WITH WEB FORMS
Web Forms, represented by .aspx fi les, are the core of any ASP.N ET 4.5 Web Forms website. They
are the actual pages that users see in their browsers when they visit your site.

As you saw in the previous chapter, Web Forms can contain a mix of H TM L, ASP.N ET Server
Controls, client-side JavaScript, CSS, and programming logic. To make it easier to see how all this
code ends up in the browser, VS offers a number of different views on your pages.

The Diff erent Views on Web Forms
VS enables you to look at your Web Form from a few different angles. When you have a fi le with
markup—like a Web Form or master page—open in the Document Window, you see three buttons
at the bottom-left corner of the window. With these buttons, visible in Figure 2-9, you can switch
between the different views. This fi gure shows a master page, which you’ll learn more about in
Chapter 6.

48 x CHAPTER 2 BUILDING AN ASP.NET WEBSITE

FIGURE 2-9

Source View is the default view when you open a page. It shows you the raw H TM L and other
markup for the page, and is very useful if you want to tweak the contents of a page and you have a
good idea of what you want to change and where. As I explained in the previous chapter, I use the
term M arkup View rather than Source View to refer to the markup of ASPX and H TM L pages.

The Design button enables you to switch the Document Window into Design View, which gives
you an idea of how the page will end up. When in Design View, you can use the Visual Aids and
Formatting M arks submenus from the main View menu to control visual markers like line breaks,
borders, and spaces. Both submenus offer a menu item called Show that enables you to turn all
the visual aids on or off at once. Turning both off is useful if you want to have an idea of how the
page ends up in the browser. You should, however, use Design View only to get an idea of how the
page will end up. Although VS has a great rendering engine that renders the page in Design View
pretty well, you should always check your pages in different browsers as well, because what you
see in VS is the markup for the page before it gets processed. Server controls on the page may emit
H TM L that changes the look of the page in the browser. Therefore, it’s recommended to view the
page in the browser as often as possible so you can check if it’s going to look the way you want it.
It’s also recommended to test your site in as many different browsers as you can get your hands on,
because there may be small differences between them in the way they render a web page. The Planet
Wrox website has been developed and tested against recent versions of M icrosoft Internet Explorer,
Firefox, Google Chrome, Safari, and Opera. You’ll see screenshots of these browsers at various
places in the book.

The Split button enables you to look at Design View and M arkup View at the same time, as you can
see in Figure 2-10.

Split View is great if you want to see the code that VS generates when you add controls to the Design
View of your page. The other way around is very useful too: When you make changes to the markup
of the page in M arkup View, you can see how it ends up in Design View. Sometimes Design View
becomes out of sync with M arkup View. If that’s the case, a message appears at the top of Design
View. Simply clicking the message or saving the entire page is enough to update the Design window.

c02.indd 48c02.indd 48 10/8/2012 9:43:44 AM10/8/2012 9:43:44 AM

Working with Web Forms x 49

FIGURE 2-10

You can cycle through the three different modes using the Ctrl+Page Up and Ctrl+Page Down keys.

If you want your pages to open in a different view than M arkup View, choose Tools Í Options.
Then expand H TM L Designer, and in the General category, set your preferred view. Alternatively,
enter HTML Designer General in the Q uick Launch text box (which you can access by pressing
Ctrl+Q) at the top-right of VS and then click the item in the list that appears.

In addition to the H TM L and other markup you see in the M arkup View window, a Web Form can
also contain code in either C# or Visual Basic .N ET. Where this code is placed depends on the type
of Web Form you create. The next section explains the two options you have in more detail.

Choosing between Code Behind and Pages with Inline Code
Web Forms come in two fl avors: either as an .aspx fi le with a Code Behind fi le (a fi le named after
the Web Form with an additional .vb or .cs extension) or as .aspx fi les that have their code
embedded, often referred to as Web Forms with inline code. Although you won’t see much code
until Chapter 5, it’s important to understand the difference between these types of Web Forms. At
fi rst, Web Forms with inline code seem a lit tle easier to understand. Because the code needed to
program your website is part of the very same Web Form, you can clearly see how the code relates
to the fi le. However, as your page gets larger and you add more functionality to it, it’s often easier
if you have the code in a separate fi le. That way, it’s completely separate from the markup, enabling
you to focus on the task at hand.

In the next exercise, you add two fi les that demonstrate the difference between Code Behind and
inline code.

TRY IT OUT Adding Web Forms with Code to Your Site

The fi les you add in this exercise aren’t needed for the fi nal application. To avoid cluttering up the proj-
ect, you should put them in a separate Demos folder.

c02.indd 49c02.indd 49 10/8/2012 9:43:45 AM10/8/2012 9:43:45 AM

50 x CHAPTER 2 BUILDING AN ASP.NET WEBSITE

 1. In the Solution Explorer, right-click your website and choose Add Í New Folder. Name the folder
Demos and press Enter.

 2. Right-click the Demos folder and choose Add Í Add New Item. In the dialog box that appears,
choose your preferred programming language on the left, click the Web Form template, and name
the fi le CodeBehind.aspx. Make sure that the check box for Place Code in Separate File is selected.
Finally, click the Add button. The page should open in Markup View so you can see the HTML for
the page.

 3. At the bottom of the Document Window, click the Design button to switch the page from Markup
View into Design View. The page you see has a white background with a small, dashed rectangle at
the top of it. The dashed rectangle represents the <div> element you saw in Markup View.

 4. From the Toolbox, drag a Label control from the Standard category and drop it in the dashed area
of the page. Remember, you can open the Toolbox with the shortcut Ctrl+Alt+X if it isn’t open yet.
In Design View, your screen should now look like Figure 2-11.

FIGURE 2-11

 5. Double-click somewhere in the white area below the dashed line of the <div> element. VS switches
from Design View into the Code Behind of the fi le and adds code that fi res when the page loads in
the browser:

VB.NET
Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load

End Sub

C#
protected void Page_Load(object sender, EventArgs e)
{

}

Although this odd syntax may look a lit tle scary at this point, don’t worry about it too much now.
In most cases, VS adds it for you automatically, as you just saw. In later chapters, you see exactly
how this code works, but for now it’s important to realize that the code you’re going to place
between the lines that start with Protected Sub and End Sub in Visual Basic and between the
curly braces in C# will be run when the page is requested in the browser.

All code examples you see from now on include a Visual Basic (VB.N ET) and a C# version, so
always pick the one that matches your programming language.

c02.indd 50c02.indd 50 10/8/2012 9:43:45 AM10/8/2012 9:43:45 AM

Working with Web Forms x 51

 6. Place your cursor in the open line in the code that VS created and add the bolded line of code that
assigns today’s date and time to the label, which will eventually show up in the browser:

VB.NET
Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Label1.Text = "Hello World; the time is now " & DateTime.Now.ToString()
End Sub

C#
protected void Page_Load(object sender, EventArgs e)
{
 Label1.Text = "Hello World; the time is now " + DateTime.Now.ToString();
}

Note that as soon as you type the L for Label1, you get a list with options to choose from. This is
part of Visual Studio’s IntelliSense, a great tool that helps you rapidly write code. Instead of typ-
ing the whole word Label1, you simply type the letter L or the letters La and then you pick the
appropriate item from the list, visible in Figure 2-12.

FIGURE 2-12

To complete the selected word, you can press Enter or Tab or even the period. In the latter case,
you immediately get another list that enables you to pick the word Text simply by typing the
fi rst few letters, completing the word by pressing the Tab or Enter key. This feature is a real pro-
ductivity tool because you can write code with a minimum of keystrokes. IntelliSense is avail-
able in many other fi le types as well, including ASPX, H TM L, CSS, JavaScript, and XM L. In
many cases, the list with options pops up automatically if you begin typing. If it doesn’t, press
Ctrl+Spacebar to invoke it. If the list covers some of your code in the code window, press and hold
the Ctrl key to make the window transparent.

 7. Right-click the CodeBehind.aspx page in the Solution Explorer and choose View in Browser
(Internet Explorer). Depending on the default browser you’ve confi gured for your computer, the
browser name in the parentheses may be different. I’ll simply refer to this menu item as View in
Browser from now on.

 8. Click Yes if you get a dialog box that asks if you want to save the changes, and then the page will
appear in the browser, similar to the browser window you see in Figure 2-13.

c02.indd 51c02.indd 51 10/8/2012 9:43:45 AM10/8/2012 9:43:45 AM

52 x CHAPTER 2 BUILDING AN ASP.NET WEBSITE

FIGURE 2-13

If you don’t see the message with the date and time appear or you get an error on the page in
the browser, make sure you saved the changes to all open pages. To save all pages at once, press
Ctrl+Shift+S or click the Save All button on the toolbar (the one with the multiple fl oppy disk
symbols). Additionally, make sure you typed the code for the right language. When you created
this new page, you chose a programming language that applies to the entire page. You can’t mix
languages on a single page, so if you started with a Visual C# page, make sure you entered the C#
code snippet in step 6.

 9. Setting up a page with inline code is very similar. Start by adding a new Web Form to the Demos
folder. Call it CodeInline.aspx and make sure you uncheck the Place Code in Separate File
option.

 10. Just as you did in steps 3, 4, and 5, switch the page into Design View, drag a label inside the <div>
element, and double-click the page somewhere outside the <div> that now contains the label.
Instead of opening a Code Behind fi le, VS now switches your page into Markup View and adds the
Page_Load code directly in the page.

 11. On the empty line in the code block that VS inserted, type the bolded line you see in step 6 of this
exercise. Make sure you use the correct programming language. You should end up with the fol-
lowing code at the top of your .aspx fi le:

VB.NET
<script runat="server">
 Protected Sub Page_Load(sender As Object, e As EventArgs)
 Label1.Text = "Hello World; the time is now " & DateTime.Now.ToString()
 End Sub
</script>

C#
<script runat="server">
 protected void Page_Load(object sender, EventArgs e)
 {
 Label1.Text = "Hello World; the time is now " + DateTime.Now.ToString();
 }
</script>

 12. Right-click the page in the Solution Explorer and choose View in Browser. Alternatively, press
Ctrl+F5 to open the page in your browser. You should see a page similar to the one you got in step 7.

How It Works

At run time, pages with inline code behave the same as pages that use Code Behind. In both cases, the
ASP.N ET run time sees the Page_Load code and executes any code it fi nds in it. In the Try It O ut, this

c02.indd 52c02.indd 52 10/8/2012 9:43:45 AM10/8/2012 9:43:45 AM

Working with Web Forms x 53

meant setting the Text of Label1 to a welcome message and today’s date and time. The biggest dif-
ference between the two options is where the code is stored. With pages with inline code, all code and
markup is stored in the same fi le on disk. When using Code Behind, the VB or C# code you write is
stored in a separate fi le named after the Web Form.

Because pages with Code Behind are easier to manage, I’ll use them exclusively for the Planet Wrox
website.

In this example, the C# code looks very similar to the VB.N ET code. The code that sets the Label’s
text is almost identical in the two languages. O ne difference is that VB.N ET uses an ampersand (&)
to glue two pieces of text together, but C# uses the plus (+) character. You can also use the plus char-
acter in VB.N ET to concatenate strings together, but with a few caveats, as you’ll learn in Chapter
5. The other difference is that in C# code lines must be terminated with a semicolon (;) to indicate
the end of a unit of code, but Visual Basic uses the line break. If you want to split a long line of code
over multiple lines in Visual Basic, you can use the underscore (_) character. In earlier versions,
VB.N ET required the underscore in a lot of different places. H owever, in recent versions of Visual
Basic, the designers of the language have greatly reduced the number of places where you must use an
underscore.

O ne place where you do need the underscore if you want to split code over multiple lines is right before
the Handles keyword that you saw earlier:

Protected Sub Page_Load(sender As Object, e As EventArgs) _
 Handles Me.Load
 Label1.Text = "Hello World; the time is now " & DateTime.Now.ToString()
End Sub

Note that in your pages you don’t have to use the underscore to break a long line. However, I’ll add it
to some of the examples in this book because the book’s pages are not wide enough to show the entire
code statement on a single line. You’ll see more of these underscores in other Visual Basic examples in
the remainder of this book. If you decide to manually type the underscore to make your own code more
readable, don’t forget to type a space before the underscore or your code won’t work.

In C#, you don’t need this character because the language itself allows you to break long lines simply by
pressing Enter. This is because C# uses a semicolon to denote the end of a line instead of a line break in
the source.

You opened the page in your browser using the right-click View in Browser option or by pressing
Ctrl+F5. With the View in Browser option, you always open the page you right-click. With the Ctrl+F5
shortcut, you open the page that is currently the active document in the Document Window, the page
that is currently selected in the Solution Explorer, or the fi le that has been set as the Start Page for the
website. Additionally, all open fi les are saved automatically, and the site is checked for errors before the
requested page is opened in the browser.

You can assign a page as the Start Page by right-clicking it in the Solution Explorer and choosing Set As
Start Page. If you want to control this behavior at a later stage, right-click the website in the Solution
Explorer and choose Property Pages. In the Start Options category, you can indicate that you want the
currently active page to open, or you can assign a specifi c page, as shown in Figure 2-14.

c02.indd 53c02.indd 53 10/8/2012 9:43:46 AM10/8/2012 9:43:46 AM

54 x CHAPTER 2 BUILDING AN ASP.NET WEBSITE

FIGURE 2-14

In the previous exercise, you learned how to add a page that contains a simple Label control.
Additionally, you saw how to write some code that updates the label with today’s date and time.
You can ignore this code for now; it only served to demonstrate the differences between Code
Behind and inline code. In Chapter 5, you learn more about programming in Visual Basic and C#.

To make compelling pages, you obviously need a lot more content than just a simple Label control
that shows today’s date and time. The next section shows you how to add content and H TM L to
your pages and how to style and format it.

Adding Markup to Your Page
You have a number of ways to add H TM L and other markup to your pages. First of all, you can
simply type it in the M arkup View window. However, this isn’t always the best option, because it
forces you to type a lot of code by hand. To make it easier to insert new H TM L in the page and to
apply formatting to it, the Design View window offers a number of helpful tools. These tools include
the Formatting toolbar and the menu items Format and Table. For these tools to be active, you need
to have the document in Design View. If you’re working in Split View mode, you have to make sure
that the Design View part has the focus, or you’ll fi nd that most of the tools are not available.

Inserting and Formatting Text
You can type text in both Design View and in M arkup View. Simply place the cursor at the desired
location and start typing. When you switch to Design View, the Formatting toolbar becomes avail-
able, with the options shown in Figure 2-15.

c02.indd 54c02.indd 54 10/8/2012 9:43:46 AM10/8/2012 9:43:46 AM

Working with Web Forms x 55

Target Rule

Reuse Existing
Style

Show
Overlay

Italic

Block Format Font Size
Bold Underline

Align Text

Hyperlink

Background Color
Foreground Color

FIGURE 2-15

M any of the buttons on the toolbar function exactly the same as in other editing environments. For
example, the B button formats your text with a bold font. Similarly, the I and the U buttons itali-
cize and underline your text, respectively. The drop-down list labeled Block Format enables you to
insert H TM L elements like <p> for paragraphs, <h1> through <h6> for headings, and , ,
and for lists. You can choose an item from the drop-down list directly to have it inserted in
your page, or you can select some text fi rst and choose the appropriate block element from the list to
wrap the selected text inside the tags.

In the next Try It O ut, you see how to work with these tools to create the homepage of the Planet
Wrox website.

TRY IT OUT Adding Formatted Text

In this Try It O ut, you create a Web Form called Default.aspx and add some basic content to it.

 1. Add a new Web Form with the Add New Item dialog box to the root of the site and call it
Default.aspx. Make sure you check off the Place Code in Separate File option and click Add.
Switch to Design View using the Design button at the bottom of the Document Window.

 2. Click inside the dashed rectangle until you see the glyph showing that the <div> element is cur-
rently active. At the same time, the tag navigator at the bottom of the code window should high-
light the last block with the text <div> on it, as shown in Figure 2-16.

FIGURE 2-16

 3. Type Hi there visitor and welcome to Planet Wrox and highlight the text using the mouse.
From the Block Format drop-down list (visible in Figure 2-15) choose Heading 1 <h1>. Note that a
small glyph with the text h1 appears right above the text, to indicate that VS created a heading for
you automatically. Figure 2-17 shows the Design View with the <h1> element.

c02.indd 55c02.indd 55 10/8/2012 9:43:46 AM10/8/2012 9:43:46 AM

56 x CHAPTER 2 BUILDING AN ASP.NET WEBSITE

FIGURE 2-17

 4. Position your cursor at the end of the heading after the word Wrox and press Enter. A new para-
graph (indicated by a small glyph with the letter p on it) is inserted for you so you can directly start
typing.

 5. Type the text shown in Figure 2-18 (or make up your own) to welcome the visitor to Planet Wrox.
Notice how the text www.PlanetWrox.com turns blue as soon as you type the comma to indi-
cate VS has recognized it as a web address and has turned it into a link. You can press Enter to
start a new paragraph. Select the text “paying a visit,” click the Foreground Color button on the
Formatting toolbar, and select a different color in the dialog box that appears. Then select some
other text, such as “ reviews and concert pictures,” and click the Bold button. When you’re done,
your Design View should show something similar to Figure 2-18.

FIGURE 2-18

The code for the homepage should now look more or less similar to the following (the code
has been reformatted a bit to fi t the space in the book):

<div>
 <h1>Hi there visitor and welcome to Planet Wrox</h1>
 <p>
 We're glad you're
 paying a visit to
 www.PlanetWrox.com,
 the coolest music community site on the Internet.
 </p>
 <p>
 Feel free to have a look around; there are lots of interesting
 reviews and concert pictures to be found here.
 </p>
</div>

c02.indd 56c02.indd 56 10/8/2012 9:43:46 AM10/8/2012 9:43:46 AM

Working with Web Forms x 57

At the top of the fi le you should also see a <style> element, which is discussed next.

 6. Open the page in your browser by pressing Ctrl+F5, or by right-clicking the page in the Solution
Explorer and choosing View in Browser.

How It Works

When you use the various Formatting toolbar buttons, like Foreground Color, VS inserts the appro-
priate H TM L and CSS code for you. For example, when you click the B button, VS inserts a pair of
 tags around the selected text. When you click the I button, VS adds a pair of tags to
italicize the text. In this exercise, VS also inserted a class attribute (shown in the previous code exam-
ple) that points to a class called auto-style1 when you changed the text color. The code for this style
has been added to the top of your fi le and looks similar to this:

<style type="text/css">
 .auto-style1
 {
 color: #FF0000;
 }
</style>

Your code may look slightly different if you chose a different color. The code you see here is
explained in the next chapter. For now, just remember that this code sets the color of the text it is
applied to as red. If the opening curly bracket is on the same line as the class, choose Tools Í O ptions
Í Text Editor Í CSS Í Formatting and set the Formatting Style to Expanded. This is just a matter of
preference and doesn’t change the effect of the code.

Note that VS replaced the apostrophe character (’) in “we’re” in the welcome message with its H TM L-
compatible variant: '. Using this kind of code enables you to insert characters in your page that
a browser may have trouble displaying, or that have special meaning within H TM L itself, like the
ampersand character (&), which is written as &. When you type text in Design View, VS automati-
cally inserts the coded equivalents of relevant characters for you; however, if you type in M arkup View
directly, you’ll have to do this yourself.

Don’t worry if your code looks different from what is shown here. M any settings in VS infl uence the
code that is generated for you.

So far, the exercises have been concerned with adding and styling text in your page. However, VS
enables you to insert other H TM L elements as well, like tables and bullets. The next section shows
you how this works.

Adding Tables and Other Markup
H TM L tables are great if you need to present structured or repeating data, like a list of products in
a shopping cart, photos in a photo album, or input controls in a form. There is a lot of debate on
the Internet about whether you should use tables to lay out your page as well. For example, if your
page contains a header with a logo, a main content area, and a footer at the bottom, you could use a
table with three rows to accomplish this. In general, it’s considered bad practice to use tables for this
purpose because they add a lot of extraneous markup to the page and are often diffi cult to main-
tain. Besides, quite often the same result can be accomplished using CSS, which you learn about in
the next chapter. Despite the disadvantages that tables may bring, they are still an invaluable asset in
your H TM L toolbox when it comes to displaying tabular or otherwise structured information.

c02.indd 57c02.indd 57 10/8/2012 9:43:47 AM10/8/2012 9:43:47 AM

58 x CHAPTER 2 BUILDING AN ASP.NET WEBSITE

TRY IT OUT Using the Format and Table Menus

In this exercise, you learn how to add tables to your page using the Table menu and how to add rows
and columns. Additionally, you learn how to add other structured elements, such as bulleted lists.

 1. In the Demos folder, create a new Web Form called TableDemo.aspx. Make sure it uses Code
Behind by checking the Place Code in Separate File option.

 2. Switch the page to Design View, click inside the dashed rectangle that represents the standard
<div> tag in the page, and choose Table Í Insert Table. The Insert Table dialog box appears, as
shown in Figure 2-19.

FIGURE 2-19

 3. Set Rows to 3 and leave Columns set to 2. Leave all other settings at their defaults and click OK.
The table gets inserted in the page.

 4. If you see only a single table cell, and not the entire table with three rows and two columns, you
need to enable Visual Aid for tables. To do this, choose View Í Visual Aids Í Visible Borders
from the main menu to turn the borders on. Your Design View should now look like Figure 2-20.

FIGURE 2-20

c02.indd 58c02.indd 58 10/8/2012 9:43:47 AM10/8/2012 9:43:47 AM

Working with Web Forms x 59

 5. Drag the right border of the very fi rst cell in the table to the left. You’ll see a visual indicator
showing the width of the cell. Keep dragging it to the left until it has a width of 200 pixels, as in
Figure 2-21.

FIGURE 2-21

 6. To add more rows or columns to the table, you can right-click an existing cell. From the pop-
up menu that appears, choose Insert to add additional rows or columns at different locations.
Similarly, you can use the Delete, Modify, and Select options to delete rows or columns, merge
cells, and make selections. For this exercise, you don’t need to add additional rows or columns,
although it’s okay if you have already done so.

 7. Place your cursor in the fi rst cell of the fi rst row and type the words Bulleted List.

 8. Place your cursor in the second cell using the mouse. Alternatively, you can press Tab to move the
cursor to the next cell. From the Format menu, choose Bullets and Numbering.

 9. Switch to the Plain Bullets tab, click the picture with the round, solid bullets (see Figure 2-22), and
click OK.

FIGURE 2-22

 10. Type some text, like your favorite musical genre (Punk, Rock, Techno, and so on), and press Enter.
VS inserts a new bullet for you automatically, so you can continue to add new items to the list.
Add two more genres, so you end up with three bullets.

c02.indd 59c02.indd 59 10/8/2012 9:43:47 AM10/8/2012 9:43:47 AM

60 x CHAPTER 2 BUILDING AN ASP.NET WEBSITE

 11. Repeat steps 7 through 10, but now create a numbered list. First, type Numbered List in the fi rst
cell of the second row, then position your cursor in the second cell of the same row, and choose
Format Í Bullets and Numbering. Switch to the Numbers tab (visible in Figure 2-22 behind the
Plain Bullets tab) and click the second picture in the fi rst row, which shows a standard numbered
list, and click OK. Type a few items for the list, pressing Enter after each item.

 12. Open the page in the browser by pressing Ctrl+F5. You should see a screen similar to Figure 2-23.

FIGURE 2-23

How It Works

When you visually insert page elements like tables or lists through the available menus, VS inserts the
required markup for you in M arkup View. When you insert a table, VS adds a <table> element and a
number of <tr> and <td> elements to defi ne rows and cells, respectively. It also applies a class attri-
bute pointing to a CSS style that defi nes the table’s width. It created another style for the <td> elements
when you dragged the column width to be 200 pixels. Similarly, when you insert a list, VS inserts an
 element for num bered or ordered lists and a element for bulleted or unordered lists. Within
these elements, elements are used to defi ne each item in the list.

Besides the H TM L tags you have seen thus far, there is another important tag you need to look at:
the <a> tag, which is used to create links between pages.

Connecting Pages
An important part of any website is the links that connect the pages in your site. Links enable your
visitors to go from one page to another, in the same site or to a completely different site on the
Internet. You have a few ways to create links between pages, including:

 ‰ The HTML <a> element, explained in this chapter.
 ‰ Using the <asp:HyperLink> control, discussed in Chapter 7.
 ‰ Programmatically through code. This is discussed later in the book.

The following exercise shows you how easy it is to link from one page to another.

c02.indd 60c02.indd 60 10/8/2012 9:43:47 AM10/8/2012 9:43:47 AM

Working with Web Forms x 61

TRY IT OUT Linking Pages

In this Try It O ut, you modify the TableDemo.aspx page you created earlier by adding text that links
to another page. O nce you run the page in the browser and click that link, the new page replaces the
old one.

 1. Open the TableDemo.aspx page from the Demos folder.

 2. If necessary, switch to Design View.

 3. In the fi rst cell of the third row, type the text Link.

 4. In the second cell of the same row, type the text Go to the homepage of Planet Wrox and
highlight it with your mouse.

 5. On the Formatting toolbar, click the Convert to HyperLink button. It’s located near the end of the
toolbar and has a link icon and a small arrow on it.

 6. In the dialog box that appears, click the Browse button, browse to the Default.aspx page in
the root of your site, and click OK. Next, click OK again to close the Hyperlink dialog box. The
Design View of your page should look similar to the one displayed in Figure 2-24.

FIGURE 2-24

 7. Switch to Markup View and notice how the HTML for the link has been inserted:
Go to the homepage of Planet Wrox

 Note that the href attribute points to the page you want to link to.

 8. If you want to change the page being linked to from Markup View, click somewhere between the
opening and closing quotes of the href attribute and press Ctrl+Spacebar. A dialog box pops up
that enables you to select another page within your site. Alternatively, you can click the Pick URL
option and browse for the new page somewhere in your site.

 9. Right-click the TableDemo.aspx page in the Solution Explorer and choose View in Browser. When
the page has fi nished loading, click the Go to the homepage of Planet Wrox link. The request is
sent to the web server and, as a response, you now get the homepage of the website.

c02.indd 61c02.indd 61 10/8/2012 9:43:47 AM10/8/2012 9:43:47 AM

62 x CHAPTER 2 BUILDING AN ASP.NET WEBSITE

How It Works

Links between pages are likely one of the most important elements in a web page, because they enable
you to create a connection between a page in your site and another page, whether that page lives in
your own site or on a completely different server somewhere on the Internet. For simple links that
should appear somewhere in your page, the H TM L <a> tag with an href attribute set is the easiest to
set up. When the user clicks such a link, the browser requests the new page from the server and displays
it. The double dots (..) in the href’s value are a way to refer to the parent directory. The full href
attribute means “go up one level in the folder hierarchy and then select the fi le Default.aspx.” You see
a lot more about links and how they work in Chapter 7.

You’re not limited to linking to pages in your own site. If you want to link to external pages instead,
simply replace the href attribute value with the full address of the page, as shown in the following
example:

Go to the Wrox homepage

For external links, it’s important to include the http:// prefi x; otherwise, the browser goes out look-
ing for a fi le or folder called www.wrox.com on your own website.

You’ll use the things you learned in this chapter about page creation and formatting in the next
chapter, which deals with designing your web pages using CSS.

Besides the visual tools, like the Formatting toolbar and the Table menu, Visual Studio has another
great way to quickly insert code in your pages: code snippets. Code snippets enable you to insert
large chunks of code with just a few keystrokes. You see code snippets at work in the next chapter.

PRACTICAL TIPS ON WORKING WITH WEB FORMS
Here are some tips for working with Web Forms:

 ‰ Favor Web Forms with Code Behind over those with inline code. Although at fi rst you may
not notice a big difference in working with them, as your site and pages start to grow, you’ll
fi nd that it’s easier to work with a page where the code is separated from the markup.

 ‰ Spend some time familiarizing yourself with the different menu items of the Format and
Table menus. Most of them generate HTML elements that are inserted into your page. Take
a look at the HTML elements and attributes that have been generated for you, and try to
change them directly in the code, and through the menus and toolbars. This way, you get a
good feel for the various tags available and how they behave.

 ‰ Experiment with links to connect pages in your site. Notice how VS creates different links
depending on the location of the page you are linking to. Chapter 7 deals with linking and
the various ways to address pages in your site in much more detail.

c02.indd 62c02.indd 62 10/8/2012 9:43:48 AM10/8/2012 9:43:48 AM

Summary x 63

SUMMARY
This chapter introduced you to some important topics that help you build maintainable and struc-
tured ASP.N ET websites. Understanding the differences between the various project types and tem-
plates enables you to kick-start a web project with just the fi les you need.

The same applies to the different fi le types you can add to your site. Because each fi le type serves a
specifi c purpose, it’s important to realize what that purpose is and how you can use the fi le.

O ne common activity that you’ll perform when building ASP.N ET web pages is adding markup
to the page. As you saw in this and the previous chapter, markup comes in a few fl avors, including
plain H TM L and ASP.N ET Server Controls. Knowing how to add this markup to your page using
the numerous menu options and toolbars that VS offers is critical in building good-looking web
pages.

Now that you have a solid understanding of creating and modifying Web Forms, it’s time to look at
how you can turn those dull black-and-white pages with a few controls into attractive web pages.
The next chapter shows you how to work with the many CSS tools found in VS to create the desired
effect.

EXERCISES

 1. Name three important fi les in the Web Files category that you can add to your site. Describe the
purpose of each fi le.

 2. What do you need to do to make a piece of text both bold and italicized in your web page? What
will the resulting HTML look like?

 3. Name three diff erent ways to add existing fi les to an ASP.NET website in VS.

 4. What are the diff erent views that VS off ers you for your ASPX pages? Does VS off er other views
as well?

You can fi nd answers to these exercises in Appendix A.

c02.indd 63c02.indd 63 10/8/2012 9:43:48 AM10/8/2012 9:43:48 AM

64 x CHAPTER 2 BUILDING AN ASP.NET WEBSITE

 ◃ WHAT YOU LEARNED IN THIS CHAPTER

Code Behind A page model where server-side code is stored in a separate code fi le

Design View Gives you a graphical representation of your page

File Types ASP.NET supports many diff erent fi le types, including Web Forms (.aspx),
master pages (.master), CSS fi les (.css), JavaScript (.js), and SQL Server
databases (.mdf)

Inline Code A page model where server-side code is stored in the same fi le as the markup

Markup View Enables you to look at the markup of your page

Project Templates Jump-start your web development by setting up a site targeting a specifi c
scenario

Project Types Visual Studio off ers two project types: Web Application Projects and Web Site
Projects

Split View Enables you to look at Markup View and Design View at the same time

Web Form Presents the user interface of your website at the client

c02.indd 64c02.indd 64 10/8/2012 9:43:48 AM10/8/2012 9:43:48 AM

