
Working with ASP.NET Server
Controls

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ‰ What ASP.NET Server Controls are

 ‰ The diff erent kinds of server controls you have at your disposal

 ‰ The common behavior shared among most of the server controls

 ‰ How the ASP.NET run time processes the server controls on your
page

 ‰ How server controls are able to maintain their state across postbacks

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can fi nd the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/remtitle.cgi?isbn=1118311809. The code is in the Chapter 4 download.

ASP.N ET Server Controls are the workhorses of ASP.N ET. Almost all the Web Forms pages
you build in Visual Studio (VS) will contain one or more server controls. These controls come
in all sorts and sizes, ranging from simple controls like a Button and a Label to complex
controls like the TreeView and the ListView that are capable of displaying data from a data
source (like a database or an XM L fi le). You see these controls in Chapters 7, 13, and 14.

The architecture of ASP.N ET Server Controls is deeply integrated into ASP.N ET, giving the
controls a feature set that is quite unique in today’s technologies for building websites. This
chapter shows you what server controls are, how they work, and which ones are available out
of the box when you install VS.

4

c04.indd 107c04.indd 107 10/8/2012 9:50:55 AM10/8/2012 9:50:55 AM

108 x CHAPTER 4 WORKING WITH ASP.NET SERVER CONTROLS

The chapter starts off with a general discussion of server controls. You see how to defi ne them in
your code by adding them to Design or M arkup View.

The section that follows gives you a thorough look at the many controls that are available in the VS
Toolbox.

INTRODUCTION TO SERVER CONTROLS
It’s important to understand how server controls operate and how they are completely different from
the way you defi ne controls in other languages like classic ASP or PH P (another popular program-
ming language for creating dynamic websites).

For example, to infl uence the text in a text box in these languages, you would use plain H TM L and
mix it with server-side code. This works similarly to the example in Chapter 2 where the current
date and time are displayed on the page. To create a text box with a message and the current time in
it in classic ASP, you can use the following code:

<input type="text" value="Hello World, the time is <%=Time()%>" />

As you can see, this code contains plain H TM L, mixed with a server-side block, delimited by <%
and %> that outputs the current time using the equals (=) symbol. This type of coding has a major
disadvantage: the H TM L and server-side code is mixed, making it diffi cult to write and maintain
your pages. Although this is a trivial example in which it’s still easy to understand the code, this
type of programming can quickly result in very messy and complex pages.

Server controls work differently. In ASP.N ET, the controls “live” on the server inside an ASPX page.
When the page is requested in the browser, the server-side controls are processed by the ASP.N ET
run time—the engine that is responsible for processing requests for ASPX pages. The controls then
emit client-side H TM L code that is appended to the fi nal page output. It’s this H TM L code that
eventually ends up in the browser, where it’s used to build up the page.

So, instead of defi ning H TM L controls in your pages directly, you defi ne an ASP.N ET Server
Control with the following syntax, where the italicized parts differ for each control:

<asp:TypeOfControl ID="ControlName" runat="server" />

For the controls that ship with ASP.N ET 4.5 you always use the asp: prefi x followed by the name
of the control. For example, to create a TextBox that can hold the same welcome message and cur-
rent time, you can use the following syntax:

<asp:TextBox ID="Message" runat="server" />

Note that the control has two attributes: ID and runat. The ID attribute is used to uniquely identify
a control on the page, so you can program against it. It’s important that each control on the page
has a unique ID; otherwise the ASP.N ET run time won’t understand what control you’re refer-
ring to. If you accidentally type a duplicate control ID, VS signals the problem in the error list. The
mandatory runat attribute is used to indicate that this is a control that lives on the server. Without
this attribute, the controls won’t be processed and will end up directly in the H TM L source. If you
ever feel you’re missing a control in the fi nal output in the browser, ensure that the control has this

Introduction to Server Controls x 109

required attribute. Note that for non-server elements, like plain H TM L elements, the runat attri-
bute is optional. With this attribute, non-server controls can be reached by your programming code.
You learn more about this later in the book.

You can easily add the runat attribute to an existing element using a code snippet by typing runat
and pressing the Tab key.

The preceding example of the TextBox uses a self-closing tag where the closing slash (/) is embed-
ded in the opening tag. This is quite common for controls that don’t need to contain child content
such as text or other controls. However, the long version, using a separate closing tag, is acceptable
as well:

<asp:TextBox ID="Message" runat="server"></asp:TextBox>

You can control the default behavior of closing tags per element using Tools Í Options Í Text
Editor Í H TM L Í Formatting Í Tag Specifi c Options.

You can program against this text box from code that is either placed inline with the page or in a
separate Code Behind fi le, as you saw in Chapter 2. To set the welcome message and the time, you
can use the following code:

VB.NET

Message.Text = "Hello World, the time is " & DateTime.Now.TimeOfDay.ToString()

C#

Message.Text = "Hello World, the time is " + DateTime.Now.TimeOfDay.ToString();

The defi nition of the control in the markup section of the page is now separated from the actual
code that defi nes the text displayed in the text box, making it easier to defi ne and program the text
box (or any other control) because it enables you to focus on one task at a time. You can either
declare the control and its visual appearance in the markup section of the page, or program its
behavior from a code block.

In general, controls defi ned in M arkup View are not case-sensitive, although some of the values you
can set are case-sensitive. I prefer to use the capitalization as suggested by IntelliSense. Note that
when using C#, properties you use in the Code Behind are case-sensitive.

You see how server controls send their underlying H TM L to the client in the next exercise.

TRY IT OUT Working with Server Controls

In this exercise, you add a TextBox, a Label, and a Button control to a page. When you request the
page in the browser, these server controls are transformed into H TM L, that is then sent to the client.
By looking at the fi nal H TM L for the page in the browser, you’ll see how the H TM L is completely dif-
ferent from the initial ASP.N ET markup.

 1. Open the Planet Wrox project in Visual Studio.

 2. In the Demos folder in the Solution Explorer, create a new Web Form called ControlsDemo.aspx.
Choose your programming language and make sure the Web Form uses Code Behind.

c04.indd 109c04.indd 109 10/8/2012 9:50:59 AM10/8/2012 9:50:59 AM

110 x CHAPTER 4 WORKING WITH ASP.NET SERVER CONTROLS

 3. Switch to Design View. From the Standard category of the Toolbox, drag a TextBox, a Button,
and a Label control onto the design surface within the dashed lines of the <div> tag that was
added for you when you created the page.

Type the text Your name in front of the TextBox and add a line break between the Button and
the Label by positioning your cursor between the two controls in Design View and then press-
ing Enter. If you’re having trouble positioning the cursor between the controls, place it after the
Label control and then press the left arrow key twice. The fi rst time you press it, the Label is
selected; the second time, the cursor is placed between the two controls, enabling you to press
Enter. Your Design View should now look like Figure 4-1.

FIGURE 4-1

Right-click the Button control and choose Properties to open up the Properties Grid for the
 control. Pressing F4 after selecting the Button does the same thing. The window that appears,
shown in Figure 4-2 , enables you to change the properties for the control, which in turn infl u-
ences the way the control looks and behaves at run time.

FIGURE 4-2

 5. Set the control’s Text property to Submit Information and set its ID (which you’ll fi nd all the
way down at the bottom of the list wrapped in parentheses) to SubmitButton.

 6. Change the ID of the TextBox to YourName using the Properties Grid.

c04.indd 110c04.indd 110 10/8/2012 9:50:59 AM10/8/2012 9:50:59 AM

Introduction to Server Controls x 111

 7. Clear the Text property of the Label using the Properties Grid. You can right-click the property’s
label in the grid and choose Reset, or you can remove the text manually. Set its ID to Result.

 8. Still in Design View, double-click the Button control to have VS add some code to the Code
Behind of the page that will be fi red when the button is clicked in the browser. You see later how
to accomplish the same thing from Markup View. Add the bolded line of code to the code block
that VS inserted for you:

VB.NET

Protected Sub SubmitButton_Click(sender As Object,
 e As EventArgs) Handles SubmitButton.Click
 Result.Text = "Your name is " & YourName.Text
End Sub

C#

protected void SubmitButton_Click(object sender, EventArgs e)
{
 Result.Text = "Your name is " + YourName.Text;
}

Note that the VB.N ET example doesn’t need an underscore here to split the code over two lines.
In older versions of VB.N ET, the underscore was required to split this code over two lines.

 9. Save the changes to the page and then open it in the browser by pressing Ctrl+F5. Don’t click the
button yet, but open up the source of the page by right-clicking the page in the browser and choos-
ing View Source or View Page Source. You should see the following HTML code (I changed the
formatting slightly so the HTML fi ts on the page):
<div>
 Your name <input name="YourName" type="text" id="YourName" />
 <input type="submit" name="SubmitButton" value="Submit Information"
 id="SubmitButton" />

</div>

 10. Switch back to your browser, fi ll in your name in the text box, and click the button. When the page
is done reloading, open up the source for the page in the browser again using the browser’s right-
click menu. The code should now look like this:
<div>
 Your name <input name="YourName" type="text" value="Imar" id="YourName" />
 <input type="submit" name="SubmitButton" value="Submit Information"
 id="SubmitButton" />

 Your name is Imar
</div>

Note that the two bold lines have changed, and now show the name you entered in the text box.
You can ignore the other H TM L in the page for now.

c04.indd 111c04.indd 111 10/8/2012 9:50:59 AM10/8/2012 9:50:59 AM

112 x CHAPTER 4 WORKING WITH ASP.NET SERVER CONTROLS

How It Works

As its name implies, an ASP.N ET Server Control lives on the server in your ASPX page where it can be
processed by the ASP.N ET run time. When you request a page in the browser, the run time creates an
in-memory representation of the ASPX fi le with the controls you created. When the run time is about to
send the H TM L to the browser, it asks each of the controls in the page for their H TM L, which is then
injected in the fi nal response. For example, when the Label control is asked for its H TM L the fi rst time
it loads, it returns the following:

Although you defi ned the Label control with the <asp:Label> syntax, it ends up as a simple
element in the browser. Because the Text property of the Label control is empty, you don’t see any
text between the two tags. The same applies to other controls; an <asp:TextBox> ends up as
<input type="text">, whereas the <asp:Button> ends up as <input type="submit">.

When you click the button, the control causes a postback , which sends the information for the controls
in the page to the server, where the page is loaded again. Additionally, the code that you wrote to han-
dle the button’s Click event is executed. This code takes the name you entered in the text box and then
assigns it to the Label control as shown in this C# example:

Result.Text = "Your name is " + YourName.Text;

Don’t worry about the syntax for the code that handles the button’s Click event for now. In Chapter 5,
you see how this works, and why you need this code.

At this stage, the Label control contains the text you entered in the text box, so when it is asked for its
H TM L, it now returns this:

Your name is Imar

You get a more in-depth look at postbacks later in this chapter when the ASP.N ET state engine is
discussed.

A CLOSER LOOK AT ASP.NET SERVER CONTROLS
Because you’ll be working with server controls most of the time when building your ASP.N ET Web
Forms pages, you need to know in detail how they work and how to use them. In the next section,
you see how to add the controls to your pages and change the way they behave in the browser. In the
section that follows, you get an overview of the behavior that all server controls have in common.
O nce you understand this shared behavior, it’s easy to apply this knowledge to other, new controls
as well, enabling you to get up to speed with them very quickly.

Defi ning Controls in Your Pages
As demonstrated in the previous Try It O ut, you can simply drag controls from the Toolbox onto the
design surface of the page. This makes it very easy to add a bunch of controls to a page to get you

c04.indd 112c04.indd 112 10/8/2012 9:51:00 AM10/8/2012 9:51:00 AM

A Closer Look at ASP.NET Server Controls x 113

started. However, because of the way the design surface works, it’s sometimes diffi cult to add them
exactly where you want them. For example, it can be diffi cult to drag a control between the opening
and closing tags of an H TM L element. Fortunately, you can just as easily drag a control from the
Toolbox in M arkup View. Additionally, you can also type the control’s markup directly in M arkup
View, letting IntelliSense and code snippets help you with the different tags and attributes. You’ll
also fi nd that the Properties Grid works in M arkup View. Simply click the relevant markup, and the
Properties Grid is updated to refl ect the tag you clicked. This makes it easy to change the properties
of the control, while you can still see exactly what markup gets generated for you. If you’ve worked
with older versions of VS, you’ll appreciate one great new feature in VS 2012: you can now bind
handlers (such as the Click event used in the preceding exercise) directly in M arkup View without
switching to Design View. You’ll also be able to access the Smart Tasks panel for the controls from
code. You see more of these features later in this chapter.

If you look at the Properties Grid for some of the controls in a page, you’ll notice that many of them
have similar properties. In the next section, you see exactly what these properties are and what they
are used for.

Common Properties for All Controls
Most of the server controls you fi nd in the VS Toolbox share some common behavior. Part of this
behavior includes the so-called properties that defi ne the data a control can contain and expose. You
learn more about properties and other behavior types in the next chapter. Each server control has an
ID to uniquely identify it in the page, a runat attribute that is always set to server to indicate the
control should be processed on the server, and a ClientID that contains the client-side ID attribute
that is assigned to the element in the fi nal H TM L. In versions of ASP.N ET up to 3.5 this ClientID
was always generated for you automatically. However, in ASP.N ET 4 a new ClientIDMode property
was introduced that gives you more control over the ID of an element at the client. You see how this
works in later chapters. The runat attribute is technically not a property of a server control, but is
necessary to indicate that the markup for the control should be processed as a server control and not
end up as plaintext or H TM L in the browser.

Besides these properties, many of the server controls share more properties because they share the
same Control base class. The next chapter digs deeper into base classes and inheritance. The fol-
lowing table lists the most common shared properties and describes what they are used for.

PROPERTY DESCRIPTION

AccessKey Enables you to set a key with which a control can be accessed at the client by
pressing the associated letter.

BackColor
ForeColor

Enables you to change the color of the background (BackColor) and text
(ForeColor) of the control.

BorderColor
BorderStyle
BorderWidth

Changes the border of the control in the browser. The similarities with the CSS
border properties you saw in the previous chapter are no coincidence. Each of
these three ASP.NET properties maps directly to its CSS counterpart.

continues

114 x CHAPTER 4 WORKING WITH ASP.NET SERVER CONTROLS

PROPERTY DESCRIPTION

CssClass Enables you to defi ne the HTML class attribute for the control in the browser.
This class name could then point to a CSS class you defi ned in the page or an
external CSS fi le.

Enabled Determines whether the user can interact with the control in the browser. For
example, with a disabled text box (Enabled="False") you cannot change its
text.

Font Enables you to defi ne diff erent font-related settings, such as size, family and
whether or not the font should be bold.

Height
Width

Determines the height and width of the control in the browser.

TabIndex Sets the client-side HTML tabindex attribute that determines the order in which
users can move through the controls in the page by pressing the Tab key.

ToolTip Enables you to set a tooltip for the control in the browser. This tooltip, rendered
as a title attribute in the HTML, is shown when the user hovers the mouse
over the element.

Visible Determines whether or not the control is sent to the browser. You should really
see this as a server-side visibility setting because an invisible control is never
sent to the browser at all. This means it’s quite diff erent from the CSS display
and visibility properties you saw in the previous chapter that hide the ele-
ment at the client.

To see how all these attributes end up in the browser, consider the following markup for a TextBox
server control:

<asp:TextBox AccessKey="a" BackColor="Black" ForeColor="White" Font-Size="30px"
 BorderColor="Yellow" BorderStyle="Dashed" BorderWidth="4" CssClass="TextBox"
 Enabled="True" Height="40" Width="200" TabIndex="1" ToolTip="Hover text here"
 Visible="True" ID="TextBox1" runat="server" Text="Hello World">
</asp:TextBox>

When you request the page with this control in the browser, you end up with the following H TM L:
<input name="TextBox1" type="text" value="Hello World" id="TextBox1" accesskey="a"
 tabindex="1" title="Hover text here" class="TextBox" style="color:White;
 background-color:Black;border-color:Yellow;border-width:4px;
 border-style:Dashed;font-size:30px;height:40px;width:200px;"
/>

This results in the text box shown in Figure 4-3.

 (continued)

A Closer Look at ASP.NET Server Controls x 115

FIGURE 4-3

Note that most of the server-side control properties have been converted into CSS inline styles with
the style attribute.

When building websites, it’s quite uncommon to defi ne a TextBox in this manner. As you learned
in the previous chapter, you should avoid inline styles as much as possible, and opt for external
cascading style sheets instead. You can accomplish the exact same behavior with this server-side
control:

<asp:TextBox ID="TextBox1" AccessKey="a" CssClass="TextBox" TabIndex="1"
 ToolTip="Hover text here" runat="server" Text="Hello World">
</asp:TextBox>

And the following CSS class:
.TextBox
{
 background-color: Black;
 color: White;
 font-size: 30px;
 border-color: Yellow;
 border-style: Dashed;
 border-width: 4px;
 height: 40px;
 width: 200px;
}

Obviously, the second example is much easier to read, reuse, and maintain. If you want another text
box with the exact same look, you simply assign TextBox to the CssClass of that control. Also,
notice I left out the Enabled and Visible properties. Both default to True, so there’s no need to
explicitly state that in the control declaration.

Although it’s recommended to use CSS classes instead of these inline styles, it’s good to know about
the server-side control properties in case you need fi ne control over them. If you change the control’s
properties programmatically (as you learn how to do later), they still end up as inline styles, and
thus possibly override settings in embedded or external style sheets.

c04.indd 115c04.indd 115 10/8/2012 9:51:00 AM10/8/2012 9:51:00 AM

116 x CHAPTER 4 WORKING WITH ASP.NET SERVER CONTROLS

Now that you have seen the generic behavior that all server controls share, it’s time to look at the
large number of controls that ship with ASP.N ET 4.5.

TYPES OF CONTROLS
O ut of the box, ASP.N ET 4.5 comes with a large number of server controls, supporting most of
your web development needs. To make it easy for you to fi nd the right controls, they have been
placed in separate control categories in the VS Toolbox (accessible by pressing Ctrl+Alt+X). Figure
4-4 shows the Toolbox with all the available categories.

Note that depending on your version of Visual Studio, you may have other categories as well.

A handy new feature in VS 2012 is the ability to search in the Toolbox. Just type in a few letters of
the control you’re looking for in the Search text box at the top of the control, and VS fi lters the list
with controls matching your criteria.

In the following sections, you see the controls in each category and the tasks for which they are
designed.

With the discussion of the various controls, you see a mention of the properties of a control. For
example, a TextBox has a Text property (among many others), and a ListBox has a SelectedItem
property. Some properties can only be set programmatically and not with the Properties Grid.
Reading and changing control properties programmatically is discussed in detail in the next
chapter.

Standard Controls
The Standard category contains many of the basic controls that almost any web page needs. You’ve
already seen some of them, like the TextBox, Button, and Label controls earlier in this chapter.
Figure 4-5 shows all the controls in the Standard category.

M any of the controls probably speak for themselves, so instead of giving you a detailed description
of them all, the following sections briefl y highlight a few important ones.

Simple Controls
The Toolbox contains a number of simple and straightforward controls, including TextBox,
Button, Label, HyperLink, RadioButton, and CheckBox. Their icons in the Toolbox give you a
good clue as to how they end up in the browser. In the remainder of this book, you see these con-
trols used many times. In ASP.N ET 4.5 the TextMode property of the TextBox control has been
expanded to support new H TM L5 types such as DateTime, Email, and Number. You see more about
this later in the book.

Types of Controls x 117

FIGURE 4-4

FIGURE 4-5

List Controls
The standard category also contains a number of controls that present themselves as lists in the
browser. These controls include ListBox, DropDownList, CheckBoxList, RadioButtonList, and
BulletedList. To add items to the list, you defi ne <asp:ListItem> elements between the opening
and closing tags of the control, as shown in the following example:

<asp:DropDownList ID="FavoriteLanguage" runat="server">
 <asp:ListItem Value="C#">C#</asp:ListItem>
 <asp:ListItem Value="Visual Basic">Visual Basic</asp:ListItem>
 <asp:ListItem Value="CSS">CSS</asp:ListItem>
</asp:DropDownList>

118 x CHAPTER 4 WORKING WITH ASP.NET SERVER CONTROLS

The DropDownList enables a user to select only one item at a time. To see the currently active and
selected item of a list control programmatically, you can look at its SelectedValue, SelectedItem,
or SelectedIndex properties. SelectedValue returns a string that contains the value for the
selected item, like C# or Visual Basic in the preceding example. SelectedIndex returns the
zero-based index of the item in the list. With the preceding example, if the user had chosen C#,
SelectedIndex would be 0. Similarly, if the user had chosen CSS, the index would be 2 (the third
item in the list).

For controls that allow multiple selections (like CheckBoxList and ListBox), you can loop through
the Items collection and see what items are selected. In this case, SelectedItem returns only the
fi rst selected item in the list; not all of them. You learn how to access all the selected items in the
next exercise. Note that in the browser, both the DropDownList and the ListBox control render as
a <select> element. Attributes such as size and multiple set by these two controls determine the
appearance and behavior of the H TM L element in the browser.

The BulletedList control doesn’t allow a user to make selections, and as such doesn’t support
these properties.

To see how to add list items to your list control, and how to read the selected values, the following
exercise guides you through creating a simple Web Form with two list controls that ask users for
their favorite programming language.

TRY IT OUT Working with List Controls

In this exercise you add two list controls to a page. Additionally, you add a button that, when clicked,
displays the selected items as text in a Label control.

 1. In the Demos folder, create a new Web Form called ListControls.aspx. Make sure you create a
Code Behind fi le by checking the Place Code in Separate File option.

 2. Switch to Design View and drag a DropDownList from the Toolbox onto the design surface of the
page within the dashed border of the <div> element that is already present in your page.

 3. Notice that as soon as you drop the
DropDownList control on the page, a pop-up
menu appears that is labeled DropDownList
Tasks, as shown in Figure 4-6.

This pop-up menu is called the Sm art Task s
panel. When it appears, it gives you access to
the most common tasks of the control it belongs
to. In the case of the DropDownList, you get
three options. The fi rst option enables you
to bind the control to a data source, which is
demonstrated in Chapter 13. The second item
enables you to manually add items to the list, and the last option sets the AutoPostBack property
of the control. With this option checked, the control submits the page in which it is contained
back to the server as soon as the user chooses a new item from the list. Note that the browser
must have JavaScript enabled for this to work.

FIGURE 4-6

c04.indd 118c04.indd 118 10/8/2012 9:51:01 AM10/8/2012 9:51:01 AM

Types of Controls x 119

The Smart Tasks panel appears only for the more complex controls that have a lot of features.
You won’t see it for simple controls like Button or Label. To reopen the Smart Tasks panel,
right-click the control in the designer and choose Show Smart Tag. Alternatively, click the small
arrow at the top-right corner of the control, visible in Figure 4-6, or press Shift+Alt+F10 when
the control is selected. You can also open the Smart Tasks panel from markup view. Simply click
anywhere on the opening or closing tag of a control or other piece of markup and press Ctrl+Dot
(Ctrl+.). Alternatively, hover over the tiny blue rectangle at the start of the opening tag and then
click the grey arrow that appears.

O n the Smart Tasks panel of the DropDownList, click the Edit Items link to bring up the ListItem
Collection Editor, shown in Figure 4-7.

FIGURE 4-7

This dialog box enables you to add new items to the list control. The items you add through this
window are added as <asp:ListItem> elements between the tags for the control.

 4. Click the Add button on the left side of the screen to insert a new list item. Then in the Properties
Grid on the right, enter C# for the Text property and press Tab. As soon as you tab away from
the Text property, the value is copied to the Value property as well. This is convenient if you want
both the Text and the Value property to be the same. However, it’s perfectly OK (and quite com-
mon) to assign a different value to the Value property.

c04.indd 119c04.indd 119 10/8/2012 9:51:01 AM10/8/2012 9:51:01 AM

120 x CHAPTER 4 WORKING WITH ASP.NET SERVER CONTROLS

 5. Repeat step 4 twice, this time creating list items for Visual Basic and CSS. You can use the up and
down arrow buttons in the middle of the dialog box to change the order of the items in the list.
Finally, click OK to insert the items in the page. You should end up with the following code in
Markup View:
<asp:DropDownList ID="DropDownList1" runat="server">
 <asp:ListItem>C#</asp:ListItem>
 <asp:ListItem>Visual Basic</asp:ListItem>
 <asp:ListItem>CSS</asp:ListItem>
</asp:DropDownList>

 6. In Markup View drag a CheckBoxList control from the Toolbox directly into the code window,
right after the DropDownList.

 7. Copy the three <asp:ListItem> elements from the DropDownList you created in steps 4 and 5
and paste them between the opening and closing tags of the CheckBoxList. You should end up
with this code:
 <asp:ListItem>CSS</asp:ListItem>
</asp:DropDownList>
<asp:CheckBoxList ID="CheckBoxList1" runat="server">
 <asp:ListItem>C#</asp:ListItem>
 <asp:ListItem>Visual Basic</asp:ListItem>
 <asp:ListItem>CSS</asp:ListItem>
</asp:CheckBoxList>

 8. Switch to Design View and drag a Button from the Toolbox in Design View to the right of the
CheckBoxList control. The Button will be placed below the CheckBoxList. Next, drag a Label
control and drop it to the right of the Button. Create some room between the Button and the
Label by positioning your cursor between the controls and then pressing Enter twice. Double-click
the Button to open the Code Behind of the page.

 9. In the code block that VS added for you, add the following bolded code, which will be executed
when the user clicks the button:

VB.NET

Protected Sub Button1_Click(sender As Object, e As EventArgs) _
 Handles Button1.Click
 Label1.Text = "In the DDL you selected " &
 DropDownList1.SelectedValue & "
"

 For Each item As ListItem In CheckBoxList1.Items
 If item.Selected = True Then
 Label1.Text &= "In the CBL you selected " & item.Value & "
"
 End If
 Next
End Sub

C#

protected void Button1_Click(object sender, EventArgs e)
{
 Label1.Text = "In the DDL you selected " +

c04.indd 120c04.indd 120 10/8/2012 9:51:01 AM10/8/2012 9:51:01 AM

Types of Controls x 121

 DropDownList1.SelectedValue + "
";

 foreach (ListItem item in CheckBoxList1.Items)
 {
 if (item.Selected == true)
 {
 Label1.Text += "In the CBL you selected " + item.Value + "
";
 }
 }
}

Notice how in the VB.N ET code the underscore is needed to split the code over two lines.
VB.N ET requires the underscore if you want to move the Handles keyword to its own line.

 10. Save the changes to the page and then request it in the browser. Choose an item from the
DropDownList, check one or more items in the CheckBoxList, and click the button. You should
see something similar to Figure 4-8, which shows the page in Firefox.

FIGURE 4-8

How It Works

The various list controls all use <asp:ListItem> elements. That makes it easy to reuse them by copying
them from one control to another. Because the DropDownList supports only one selected item at a time,
it’s pretty easy to get its selected value. All it takes is a single line of code (shown in C#):

Label1.Text = "In the DDL you selected " + DropDownList1.SelectedValue + "
";

c04.indd 121c04.indd 121 10/8/2012 9:51:01 AM10/8/2012 9:51:01 AM

122 x CHAPTER 4 WORKING WITH ASP.NET SERVER CONTROLS

The CheckBoxList control enables a user to select multiple items at once. Therefore, you need a bit
more code to loop over the collection of item s, checking the Selected property of each item (again
shown in C#):

foreach (ListItem item in CheckBoxList1.Items)
{
 if (item.Selected == true)
 {
 Label1.Text += "In the CBL you selected " + item.Value + "
";
 }
}

The CheckBoxList and the other list controls have an Items collection that contains all the items you
defi ned in the code. So, given the code from this Try It O ut, CheckBoxList1 contains three items, for
C#, Visual Basic, and CSS, respectively. Each ListItem in turn contains a Selected property that
determines whether or not the user has checked the item in the list.

Using a foreach loop (For Each in VB.N ET), you can iterate over the collection of ListItem elements,
testing the Selected property one by one. If the item was selected in the list, its Selected property
is true (True in VB) and its Value is appended to the text of the Label. Notice the use of += (&= in
VB.N ET) in the last code example to assign the Value of the list item together with the text to the
Label control’s Text property. The += and &= syntax is shorthand for this:

Label1.Text = Label1.Text + "In the CBL you selected" + item.Value + "
";

This code takes the current text from the Label control, appends the literal text "In the CBL you
selected" to it, then appends the value of the item using item.Value and fi nally appends the literal
text "
". It then reassigns the entire string back to the Text property of the label. Using the +=
syntax is often a bit easier to write and understand, but the longer version is common as well.

Both VB.N ET and C# have support for a for each loop, although both languages use a slightly different
syntax. In the next chapter, you learn a lot more about looping and other language constructs.

Also of note is the way the ListItems are set up. In the fi rst example, before the Try It O ut, you saw
ListItem elements with both a value and text:

<asp:ListItem Value="C#">C#</asp:ListItem>
<asp:ListItem Value="Visual Basic">Visual Basic</asp:ListItem>
<asp:ListItem Value="CSS">CSS</asp:ListItem>

When you add items to the list yourself with the ListItem Collection Editor, you don’t get the Value
attributes:

<asp:ListItem>C#</asp:ListItem>
<asp:ListItem>Visual Basic</asp:ListItem>
<asp:ListItem>CSS</asp:ListItem>

You didn’t get the Value attribute because you didn’t supply an explicit value for the item in the
ListItem Collection Editor. If you omit the Value, the text between the opening and closing tags of
the ListItem is used implicitly as the value, which is fi ne in many cases. However, it’s also quite com-
mon to have a different Value and Text property in the list. For example, when you have a list with
countries, you could use the full name of the country as the Text (like The Netherlands) and use the
offi cial country code (nl) as the Value for the drop-down list. You see the list controls at work in other
chapters in this book.

c04.indd 122c04.indd 122 10/8/2012 9:51:01 AM10/8/2012 9:51:01 AM

Types of Controls x 123

Container Controls
Q uite often it’s desirable to group related content and controls. You can do this by putting the
controls (and other markup) in one of the container controls, like the Panel, the PlaceHolder, the
MultiView, or the Wizard. For example, you can use the PlaceHolder or the Panel control to hide
or show a number of controls at once. Instead of hiding each control separately, you simply hide the
entire container that contains all the individual controls and markup. Both of these controls have
their own advantages and disadvantages. The good thing about the PlaceHolder control is that it
emits no H TM L of its own into the page, so you can use it as a container without any side effects in
the fi nal page. However, it lacks design-time support, making it hard to manage the controls inside
the PlaceHolder at design time in VS. In contrast, the Panel enables you to easily access all con-
trols and other content it contains but renders itself as a <div> element. In many cases this isn’t a
problem, and can even be useful as you can target that div using CSS at the client, so usually you’re
best off with the Panel control because of its design-time support.

The MultiView (which can contain one or more <asp:View> elements) and the Wizard are similar
in that they enable you to split up a long page into multiple areas, making it easy to fi ll in a long
form, for example. The Wizard has built-in support for moving from page to page using Previous,
Next, and Finish buttons, whereas the MultiView must be controlled programmatically.

A Closer Look at the Panel Control
In the following exercise, you use a Panel control to create a container for other controls and
markup. You only add some text for now, but in a subsequent Try It O ut exercise you add ASP.N ET
controls to the panel.

TRY IT OUT Using the Panel Control

In this exercise you see how to use the Panel control as a container for some simple text. In addition,
you use a CheckBox to control the visibility of the Panel at the server.

 1. Start by creating a new Web Form with Code Behind called Containers.aspx in the Demos folder.

 2. Switch the page into Design View and drag a CheckBox and a Panel control from the Toolbox on
the design surface into the dashed <div> element.

 3. Give the CheckBox control a meaningful description by setting its Text property to Show Panel
and set its AutoPostBack property to True using the Properties Grid. Rather than choosing True
from the drop-down list for the property, you can also double-click the AutoPostBack property or
its value to toggle between False and True.

 4. Set the Visible property of the Panel control to False using the Properties Grid. This hides the
Panel control when the page fi rst loads.

 5. Inside the Panel control, type some text (for example, I am visible now). Note that the panel
behaves like the rest of VS’s design surface. You can simply add text to it, select and format it, and
add new controls to it by dragging them from the Toolbox. The code for the panel should end up
like this in Markup View:
<asp:Panel ID="Panel1" runat="server" Visible="False">
 I am visible now
</asp:Panel>

c04.indd 123c04.indd 123 10/8/2012 9:51:02 AM10/8/2012 9:51:02 AM

124 x CHAPTER 4 WORKING WITH ASP.NET SERVER CONTROLS

 6. If necessary, switch to Markup View and locate the code for the CheckBox. Position your cursor
right before the closing forward slash (/) and type On, followed by Ctrl+Space. This brings up
IntelliSense, as shown in Figure 4-9.

FIGURE 4-9

Select OnCheckChanged by pressing Tab or Enter. Next, type an equals sign (=), which brings up
IntelliSense again as shown in Figure 4-10. Note that if you’re using C#, you may also see a Page_
Load item in the list of event handlers.

FIGURE 4-10

Select the <Create New Event> item and press Tab. VS completes the code as follows:
OnCheckedChanged="CheckBox1_CheckedChanged"

Although this auto-completion is nice, VS has done something else that’s much more useful: when
you pressed Tab, it also added the handler code for you in the Code Behind. To see that code,
press F7 to switch to Code View.

NOTE I have wanted this feature since the very fi rst version of Visual Studio for
.NET, and I am really glad it has been added. With this new feature, the need
to switch to Design View and set up the handler by double-clicking a control
(as you did in an earlier exercise) or using the Events tab of the Properties Grid
(as you see later) has been greatly reduced. This is great for people who prefer
hand-coding over the Design View and is especially useful in more complex
pages where Design View isn’t that useful anyway.

c04.indd 124c04.indd 124 10/8/2012 9:51:02 AM10/8/2012 9:51:02 AM

Types of Controls x 125

Note that there is a subtle difference between adding the handler using M arkup View and Design
View if you’re using VB.N ET. If you use M arkup View, the handler is added to the markup
(OnCheckedChanged="CheckBox1_CheckedChanged") and code is added to the Code Behind.
When you use Design View, the code in M arkup View is not affected, and the code in the Code
Behind is annotated with the Handles keyword to indicate which event (for instance, the click on
a button, the check changed event of a check box, and so on) the code responds to. At run time,
however, there is no difference.

 7. Next, add the following bolded line within the handler code that VS added for you:

VB.NET

Protected Sub CheckBox1_CheckedChanged(sender As Object, e As EventArgs)
 Panel1.Visible = CheckBox1.Checked
End Sub

C#

protected void CheckBox1_CheckedChanged(object sender, EventArgs e)
{
 Panel1.Visible = CheckBox1.Checked;
}

 8. Save all your changes and then request the page in the browser by pressing Ctrl+F5.

 9. When the page fi rst loads, all you see is the check box and the text beside it. When you look at
the HTML for the page in the browser (right-click the page and choose View Source or View Page
Source depending on your browser), you’ll only see the check box; there’s no code for the Panel
control at this stage sent to the browser. When you click the check box to place a checkmark in it,
the page reloads and now shows the text you entered in step 5.

WARNING If nothing happens, go back to the source of the page in VS and
ensure that AutoPostBack is set to True on the CheckBox control.

If you look at the H TM L in the browser, you’ll see that the text you typed in step 5 is wrapped in
a <div> element with an id of Panel1:
<div id="Panel1">
 I am visible now
</div>

How It Works

In step 4 of this exercise you set the Visible property of the Panel control to False. This means that
when the page loads, the control is not visible on the server and thus its H TM L never makes it to the
browser. When you then check the check box, a postback occurs, which sends the information con-
tained in the form to the server. At the server, some code is run that is fi red whenever the check box
changes its state from checked to unchecked or vice versa. Inside that code block, the following code is
executed (shown in C#):

 Panel1.Visible = CheckBox1.Checked;

c04.indd 125c04.indd 125 10/8/2012 9:51:02 AM10/8/2012 9:51:02 AM

126 x CHAPTER 4 WORKING WITH ASP.NET SERVER CONTROLS

This means that the Panel is only visible when the check box is checked. When it isn’t, the Panel is
hidden automatically.

As you can see, it’s easy to add text and other markup to the Panel control in VS. Right now, you
only added some plaintext, but in the next section you see how to add a Wizard control and how to
use it.

Magic with the Wizard Control
The Wizard control is a great tool for breaking apart large Web Forms and presenting them as bite-
sized chunks of information to the user. Instead of confusing your user with one page with many con-
trols and text on it, you can break the page apart and present each section on a separate wizard page.
The Wizard control then handles all navigation issues by creating Next, Previous, and Finish buttons
automatically. In the following exercise you use a wizard to ask a user for her name and favorite
programming language. Although the example itself is pretty trivial, and you could have placed both
questions on the same page without confusing the user, the example shows how the wizard works and
why it’s useful. You can easily apply the same techniques to your own, possibly larger, Web Forms.

TRY IT OUT Using the Wizard to Create Easy-to-Use Forms

In this Try It O ut, you place a Wizard inside the panel you created in the previous exercise that enables
a user to fi ll in a form that is spread over a couple of pages. The wizard will have two steps where a
user can enter details, and a results page that shows the data the user has provided.

 1. Make sure you still have Containers.aspx page open in Design View. Remove the text “ I am vis-
ible now” that you entered in the previous Try It Out, and then drag a Wizard control from the
Toolbox inside the Panel. Drag its right edge further to the right, increasing the total width of the
control to 500px. Your page now looks similar to Figure 4-11.

 2. Open the Wizard’s Smart Tasks panel (click the arrow in its upper right-hand corner) and choose
Add/Remove WizardSteps. In the dialog box that follows, click the Add button to insert a third
wizard step, shown in Figure 4-12.

FIGURE 4-11

c04.indd 126c04.indd 126 10/8/2012 9:51:02 AM10/8/2012 9:51:02 AM

Types of Controls x 127

FIGURE 4-12

 3. Click the fi rst WizardStep labeled Step 1 in the Members list on the left and change its Title from
Step 1 to About You. Set the Title of the other two steps to Favorite Language and Ready,
respectively.

 4. Change the StepType of the second step (now labeled Favorite Language) to Finish, and of the
last step to Complete. You can leave the StepType of the fi rst step set to Auto. Click OK to close
the WizardStep Collection Editor.

 5. In Design View, click About You in the list at the left to make it the active step and drag a Label
and a TextBox to the right side of the Wizard. You need to drag them inside the gray rectangle
that’s in the upper-right corner of the Wizard, or the controls won’t end up inside the Wizard.
Set the Text property of the Label to Type your name and change the ID of the TextBox to
YourName. When you’re done, your Wizard looks like Figure 4-13.

 6. Click the Favorite Language item in the list on the left to make it the active step. Add a
DropDownList to the rectangle with the gray border on the right part of the wizard step. Rename
the DropDownList by setting its ID to FavoriteLanguage. Open the Smart Tasks panel of the
DropDownList control and choose Edit Items. Add the same three items you added in an earlier

c04.indd 127c04.indd 127 10/8/2012 9:51:03 AM10/8/2012 9:51:03 AM

128 x CHAPTER 4 WORKING WITH ASP.NET SERVER CONTROLS

Try It Out: for C#, Visual Basic, and CSS, respectively. If you want, you can copy the three items
from the page ListControls.aspx and paste them between the <asp:DropDownList> tags inside
the second step. You should end up with the following code for the second step:
</asp:WizardStep>
<asp:WizardStep runat="server" Title="Favorite Language" StepType="Finish">
 <asp:DropDownList ID="FavoriteLanguage" runat="server">
 <asp:ListItem>C#</asp:ListItem>
 <asp:ListItem>Visual Basic</asp:ListItem>
 <asp:ListItem>CSS</asp:ListItem>
 </asp:DropDownList>
</asp:WizardStep>
<asp:WizardStep runat="server" StepType="Complete" Title="Ready">

FIGURE 4-13

 7. For the fi nal step, switch to Markup View. If you try to switch to the last step in Design View, you
may notice that the Wizard disappears. If that happens, switch to Markup View and set
ActiveStepIndex to 0 again on the opening tag of the Wizard control.

Inside the last WizardStep labeled Ready, drag a label control from the Toolbox and rename it
by setting its ID to Result. Alternatively, inside the code for the last step, type the word label
and then press Tab to execute a code snippet for inserting a Label. Then add the ID attribute
manually.

 8. Double-click the Wizard in Design View and add the
following bolded code, which will be executed when the
user clicks the Finish button on the last step of the wizard. If
you’re having problems getting VS to create the correct code
for you, as you see it in the next snippet, select the Wizard,
press F4 to open up the control’s Properties Grid, and then
click the button with the lightning bolt on it (the fourth but-
ton from the left on the toolbar of the Properties Grid), as
shown in Figure 4-14.

This part of the Properties Grid is often referred to as the
Events tab of the Properties Grid. Locate and double-click FIGURE 4-14

c04.indd 128c04.indd 128 10/8/2012 9:51:03 AM10/8/2012 9:51:03 AM

Types of Controls x 129

FinishButtonClick in the Action category. With both methods, you should end up with some
code for Wizard1_FinishButtonClick that you need to extend with the following code:

VB.NET

Protected Sub Wizard1_FinishButtonClick(sender As Object,
 e As WizardNavigationEventArgs) Handles Wizard1.FinishButtonClick
 Result.Text = "Your name is " & YourName.Text
 Result.Text &= "
Your favorite language is " &
 FavoriteLanguage.SelectedValue
End Sub

C#

protected void Wizard1_FinishButtonClick(object sender,
 WizardNavigationEventArgs e)
{
 Result.Text = "Your name is " + YourName.Text;
 Result.Text += "
Your favorite language is " +
 FavoriteLanguage.SelectedValue;
}

 9. Switch back to Design View and open the Properties Grid for the Wizard and make sure its
ActiveStepIndex is set to 0. The designer remembers the last step you designed and stores the
value in the ActiveStepIndex of the Wizard in Markup View. To make sure the Wizard starts on
the fi rst page, you should always set the ActiveStepIndex back to 0 (or click the fi rst step in the
Wizard control in Design View) before you save your changes and run the page.

 10. Save all changes, close all open browser windows, and press Ctrl+F5 to open the page in the
browser. Select the check box to make the Panel visible and enter your name on the fi rst wizard
page. Click Next and choose your favorite programming language. Notice how there’s now a
Previous button available that enables you to go back to the fi rst step of the wizard if you want to
change your name. Instead of clicking the Next and Previous buttons, you can also click the links
on the left of the wizard in the browser. When you click the Finish button, you’ll see the results of
the information you entered in the wizard (see Figure 4-15).

FIGURE 4-15

c04.indd 129c04.indd 129 10/8/2012 9:51:03 AM10/8/2012 9:51:03 AM

130 x CHAPTER 4 WORKING WITH ASP.NET SERVER CONTROLS

How It Works

The Wizard control takes care of most of the hard work for you. It handles the navigation, determines
when to show the correct buttons (N ext, Previous, and Finish), and ensures that in the resulting page
the values for the controls you added in the wizard steps are still available so you can show them with
the label. It does this with a concept called View State, something you learn more about toward the end
of this chapter.

All you have to do is defi ne the steps and set their StepType. You set the StepType of the fi rst step to
Auto. With this setting, the Wizard fi gures out what buttons to show. Because it’s the fi rst step in the
wizard and there’s no previous step to go to, it leaves out the Previous button (this is the equivalent of
setting the StepType to Start manually.) You set the StepType of the second step to Finish, which tells
the Wizard to draw a Previous button and a Finish button. When you click the Finish button, the Wizard
arrives at the last step with its StepType set to Complete. On this step, the navigation buttons are hid-
den, and all you see is the label with the result, which was assigned with the code in the Code Behind of
the page. In Chapter 5, you learn more about the code in the Code Behind that makes this possible.

In addition to the controls you have seen in the previous sections, a few other controls are worth
examining. Not all of them are discussed here in detail because they aren’t used any further in
this book. A good source of information about these controls is the M icrosoft Developer Network
(M SDN) site at http://msdn.microsoft.com. To fi nd information about controls on this site, use
your favorite search engine and then search for ControlN am e Control M SDN . For example, to fi nd
more information on the Wizard control you’d search for Wizard Control MSDN. Typically, the
M SDN site is at the top of the search results.

Other Standard Controls
This section briefl y discusses the remainder of the controls in the Standard category of the Toolbox.
You see many of them used in the sample application in the rest of the book.

LinkButton and ImageButton
The LinkButton and the ImageButton controls operate similarly to an ordinary Button control.
Both of them cause a postback to the server when they are clicked. The LinkButton presents itself
as a simple <a> element, but posts back (using JavaScript) instead of requesting a new page. The
ImageButton does the same, but displays an image that the user can click to trigger the postback.

Image and ImageMap
These controls are pretty similar in that they display an image in the browser. The ImageMap enables
you to defi ne hotspots on the image that, when clicked, either cause a postback to the server or navi-
gate to a different page.

Calendar
The Calendar control presents a rich interface that enables a user to select a date. You see more of it
toward the end of this chapter when the ASP.N ET state engine is discussed.

c04.indd 130c04.indd 130 10/8/2012 9:51:03 AM10/8/2012 9:51:03 AM

Types of Controls x 131

FileUpload
The FileUpload control enables a user to upload fi les that can be stored on the server. You see more
of this control in Chapter 14.

Literal, Localize, and Substitute
All three controls look a lit tle like the Label control because they can all display static text or
H TM L. The biggest advantage of the Literal is that it renders no additional tag itself; it displays
only what you assign to its Text property, and is thus very useful to display H TM L or JavaScript
that you build up in the Code Behind or that you retrieve from a database.

The Localize control is used in multilingual websites and is able to retrieve its contents from trans-
lated resource fi les. The Substitute control is used in advanced caching scenarios and enables you
to update only parts of a page that is otherwise cached completely. Both of these controls fall outside
the scope of this book, but for a good discussion of them you may want to get a copy of Wrox’s
Professional A SP.N ET 4.5 in C# and V B (ISBN: 978-1-118-31182-0).

AdRotator
The AdRotator control enables you to display random advertisements on your website. The ads
come from an XM L fi le that you create on your server. Because it lacks advanced features like click
tracking and logging that are required in most but the simplest scenarios, this control isn’t used
much in today’s websites.

HiddenField
The HiddenField control enables you to store data in the page that is submitted with each request.
This is useful if you want the page to remember specifi c data without the user seeing it on the page.
Because the fi eld does show up in the H TM L source of the page, and is thus accessible to the end
user, you should never store any sensitive data in it.

XML
The XML control enables you to transform data from an XM L format to another format (like
XH TM L) for display on a page. Check out Professional A SP.N ET 4.5 for a detailed description.

Table
The <asp:Table> control is in many respects identical to its H TM L <table> counterpart.
However, because the control lives at the server, you can program against it, creating new columns
and rows dynamically and adding dynamic data to it.

This concludes the discussion of the controls in the Standard category of the Toolbox. In most
web pages, you’ll be working with at least a few of these controls. The remainder of this section dis-
cusses the other categories of the Toolbox. Because most of them are used in some form in the remain-
der of this book, this chapter just briefl y describes their purpose so you get a rough idea what they are
used for. You’ll fi nd cross-references to the other chapters where you can fi nd out more information
about them.

c04.indd 131c04.indd 131 10/8/2012 9:51:03 AM10/8/2012 9:51:03 AM

132 x CHAPTER 4 WORKING WITH ASP.NET SERVER CONTROLS

HTML Controls
The H TM L category of the Toolbox contains a number of H TM L controls that look similar to
the ones found in the Standard category. For example, you fi nd the Input (Button) that looks
like the <asp:Button>. Similarly, there is a Select control that has the <asp:DropDownList> and
<asp:ListBox> as its counterparts.

In contrast to the ASP.N ET Server Controls, the H TM L controls are client-side controls and end
up directly in the fi nal H TM L in the browser. You can expose them to server-side code by adding
a runat="server" attribute to them. This enables you to program against them from the Code
Behind of a Web Form, to infl uence things like their visibility.

The H TM L controls have a lot less functionality than the ones in the Standard category. For exam-
ple, the Select control lacks design-time support for adding new items to the list with the ListItem
Collection Editor. This forces you to write the items by hand in the M arkup View of VS.

Because the controls in the Standard and H TM L category look quite like each other, the next sec-
tion discusses their differences and gives you some idea of when to favor one category over the other.

How to Choose between Standard and HTML Controls
There seems to be some overlap between the controls in the Standard and H TM L categories of the
Toolbox. So which ones should you choose and when? Generally, the true server controls in the
Standard category offer you a lot more functionality, both in terms of design-time support in VS
and what they can do at run time. But this functionality comes at a price. Because of their increased
complexity, the server controls take a lit tle more time to process. However, on most websites you
probably won’t notice the difference. O nly when you have a high-traffi c website with lots of controls
on the page do the H TM L controls give you a slightly better performance and consume less memory
on the server when compared to the server controls.

In most scenarios, favor the server controls over their H TM L counterparts. Because server controls
offer more functionality, they give you more fl exibility in your pages, enabling you to create a richer
user experience. Also, the better design-time support makes it worth choosing these controls.

Choose the H TM L controls if you’re really sure that you don’t need the functionality that the server
controls offer you.

The remainder of this section quickly guides you through the other categories in the Toolbox.

Data Controls
Data controls were introduced in ASP.N ET 2.0, and offer an easy way to access various data sources
like databases, XM L fi les, and objects. Instead of writing lots of code to access the data source as
you had to do in earlier versions of ASP.N ET, you simply point your data control to an appropriate
data source, and the ASP.N ET run time takes care of most of the diffi cult issues for you. You see a
lot more about these controls in Chapter 13 and onward.

c04.indd 132c04.indd 132 10/8/2012 9:51:04 AM10/8/2012 9:51:04 AM

Types of Controls x 133

Validation Controls
Validation controls enable you to rapidly create Web Forms with validation rules that prohibit users
from entering invalid data. For example, you can force users to enter values for required fi elds and
check whether the entered data matches a specifi c format like a valid date or a number between 1
and 10. They even allow you to write custom code to create validation routines that are not covered
by the standard controls. The beauty of the validation controls is that they can execute both on the
client and the server, enabling you to create responsive and secure web applications. Chapter 9 digs
much deeper into these controls.

Navigation Controls
The controls you fi nd under the Navigation category of the Toolbox are used to let users fi nd their
way through your site. The TreeView control presents a hierarchical display of data and can be used
to show the structure of your site, giving easy access to all the pages in the site. The Menu control
does a similar thing and provides options for horizontal and vertical fold-out menus.

The SiteMapPath control creates a “breadcrumb trail” in your web pages that enables your users to
easily fi nd their way up in the hierarchy of pages in your site.

You see all of these controls in action in Chapter 7, which deals with navigation in websites
exclusively.

Login Controls
Just like the data and navigation controls, the login controls were introduced in ASP.N ET 2.0 and
are still strongly present in ASP.N ET 4.5. With very lit tle effort, login controls enable you to create
secure websites where users need to sign up and log in before they can access specifi c parts of the
website (or even the entire website). In addition, they provide the tools for users to change their pass-
word, or request a new password if they forget the old one, and enable you to display different data
depending on the logged-in status and role of the user. Chapter 16 provides more details about the
security features and login controls of ASP.N ET.

Ajax Extensions
The Ajax Extensions enable you to create fl icker-free web applications that are able to retrieve data
from the server from client-side JavaScript without a full postback. You can fi nd the full details on
them in Chapter 10.

WebParts
ASP.N ET WebParts are a set of controls that enables an end user of a web page to change the
appearance and behavior of a website. These controls are outside the scope of this book.

c04.indd 133c04.indd 133 10/8/2012 9:51:04 AM10/8/2012 9:51:04 AM

134 x CHAPTER 4 WORKING WITH ASP.NET SERVER CONTROLS

Dynamic Data
The controls in this category are used in Dynamic Data websites. Dynamic Data sites enable you
to quickly build a user interface to manage data in a database. These controls are not discussed fur-
ther in this book. To learn more about them, check out Sams’ A SP.N ET D ynamic Data Unleashed,
Oleg Sych and Randy Patterson, 2012 (ISBN: 978-0-672-33565-5).

THE ASP.NET STATE ENGINE
In the previous chapter, you created a page with a TextBox and a Button control. In the Try It
O ut, you ran this page in the browser, typed some text, and clicked the but ton. The but ton caused
a postback to the server, and when the page reloaded, the text was still present in the text box.
You pret ty much did the same thing with the Wizard control in this chapter, where the values
from the text box and the drop-down list were maintained as well. If you’re familiar with other
web technologies like ASP or PH P, this probably surprised you. In those languages, you often
need to write lots of code to make this happen. So why and how does this work automatically in
ASP.N ET?

The text in the text box is maintained by the ASP.N ET state engine, a feature that is deeply inte-
grated into the ASP.N ET run time. It enables controls to maintain their state across postbacks, so
their values and settings remain available after every postback of the page.

What Is State and Why Is It Important?
To understand state, it’s important to realize that, by design, H TTP—the protocol used to request
and serve pages in a web browser—is stateless. What this means is that the web server does not keep
track of requests that have been made from a specifi c browser. As far as the web server is concerned,
each request you make to the server by browsing to a page and clicking links to other pages stands
on its own. The web server has no recollection of pages you requested previously.

This poses some interesting problems. Consider, for
example, a simple login page that enables you to log
in to a website, like your favorite web mail program.
You can see a sample of the login box in Figure 4-16.

Now imagine that you try to log in with a correct
username but with an incorrect password. The page
will then inform you that your login attempt failed.
Ideally, you would also want your username to be
fi lled in for you automatically, and you’d want the
Remember Me Next Time check box to retain its selection as well. That way, it’s easy for the user
to enter the correct password and click the Log In button again. This is just a trivial example, but
it’s easy to come up with many more scenarios where it’s useful if controls are able to maintain their
own state.

However, by default, a web page or a control cannot do this on its own. Because each request is a
standalone request, the server won’t fi ll in the text boxes again after a postback, but will simply

FIGURE 4-16

The ASP.NET State Engine x 135

serve the page the same way it did when it fi rst loaded it. In other web technologies, like classic ASP
or PH P, you could work around this by manually writing code that prepopulates controls after a
postback. Fortunately, ASP.N ET makes this much easier for you by integrating this functionality in
the ASP.N ET feature set.

How the State Engine Works
The state engine in ASP.N ET is capable of storing state for many controls. It can store state not only
for user input controls like a TextBox and a CheckBox, but for other controls like a Label and even
a Calendar. This is best demonstrated by a demo. The following exercise shows you how to create a
page with controls that are capable of maintaining their state. The sections that follow then explain
how ASP.N ET is able to do this.

TRY IT OUT Examining the ASP.NET State Engine

In this exercise you add Label, Button, TextBox, and Calendar controls to the page. These controls
are used to demonstrate some of the inner workings of ASP.N ET, including postbacks and the way
ASP.N ET maintains state.

 1. Under the Demos folder, create a new page called State.aspx. Make sure it uses Code Behind, and
don’t forget to choose your preferred programming language.

 2. Switch the page to Design View, click inside the dashed <div> to put the focus on it, and then
choose Table Í Insert Table from the main menu. Set Rows to 3 and Columns to 2 and click OK
to insert a table with three rows and two columns.

 3. In the fi rst cell of the fi rst row, drag a Label control from the Toolbox. In the fi rst cell of the sec-
ond row, drag a Calendar control.

 4. Note that as soon as you drop the Calendar control in the cell, its Smart Tasks panel pops up as
shown in Figure 4-17.

FIGURE 4-17

c04.indd 135c04.indd 135 10/8/2012 9:51:04 AM10/8/2012 9:51:04 AM

136 x CHAPTER 4 WORKING WITH ASP.NET SERVER CONTROLS

In the case of the Calendar control, you only get one option on this panel, Auto Format, which
enables you to change the appearance of the calendar. Click the link, choose from one of the pre-
defi ned color schemes, like Simple, and click OK.

 5. In the fi rst cell of the last row, drag a TextBox control.

 6. Next, drag Button controls into the right column of the fi rst two rows of the table.

 7. Click the Button in the fi rst row and press F4 to open the Properties Grid. Set the Button’s
Text property to Set Date and its ID to SetDate. You’ll fi nd the ID property all the way at
the end of the list with properties, or at the beginning if you have the list with properties sorted
alphabetically.

 8. Repeat the previous step for the other button but call it PlainPostback and set its Text property
to Plain Postback. When you’re done, the page should look like Figure 4-18 in Design View.

 9. Double-click the Set Date button in Design View and add the following bolded code on the empty
line between the code lines that VS inserted for you:

VB.NET

Protected Sub SetDate_Click(sender As Object, e As EventArgs) Handles SetDate.Click
 Label1.Text = DateTime.Now.ToString()
End Sub

C#

protected void SetDate_Click(object sender, EventArgs e)
{
 Label1.Text = DateTime.Now.ToString();
}

There’s no need to write code for the Plain Postback button.

 10. Open the page in the browser by pressing Ctrl+F5. Select a date on the calendar by clicking one of
the days. Notice that as soon as you click the date, the page reloads, caused by a postback. You
learn more about this in the How It Works section that follows this exercise.

 11. Enter some text in the TextBox control and then click the Set Date button a few times. Again,
the page is posted back to the server and the Label is updated with today’s date and time each
time you click the button. The TextBox still shows the text you entered. Wait a few seconds,
and then click the Plain Postback button. O nce again, a postback occurs, and the page reloads.
N ow take a look at the text for the Label. It still contains the date and time that was dis-
played when you last clicked the Set Date button. Click the Plain Postback button a few more
times and notice that the Label doesn’t change. The TextBox should still display the text you
entered.

 12. Go back to VS and open the Properties Grid for the Label control in Design View. Locate the
EnableViewState property and set it to False by selecting that value from the drop-down list or
by double-clicking the property name or its value. Repeat this step for the TextBox control.

 13. Repeat steps 10 and 11 by reopening the page in the browser and clicking the calendar and the
buttons. This time, when you click the Plain Postback button, you’ll see that the Label control
defaults to its initial text: Label. The TextBox, however, still displays the text you entered.

c04.indd 136c04.indd 136 10/8/2012 9:51:04 AM10/8/2012 9:51:04 AM

The ASP.NET State Engine x 137

FIGURE 4-18

How It Works

To understand how this all works, you need to look at a few important elements. First, open up the
page in the browser again and view its H TM L source. You can do this by right-clicking the page in the
browser and choosing the View Source or View Page Source menu item. N ear the top of the window,
you see the following <form> element:

<form method="post" action="State.aspx" id="form1">
...
</form>

The H TM L <form> element is used to enable a user to submit information from the browser to the
server. A user can enter information using controls like text boxes, drop-down lists, check boxes, and
so on. A form can be submitted in two ways: with POST (as shown in the previous <form> element) or
with GET. In the former case, all data from the form is added to the body of the request and then sent to
the server. In the case of the GET method, all the data is appended to the actual address of the request.
The intricacies of the differences are not that important right now; what’s important to understand is
what the <form> element is used for: it encapsulates form controls whose values are submitted back to
the server en masse.

When a control like a Button is clicked, it causes a postback to the server. During this postback,
all the relevant information in the form is submitted back to the server where it can be used to rebuild
the page.

By default, all your ASP.N ET Web Forms always use the POST method to send data to the server. Also,
by default, an entire ASP.N ET page always contains exactly one form. Because this is so common, a

c04.indd 137c04.indd 137 10/8/2012 9:51:04 AM10/8/2012 9:51:04 AM

138 x CHAPTER 4 WORKING WITH ASP.NET SERVER CONTROLS

new page (or M aster Page as you learn in Chapter 6) created in VS already contains the <form> ele-
ment, so you don’t have to add it yourself. Finally, it’s important to understand that an ASP.N ET Web
Form by default always submits back to itself. In other web environments, like classic ASP and PH P, it’s
not uncommon to set the action attribute of the page to a second page that then processes the data the
user has submitted. However, with an ASP.N ET page, you’ll fi nd that even if you set the action attri-
bute in the code explicitly, the ASP.N ET run time will revert it to the name of the current page.

NOTE ASP.NET supports a feature called Cross Page Postbacks that enables
you to submit from one page to another. To learn more about this concept,
search the MSDN site for Cross Page Postbacks or get yourself a copy of
Professional ASP.NET 4.5 from Wrox.

The next thing to look at is ASP.N ET’s View State functionality implemented with the hidden
__VIEWSTATE fi eld that you see in the H TM L source bolded in the following snippet:

<form method="post" action="State.aspx" id="form1">
...
 <input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
 value="IXcrUZ51B9YmtdoSL9csn2+VrYx5oW32kAw0oRXGsf3F0/W0l6/upieH7Nht1f
 hyr99U0IRRKmjvYk4FdH5E9ZRucaja0xPkwCyRoNBI3KkidqR5eAVX86D
 qOfEl584eSB0ff3IF4o3Y+ZqD7qZp3A==" />
</div>

Although at fi rst the text appears to contain nothing more than random characters, it actually contains
useful information. To protect the information stored in this fi eld, ASP.N ET has converted the page
state in the preceding string. If you were able to look inside the value of the fi elds, you’d fi nd a value for
the Label1 control with the current date and time.

When your ASP.N ET page loads, the ASP.N ET run time fi lls this hidden fi eld with information about
the page. For example, it added the value for the Text property of the Label1 control when you caused
a postback by clicking the Set Date button. Similarly, it contains the selected date for the Calendar
control. When the page is then submitted back by a postback, the value in this hidden __VIEWSTATE
fi eld is sent with the request. Then, when ASP.N ET creates the new page on the server, the information
from the __VIEWSTATE fi eld is read and applied to the controls in the page. This way, a control like the
Label is able to maintain its text even after the page has been posted back to the server.

The TextBox doesn’t need View State, though. It’s able to maintain its value because the browser sub-
mits it to the server with each postback.

To reiterate, here’s a rundown of the process that took place in the preceding Try It O ut.

 1. You requested the page in the browser by opening it from within VS.

 2. The browser got the page from the server by making a request for it.

 3. The ASP.NET run time read the page from disk, processed it, and sent the resulting HTML to
the browser. At this stage, all the controls were set to their default values that were defi ned in the
markup of the page. For example, the Text of the Label control is set to Label.

c04.indd 138c04.indd 138 10/8/2012 9:51:05 AM10/8/2012 9:51:05 AM

The ASP.NET State Engine x 139

 4. After the page got displayed in the browser, you clicked the Set Date button. This caused a post-
back to the server.

 5. At the server, the page was reconstructed again, similar to the fi rst time it loaded, described in step
3. At this stage, all the controls contain their default values. So, again, the Label1 control had its
Text property set to Label. Shortly after the defaults have been set, the run time overrides these
defaults for controls it fi nds in View State. However, because this was the fi rst postback and the
Label control’s Text property hadn’t changed yet, its value was not present in View State. So the
Text property just contained the default word Label.

 6. While still processing the same request, the ASP.NET run time fi red the code in SetDate_Click.
As you have seen, this code changed the Text property of the Label control to the current date and
time. The ASP.NET run time sees this change and stores this new value in View State as well, so it
stays available for subsequent postbacks.

 7. Next, you entered some text and clicked the Plain Postback button. Just as with the other but-
ton, this caused a postback to occur. The page was constructed again, and all defaults are set.
Again, this means that the Text property of the Label1 control simply contains the word Label.
However, shortly after that, during the same processing cycle, the ASP.NET run time processes the
View State, restoring control values it fi nds in the hidden __VIEWSTATE fi eld. In this example, it
found the Text property with the current date and time, and assigned it again to the Label control.
Because the Plain Postback button doesn’t change the Text of the Label anymore, the Text prop-
erty doesn’t change: it contains the date and time from the previous postback. The Text property
of the TextBox control is set using the value submitted to the server; that is, this control does not
use View State to maintain its value. At the end, the entire page is sent to the browser, where the
label correctly displays its previous value.

 8. Finally, you turned off the View State for the Label and TextBox controls by setting
EnableViewState to False. With this setting turned off, the ASP.NET run time doesn’t track
the Label control anymore. So when you click the Plain Postback button, the ASP.NET run time
doesn’t fi nd any information for the label in View State, which eventually results in the label dis-
playing its own default text: the word Label.

Not All Controls Rely on View State
You have to understand that not all controls rely on View State all the time. A number of controls
are able to maintain some of their own state, as you saw with the TextBox control in the preced-
ing exercise. These controls include, among others, the TextBox, CheckBox, RadioButton, and
DropDownList controls. They are able to maintain their values because they are rendered as stan-
dard H TM L form controls in the browser. For example, a TextBox server control ends up like this
in the browser:

<input name="TextBox1" type="text" value="Initial Text" id="TextBox1" />

When a page with such a TextBox in it is posted back, the browser also sends the value of the con-
trol back to the server. The ASP.N ET run time can then simply look at that value to prepopulate
the text box again, instead of getting the value from View State. Obviously, this is more effi cient

c04.indd 139c04.indd 139 10/8/2012 9:51:05 AM10/8/2012 9:51:05 AM

140 x CHAPTER 4 WORKING WITH ASP.NET SERVER CONTROLS

than storing the value in View State too. If that were the case, the value would get sent to the server
twice: once in the text box and once in View State. Especially with large values, this could quickly
increase the page’s size, and thus its load time. For some features—such as tracking changes made at
the client—these controls still need to store their values in View State as well, and do so on a need-
to-have basis.

In addition to View State, controls support the concept of Control State. Controls use that mecha-
nism to keep track of data they absolutely need to operate correctly. You cannot disable Control
State but since only limited amounts of data are stored in Control State, this is not a problem.

A Note about View State and Performance
Because the View State engine adds a considerable amount of information to the page, it’s
often a good idea to turn it off when you don’t need it. This way, you can minimize the size of
the hidden __VIEWSTATE fi eld, which means the page becomes smaller and thus loads faster in the
browser. Note that when you turn of View State you still see the hidden __VIEWSTATE fi eld because
Control State uses the same fi eld to store its data. Turning off View State is easy, and you can do it
at three different places:

 ‰ At the website level—You can do this in the Web.config fi le in the root of the site by modi-
fying the <pages> element under <system.web>, setting the enableViewState attribute to
false:
<pages enableViewState="false">
 ...
</pages>

 ‰ At the page level—At the top of each page you fi nd the page directive, a series of instructions
that tell the ASP.NET run time how the page should behave. In the page directive you can set
EnableViewState to False:

 <%@ Page Language="VB" AutoEventWireup="False" CodeFile="State.aspx.vb"
 Inherits="Demos _ State" EnableViewState="False" %>

This option is useful for pages where you’re sure you don’t need View State at all.
 ‰ At the control level—Each ASP.NET Server Control enables you to set EnableViewState

individually, giving you the option to turn it off for some controls, while leaving it on for
others.

O nce you’ve turned off View State at a higher level (Web.config or page level), setting
EnableViewState to True again at a lower level (the page or a specifi c control) has no effect.
However, using the ViewStateMode property you can still accomplish this as follows:

 ‰ Do not turn off View State in the Web.config fi le.
 ‰ At the page level, set EnableViewState to True and ViewStateMode to Disabled like this:

 <%@ Page Language="C#" … EnableViewState="True" ViewStateMode="Disabled" %>

This turns off View State for all controls in the page except for those that explicitly enable it
again by setting the ViewStateMode to Enabled.

c04.indd 140c04.indd 140 10/8/2012 9:51:05 AM10/8/2012 9:51:05 AM

Practical Tips on Working with Controls x 141

 ‰ For the controls you want to give View State support, set the ViewStateMode to Enabled,
like this:

 <asp:Label ID="Label1" runat="server" Text="Label" ViewStateMode="Enabled" />

If you want to see this at work in your demo page, modify the page directive of State.aspx as in
the previous example by setting EnableViewState to True and ViewStateMode to Disabled. Then
create a second Label in the page and set ViewStateMode for the fi rst to Enabled:

 <asp:Label ID="Label1" runat="server" Text="Label" ViewStateMode="Enabled" />
 <asp:Label ID="Label2" runat="server" Text="Label" />

In the Code Behind of the page, assign today’s date and time to the second label as well:

VB.NET

Label1.Text = DateTime.Now.ToString()
Label2.Text = DateTime.Now.ToString()

C#

Label1.Text = DateTime.Now.ToString();
Label2.Text = DateTime.Now.ToString();

Finally, run steps 10 and 11 of the last Try It O ut exercise. You’ll notice the fi rst Label maintains its
text, whereas the second defaults back to the text L abel.

PRACTICAL TIPS ON WORKING WITH CONTROLS
The following list presents some practical tips on working with controls:

 ‰ Spend some time trying out the different controls in the Standard category. Although many
of them are used and discussed throughout the book, it’s good to know how you should use
them and how they operate. By experimenting with them now in a few sample pages, you
have a head start when the controls reappear in later chapters.

 ‰ Consider turning off View State for controls that don’t need it. In many cases, you hardly
notice the difference, but especially with the data-driven controls discussed in Chapter 13 and
onward, disabling View State can seriously decrease the size of your web page, resulting in
shorter load times and improved user experience.

 ‰ Before you design a complex Web Form with multiple controls to accept user input, step
back from your computer and take a piece of paper and a pen to draw out the required
functionality. By thinking about the (technical) design of your application before you start
coding, it’s much easier to create a consistent and well-thought-out user interface. Making
considerable changes later in the page if you’ve taken a wrong route will always take more
time than doing it (almost) right the fi rst time.

 ‰ Experiment with the View State mechanism to get a better understanding of how it works.
Create a couple of pages similar to the one you created in the last exercise. Then turn off
View State at the page or control level and see how the page behaves. Take note of the con-
trols, such as TextBox, that are capable of maintaining their value even with View State off.

c04.indd 141c04.indd 141 10/8/2012 9:51:05 AM10/8/2012 9:51:05 AM

142 x CHAPTER 4 WORKING WITH ASP.NET SERVER CONTROLS

SUMMARY
This chapter gave you a good look at the large set of ASP.N ET Server Controls. Because these con-
trols are so important and used throughout every ASP.N ET application, it’s really critical that you
understand what controls you have available in the Toolbox, what they are used for, how they work,
and how they maintain their own state.

O ne of the biggest inventions in ASP.N ET is the state engine that enables controls to maintain their
state across postbacks. The state engine is a real time-saver and frees you from writing loads of
tedious and boring code in every single web page to replicate this behavior. However, you should
turn View State off when possible to improve performance.

This chapter also introduced you to some trivial server-side code in Visual Basic and in C#. The
next chapter gives you a much better understanding of programming ASP.N ET pages. You see how
a programming language looks, what elements it contains, and how to write code yourself to use in
your ASP.N ET pages. And best of all, the examples are presented in Visual Basic and C#, so you’re
not stuck with a language you may not like.

EXERCISES

 1 . Name the mechanism that enables server controls to maintain their state.

 2. How is the ASP.NET run time able to keep track of control state between postbacks?

 3. Name a diff erence between an <asp:DropDownList> and an <asp:ListBox>.

 4. What property do you need to cause a postback to the server when you change the checked
state of a CheckBox in the browser?

 5. Many server controls have a common set of properties that aff ects their looks at run time. Name
three properties that change styling elements such as color, borders, and size.

 6. Instead of setting individual control properties like BackColor and ForeColor, it’s better to set a
single CSS-related property. What’s the name of this property and what benefi t does it give you?

You can fi nd answers to these exercises in Appendix A.

c04.indd 142c04.indd 142 10/8/2012 9:51:05 AM10/8/2012 9:51:05 AM

Summary x 143

 ◃ WHAT YOU LEARNED IN THIS CHAPTER

__VIEWSTATE The hidden form fi eld that is used to transfer the state from the server to the
client and back.

Container controls Server controls that serve as a container by wrapping other content and
controls.

Events tab The part of the Properties Grid that lets you set up handlers for control events
such as Click for a Button.

List controls Server controls that present a list of items to the user. Controls include the
DropDownList, CheckBoxList, and more.

POST and GET
methods

Diff erent methods to submit data from the client to the server. With POST
the data is added to the body of the request, whereas with GET the data is
appended to the address of the requested page.

Postback The process of sending form data from a client browser back to the server.

Server Controls The work horses of ASP.NET, used to build up the user interface of a web
page in the browser.

Smart Tasks panel The action panel that appears for some controls to help you accomplish
common tasks.

View State The mechanism that enables the ASP.NET controls to store state at the client.

c04.indd 143c04.indd 143 10/8/2012 9:51:05 AM10/8/2012 9:51:05 AM

c04.indd 144c04.indd 144 10/8/2012 9:51:06 AM10/8/2012 9:51:06 AM

