
Programming Your ASP.NET
Web Pages

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ‰ How to work with data types, variables, objects, and collections in a
programming environment

 ‰ Diff erent ways to make decisions in your code

 ‰ The options available for creating blocks of functionality that can
 easily be reused

 ‰ Diff erent ways to write well-organized and documented code

 ‰ What object orientation is, and how you can use it in your
applications

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can fi nd the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/remtitle.cgi?isbn=1118311809. The code is in the Chapter 5 download.

In the previous four chapters, you created a number of Web Forms that contained mostly ASP
.N ET Server Controls and plain H TM L. O nly a few of the examples contained actual pro-
gramming code, written in either C# or Visual Basic (VB.N ET), and most of that code was
pretty straightforward. However, not all of your pages will always be so simple, and the abil-
ity to read, understand, and write code is a critical asset in your web development toolkit.

This chapter teaches you the basics and beyond of programming for web applicat ions. Just
as with all the other samples in the book, this entire chapter covers both VB.N ET and

5

c05.indd 145c05.indd 145 10/8/2012 9:52:13 AM10/8/2012 9:52:13 AM

146 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

C#. For every concept or piece of theory introduced in this chapter, you see an example in both
VB.N ET and C# at the same t ime. Which language you prefer is entirely your decision.

NOTE To get the most out of this chapter, it’s recommended that you actually
try out the code. You can test most of the examples with a simple ASPX page.
Drag a Label and a Button on your page and double-click the Button in Design
View. Then type the sample code on the open line of the code block that VS
added for you and press Ctrl+F5. After the page has fi nished loading, click the
button and the code will be executed. Some of the examples call fi ctitious code
and won’t run correctly. They only serve to illustrate the topic being discussed.

INTRODUCTION TO PROGRAMMING
To get started with programming, it’s critical to understand a common set of terms shared by pro-
grammers in all types of languages and applications. The remainder of this chapter introduces you
to a relatively large number of terms and concepts. Most of the terminology comes with code exam-
ples so you can see how they are used in real code.

It’s also important to realize this is not a complete introduction to programming. Not every detail of
a programming language is covered. Instead, this chapter focuses on the key concepts that you need
to understand to successfully build day-to-day websites. O nce you get the hang of that you’ll fi nd it’s
easier to deepen your knowledge about programming by learning the more exotic features of your
favorite programming language.

NOTE If you’re interested in learning a lot more about programming in VB.NET
or C#, fi nd Beginning Visual Basic 2012 (ISBN: 978-1-1183-1181-3) or Beginning
Microsoft Visual C# 2012 (ISBN: 978-1-1183-1441-8), both published by Wrox.

You add the code you write in this and coming chapters either to the Code Behind of a web page, or
in a separate class fi le placed in the special App_Code folder. When the ASP.N ET run time processes
the request for a page containing code, it com piles any code it fi nds in the page, Code Behind, or
class fi les fi rst. When code is compiled, it is being transformed from a human-readable programming
language (like C# or VB.N ET) into M icrosoft Interm ediate L anguage (M SIL), the language that the
.N ET Framework run time can understand and execute. The result of the compilation process of an
ASP.N ET website is one or more assemblies — fi les with a DLL extension — in a temporary folder
on your system. This compilation process takes place only the fi rst time the page is requested after
it has been created or changed. Subsequent requests to the same page result in the same DLL being
reused for the request. Fortunately, in ASP.N ET websites, compilation takes place behind the scenes,
so you usually don’t have to worry about it.

To get started with programming, the fi rst concepts that you need to look at are data types and vari-
ables, because they are the building blocks of any programming language.

c05.indd 146c05.indd 146 10/8/2012 9:52:19 AM10/8/2012 9:52:19 AM

Data Types and Variables x 147

NOTE The .NET Framework used by ASP.NET is huge and contains thousands
of types with hundreds of thousands of members. Clearly, you cannot memorize
all the types in the framework, so you need to make good use of resources like
IntelliSense and the online help. Navigating the MSDN site (http://msdn
.microsoft.com/en-us/library/) can sometimes be a daunting task. However,
I often fi nd that searching for something like typeName type .NET MSDN brings up
exactly what I need. So, if I wanted to learn more about the string class, I’d type
string class .NET MSDN in my favorite search engine. Nine out of ten times the
fi rst result is a link to the relevant page on the MSDN website, where I can learn
more about the class — where it’s defi ned and located and how to use it.

DATA TYPES AND VARIABLES
At fi rst when you think about data that is used in some programming environment, you may not
realize that each piece of data has a data type. You may think that a computer would store the text
Hello World in exactly the same way as today’s date or the number 26; as a series of characters, for
example. However, to be able to effectively work with data, many programming languages have dif-
ferent data types, and each data type is constrained to a specifi c type of information. O ut of the box,
the .N ET Framework comes with a long list of data types that enable you to work with numbers
(such as Int32, Int16, and Double), text strings (Char and String), dates (DateTime), true/false
constructs (the Boolean), and more. A list of the most common types is supplied later in this section.

For each major type of data there is a special data type. To work with that data, you can store it
in a variable that you need to declare fi rst using the required data type. In VB.N ET you use Dim
myVariable As DataType, whereas in C# you use DataType myVariable to declare a variable. A
valid variable name typically consists of letters, numbers, and underscores, and cannot start with a
number. These rules apply to other identifi ers as well, such as classes and methods, which you see
later. The following example shows you how to declare two variables: an Integer (int in C#) to
hold a number and a String (string in C#) to hold a piece of text:

VB.NET

' Declare a variable of type Integer to hold medium sized whole numbers.
Dim distanceInMiles As Integer

' Declare a variable to hold some text like a first name.
Dim firstName As String

C#

// Declare a variable of type int to hold medium sized whole numbers.
int distanceInMiles;

// Declare a variable to hold some text like a first name.
string firstName;

These two code examples also contain comments, prefi xed with a tick (') in VB.N ET or two for-
ward slashes (//) in C#. You learn more about commenting your code later in this chapter.

c05.indd 147c05.indd 147 10/8/2012 9:52:19 AM10/8/2012 9:52:19 AM

148 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

After you have declared a variable, you can assign it a value. You can assign types like numbers
and booleans directly to a variable. To assign a string to a variable you need to enclose it in double
quotes:

VB.NET

Dim distanceInMiles As Integer
distanceInMiles = 437

Dim firstName As String
firstName = "Imar"

C#

int distanceInMiles;
distanceInMiles = 437;

string firstName;
firstName = "Imar";

In addition to separate declarations and assignments, you can also declare a variable and assign it a
value in one fell swoop:

VB.NET

Dim distanceInMiles As Integer = 437
Dim firstName As String = "Imar"

C#

int distanceInMiles = 437;
string firstName = "Imar";

Although a variable name can be nearly anything you like, it’s advised that you give each variable
a meaningful name that describes its purpose. For example, a string to hold a fi rst name could be
called firstName and a variable that holds someone’s age could simply be called age. In .N ET it’s
common to write local variables in what’s called cam el case, which means each word starts with a
capital letter except for the fi rst. To help you fi nd the type of the variable later in the code, VS shows
a useful tooltip when you hover over a variable in the code editor, making it super easy to fi nd a vari-
able’s type. Figure 5-1 shows that the distanceInMiles variable in the C# example is of type int.

FIGURE 5-1

You’re advised not to prefi x your variables with letters to indicate the type. For example, write
firstName and not sFirstName for a String holding someone’s name. This type of notation, called
H ungarian N otation, is considered outdated. IDEs like Visual Studio, with their smart IntelliSense
and other programming tools, don’t really require this anymore. Without Hungarian Notation, your
code becomes easier to read (age is more readable than iAge) and easier to maintain because you
can change a variable’s type without renaming it everywhere it’s used.

c05.indd 148c05.indd 148 10/8/2012 9:52:19 AM10/8/2012 9:52:19 AM

Data Types and Variables x 149

M icrosoft .N ET supports a large number of different programming languages, including VB.N ET,
C#, and others. All these languages are able to communicate with each other. For example, you can
write some code in C#, use Visual Studio Express 2012 for Windows Desktop to compile it to a
.dll fi le (a fi le with reusable code that can be consumed by other .N ET applications), and then use
it in a web application that uses VB.N ET as the primary language. Because of this interoperability,
it’s necessary to agree on some system that enables all .N ET programming languages to understand
each other. This system is called the Com m on Type System (CT S). It’s the CTS that defi nes the data
types that are accessible to all CTS-compliant languages. Each language is then free to defi ne a set
of prim itive types, which are essentially shortcuts or aliases for the more complex type descriptions
in the .N ET Framework. So, even if the CTS defi nes a type called System.Int32, a language like
C# is free to alias this type as int and VB is free to alias this type as Integer to make it easier for a
developer to work with it.

The following table lists the most common CTS types in the .N ET Framework and their C# and
VB.N ET aliases. The table also lists the ranges of the variables and what they are used for.

.NET C# VB.NET DESCRIPTION

System.Byte byte Byte Used to store small, positive whole numbers
from 0 to 255. Defaults to 0 when no value is
assigned explicitly.

System.Int16 short Short Capable of storing whole numbers between
–32,768 and 32,767. Defaults to 0.

System.Int32 int Integer Capable of storing whole numbers between
–2,147,483,648 and 2,147,483,647. Defaults to
0.

System.Int64 long Long Holds whole large numbers between
–9,223,372,036,854,775,808 and
9,223,372,036,854,775,807. Defaults to 0.

System.Single fl oat Single Stores large numbers with decimals between
–3.4028235E+38 and 3.4028235E+38. Defaults
to 0.0.

System.Double double Double Can hold large fractional numbers. It’s not as
accurate as the Decimal when it comes to the
fractional numbers but when extreme accuracy
is not a requirement, you should prefer the
Double over the Decimal, because the Double
is a little faster. Defaults to 0.0.

System.Decimal decimal Decimal Stores extremely large fractional numbers with
a high accuracy. Defaults to 0. This data type is
often used to store monetary values.

continues

c05.indd 149c05.indd 149 10/8/2012 9:52:19 AM10/8/2012 9:52:19 AM

150 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

.NET C# VB.NET DESCRIPTION

System.Boolean bool Boolean Used to hold a simple boolean value: True or
False in VB, and true or false in C#. Defaults to
False.

System.DateTime n/a Date VB.NET has an alias for the System.DateTime
data type to store date and time values. C#
doesn’t defi ne an alias for this type. Defaults to
1/1/0001: 12:00 am.

System.Char char Char Holds a single character. Defaults to Nothing
(null in C#).

System.String string String Can hold text with a length of up to 2 billion
characters. Defaults to Nothing (null in C#).

System.SByte sbyte SByte Used to store small numbers from –128 to 127.
Defaults to 0.

System.UInt16 ushort UShort Similar to a System.Int16, but this data type can
only store unsigned whole numbers, between 0
and 65,535. Defaults to 0. The other data types
prefi xed with a U are all unsigned as well.

System.UInt32 uint UInteger Capable of storing whole numbers between 0
and 4,294,967,295. Defaults to 0.

System.UInt64 ulong ULong Capable of storing whole numbers between 0
and 18,446,744,073,709,551,615. Defaults to 0.

System.Object object Object The parent of all data types in .NET, including
the CTS types and types you defi ne yourself.
Each data type is also an object, as you learn
later in the book. Defaults to Nothing (null in
C#).

The standard .N ET types are all prefi xed with System followed by a period. This System part is the
nam espace for this data type. You learn what namespaces are and what they are used for later in
this chapter.

Sometimes you need to convert data from one type to another. For example, you may have an Int32
that you need to treat as a Double. You can do this in a number of different ways.

Converting and Casting Data Types
The most common way to convert a type is converting it into a String. Web applications use string
types in many places. For example, the Text returned from a TextBox is a String, and so is the

 (continued)

c05.indd 150c05.indd 150 10/8/2012 9:52:19 AM10/8/2012 9:52:19 AM

Data Types and Variables x 151

SelectedValue of a DropDownList. To get a string representation of an Object, you can call its
ToString() method. Every object in the .N ET world supports this method, although the exact
behavior may differ from object to object. For now, it’s important to understand that ToString is a
m ethod — or an operation — on an object, like a String or a Double and even the parent Object
itself. You learn more about methods and objects later in this chapter when object-oriented pro-
gramming is discussed.

Using ToString() is easy, as the following example that outputs today’s date and time on a Label
control demonstrates:

VB.NET

Label1.Text = System.DateTime.Now.ToString()

C#

Label1.Text = System.DateTime.Now.ToString();

Another way to convert data types is by using the Convert class.

NOTE Classes are an important concept in .NET, so they are discussed in their
own section later in this chapter. For now it’s important to understand that a
class is like a blueprint for objects that are used in .NET. You can create your
own classes, but you will also use many of the standard classes that are part of
the .NET Framework.

The Convert class contains functionality to convert a number of data types into another type. The
following is a simple example of converting a String containing a value that looks like a boolean
into a true Boolean type:

VB.NET

Dim myBoolean1 As Boolean = Convert.ToBoolean("True") ' Results in True
Dim myBoolean2 As Boolean = Convert.ToBoolean("False") ' Results in False

C#

bool myBoolean1 = Convert.ToBoolean("True"); // Results in true
bool myBoolean2 = Convert.ToBoolean("False"); // Results in false

Besides the ToBoolean method, Convert offers you a host of other conversion methods, including
ToInt32 (for integer types), ToDateTime (for dates), and ToString.

Another way to convert one type into another is by using casting. With casting you actually force
one type into another, which is different from converting, in which the underlying value of a data
type is transformed into a new value.

Casting only works for compatible types. You can’t, for example, cast a DateTime into an Integer.
You can, however, cast similar types, like a Double to an Integer or a String to an Object.
The reverse of the latter example isn’t always true. Earlier I said that every data type in the .N ET
Framework is based on the Object data type, meaning that, for example, a String is an Object.

c05.indd 151c05.indd 151 10/8/2012 9:52:19 AM10/8/2012 9:52:19 AM

152 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

However, not every Object is also a String. When you try to cast one type into another and get a
compilation or runtime error, keep this in mind. Later chapters in this book show you more exam-
ples of how to cast compatible types into each other.

To cast one type into another using VB.N ET, you have a few options. First, you can use CType and
DirectCast. CType is a bit more fl exible in that it allows you to cast between two objects that look
similar. DirectCast, on the other hand, only allows you to cast between compatible types but per-
forms slightly faster. The following VB.N ET example shows how this works:

Dim o1 As Object = 1
Dim i1 As Integer = DirectCast(o1, Integer) ' Works, because o1 is an Integer
Dim i2 As Integer = CType(o1, Integer) ' Works, because o1 is an Integer

 Dim o2 As Double = 1
Dim i3 As Integer = DirectCast(o2, Integer) ' Does not compile, because o2 is
 ' not an Integer
Dim i4 As Integer = CType(o2, Integer) ' Works, because o2 looks like an
 ' Integer

In the fi rst part of the example, an object called o1 is declared and assigned the Integer value
of 1. Although o1 exposes itself to the outside world as an Object, its underlying value is still an
Integer. When DirectCast is called, the cast succeeds because o1 is, under the hood, an Integer.

In the second example, o2 is declared as a Double, a numeric type that looks somewhat like an
Integer, but isn’t really one. Therefore, the call to DirectCast fails because a Double cannot be
cast to an Integer. CType, on the other hand, works fi ne, because the underlying value of the vari-
able o2 look s like an Integer and can therefore be cast to one. It’s important to realize that if the
Double type has a decimal part, that part gets lost when casting it to an Integer.

The third option to cast in VB.N ET is using the keyword TryCast, which is somewhat similar to
the other two options. When an object cannot be cast correctly, TryCast returns Nothing, whereas
DirectCast and CType result in a crash of the code.

In C# you have two options to cast objects. The most common way is to put the data type in paren-
theses in front of the expression you want to cast. This works similar to CType in VB.

object o1 = 1;
int i1 = (int)o1; // Works

double o2 = 1;
int i2 = (int)o2; // Works

Alternatively, you can use the as keyword, which works similarly to TryCast in VB.N ET in that the
code doesn’t crash if the cast doesn’t succeed. The following sample code shows that you cannot cast
an Integer to an ArrayList (which you meet later in this chapter). Instead of crashing, the variable
myList simply contains null to indicate that the cast operation didn’t succeed.

object o1 = 1;
ArrayList myList = o1 as ArrayList; // Doesn't cast, but doesn't crash either.

You see more about casting and converting in the remaining chapters in this book.

c05.indd 152c05.indd 152 10/8/2012 9:52:20 AM10/8/2012 9:52:20 AM

Data Types and Variables x 153

Using Arrays and Collections
So far the data types you have seen are relatively straightforward and singular objects. For exam-
ple, you store a value of True or False in a Boolean type, and you store a number like 123 in an
Integer. But what if you have the need to store lots of integers? You may have the need to do so if
you want to store the points of a complex shape like a polygon. Or you may have the need to store
all the roles that your application supports in a single variable so you can show them on a web page
in the M anagement section, for example. Here’s where arrays and collections come to the rescue.

Defi ning and Working with Arrays
You can see an array as a big bag or list of the same type of things. You defi ne the data type of the
things in the array when you declare it. Each item in the array is identifi ed by a sequential number
(its so-called index) starting at 0, making arrays zero-based. When declaring and accessing an array
in VB.N ET you use parentheses, whereas in C# you use square brackets. After you have defi ned the
array and populated its elements, you can access the elements by their zero-based element index (0,
1, 2 , and so on).

The following code snippet defi nes an array called roles that can hold up to two roles at the same
time:

VB.NET

Dim roles(1) As String

C#

string[] roles = new string[2];

See the difference between the VB.N ET and C# examples? That’s not a typo. In VB.N ET you defi ne
an array’s size by specifying the upper bound. The upper bound is the last element in the array that
you can access. Because arrays are zero-based (that is, you address the fi rst item in the array with an
index of 0), it means that if you need room for two items, the upper bound is 1, giving you the items
0 and 1.

In C#, on the other hand, you don’t defi ne the upper bound but instead you defi ne the size. So in C#,
you simply specify 2 to get an array with two elements.

Additionally, C# requires you to use the keyword new, which instantiates a new array for you.
VB.N ET does that for you automatically and raises an error if you add the New keyword as in the
C# example. You see the new (New in VB.N ET) keyword again later in this chapter.

To enter the role names into the array you use the following syntax:

VB.NET

roles(0) = "Administrators"
roles(1) = "ContentManagers"

C#

roles[0] = "Administrators";
roles[1] = "ContentManagers";

c05.indd 153c05.indd 153 10/8/2012 9:52:20 AM10/8/2012 9:52:20 AM

154 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

Just as with the array’s declaration, you use parentheses in VB.N ET and square brackets in C# to
address the elements in the array. Note that (0) and [0] refer to the fi rst element in the array and
(0) and [1] refer to the second.

By design, arrays have a fi xed size. So, given the previous example that defi nes an array with room
for two elements, the following code will throw an error:

VB.NET

roles(2) = "Members" ' Throws an error

C#

roles[2] = "Members"; // Throws an error

This code tries to squeeze a third role into an array that has room for only two. Obviously, that
doesn’t fi t and you’ll get an error stating that the “ Index was outside the bounds of the array.”
But what if you need to create more room in the array at a later stage in your code at run time? In
VB.N ET this is pretty easy. You can use the ReDim statement:

ReDim Preserve roles(2)
roles(2) = "Members" ' Works fine now

This line of code re-dimensions the array to its new size: an upper bound of two, thus creating
room for a third element. The Preserve keyword is necessary to leave the current items in the array
intact. Without it, the resized array will be empty.

C# has no direct keyword to re-dimension an array. However, you can leverage the Array class of
the .N ET Framework to resize the array as follows:

Array.Resize(ref roles, 3); // Resize the array so it can
 // hold three elements

roles[2] = "Members"; // Works fine now

Don’t worry about this odd-looking syntax right now; you probably won’t need it very
often, because the .N ET Framework offers alternatives to fi xed-size arrays. Since Array
.Resize is available to VB.N ET as well, you have two options to choose from if you’re using that
language.

When you start working with arrays, you fi nd that they are quick to use at run time, but lack some
useful functionality. For example, it’s not so easy to add new elements or to remove existing items
from the array. Fortunately, the .N ET Framework offers a range of useful collections that do give
you the feature set you need.

Defi ning and Working with Collections
Collections are similar to arrays in that they enable you to store more than one object in a single
variable. The same bag analogy works for collections: You can simply drop a number of items in a
bag, and it will hold them for you. What’s different with collections is how they enable you to work
with the data in the bag. Instead of simply accessing each item by its index, most collections expose
an Add method that enables you to add an item to the collection. Similarly, they have Remove and

c05.indd 154c05.indd 154 10/8/2012 9:52:20 AM10/8/2012 9:52:20 AM

Data Types and Variables x 155

Clear methods to remove one or all items from the collection. Just like arrays, they enable you to
iterate, or loop, over them to access the items in the collection.

When collections were fi rst introduced in the .N ET Framework 1.0, the ArrayList and Hashtable
became popular very quickly because they were so easy to use. The ArrayList enables you to add
arbitrary objects that are then stored in the order in which you add them, whereas the Hashtable
enables you to store objects referenced by a custom key. The main benefi t of these collections over
their array cousins is that they can grow on demand. Unlike the previous example, where you
needed to resize the array to create room for the third role, the ArrayList grows dynamically when
required. The following example shows you how this works:

VB.NET

Dim roles As New ArrayList() ' Create a new ArrayList. You don't need
 ' to set its size explicitly

roles.Add("Administrators") ' Add the first role
roles.Add("ContentManagers") ' Add the second role
roles.Add("Members") ' Keep adding roles and the ArrayList
 ' grows as necessary

C#

ArrayList roles = new ArrayList(); // Create a new ArrayList. You don't need
 // to set its size explicitly

roles.Add("Administrators"); // Add the first role
roles.Add("ContentManagers"); // Add the second role
roles.Add("Members"); // Keep adding roles and the ArrayList
 // grows as necessary

Because this code now calls a method (Add) rather than assigning an item to a predefi ned index in
an array, you need parentheses (()) in both VB.N ET and C#. The usage of methods is discussed
later in this chapter.

Although collections solve some of the problems that arrays have, they introduce a few problems of
their own. The biggest drawback of the ArrayList is that it isn’t strongly typed. What this means
is that you can add any object to the list using the Add method. This means that the ArrayList
could hold objects that are of different types at the same time. This may not seem to be a big deal
at fi rst, but as soon as you start working with an ArrayList that contains multiple types of objects,
you’ll quickly see why this is problematic. Take the roles example again. With the array and the
ArrayList versions, the code simply added a few strings containing role names. You can then use
these three strings to, say, build up a drop-down list in a Web Form to enable a user to pick a role.
So far, so good. But what if one of the items in the list is not a string? What if another developer
accidentally wrote some code that adds a DropDownList control to the ArrayList? Because the
ArrayList accepts all objects, it won’t complain. However, your code will crash if it expects a
String, but gets a DropDownList control instead.

With .N ET 2.0, M icrosoft introduced a concept called generics. Generics are still strongly present
in version 4.5 of .N ET, helping you overcome the problems that weakly typed collections like the
ArrayList introduced.

c05.indd 155c05.indd 155 10/8/2012 9:52:20 AM10/8/2012 9:52:20 AM

156 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

An Introduction to Generics
Since their introduction with .N ET 2.0, generics pop up in many different locations in the .N ET
Framework. Although they are used often in situations where collections are used, the use of gener-
ics is not limited to collections; you can also use them for singular types of objects.

Generics are to code what M icrosoft Word templates are to word processing. They enable you to
write a code tem plate that can be used in different scenarios with different types. With generics,
you can defi ne a generic code template that doesn’t explicitly specify a type. O nly when that code is
used do you defi ne the type. The main benefi t of this is that you can reuse the same template over
and over again for multiple data types, without retyping and maintaining multiple versions of the
code. In addition to using generics in your own code defi nitions, you fi nd a host of generics-enabled
objects and collections in the .N ET Framework, ready to be used by your code.

To understand how you can take advantage of generics, take a look at the following example. It’s
essentially the same code you saw earlier where the ArrayList was used, but this time the type of
the list is constrained so it accepts only strings:

VB.NET

Dim roles As New List(Of String)

roles.Add("Administrators")
roles.Add("ContentManagers")
roles.Add("Members")

C#

List<string> roles = new List<string>();

roles.Add("Administrators");
roles.Add("ContentManagers");
roles.Add("Members");

Not much code has changed to make the roles list type safe. However, with the defi nition of List
(Of String) in VB.N ET and List<string> in C# the new list is now set up to allow only strings
to be added through its Add method. This compiles fi ne:

roles.Add("Administrators");

The following will not compile because 33 is not a String:
roles.Add(33);

Similar to a generics list of strings, you can also create lists to hold other types. For example:

VB.NET

Dim intList As New List(Of Integer) ' Can hold Integers only
Dim boolList As New List(Of Boolean) ' Can hold Booleans only
Dim buttonList As New List (Of Button) ' Can hold Button controls only

C#

List<int> intList = new List<int>(); // Can hold ints only
List<bool> boolList = new List<bool>(); // Can hold bools only
List<Button> buttonList = new List<Button>(); // Can hold Button controls only

c05.indd 156c05.indd 156 10/8/2012 9:52:20 AM10/8/2012 9:52:20 AM

Statements x 157

NOTE Because there’s a lot more to generics than what is shown here,
they deserve an entire book of their own. Wrox has released such a book:
Professional .NET 2.0 Generics by Tod Golding (ISBN: 978-0-7645-5988-4).
Although it was originally written for .NET 2.0, you’ll fi nd that all the concepts
and examples introduced in that book still apply.

Though the Add method is useful to add items to a collection, it can sometimes be a bit tedious if
you need to add multiple items to a collection at once. To make this easier, .N ET supports collec-
tion initializers. With a collection initializer, you declare the collection and add some items in one
step. You do this by adding the items in a pair of curly braces (prefi xed with the keyword From in
VB.N ET) as shown in the following example:

VB.NET

Dim myList As New List(Of Integer) From {1, 2, 3, 4, 5}

C#

List<int> myList = new List<int>() { 1, 2, 3, 4, 5 };

Right after this line, the list is populated with the fi ve integers.

Collection initializers are not limited to the List class or integers. You can use them with other col-
lection types and data types as well.

The generics examples you have seen barely scratch the surface of what is possible with generics.
However, when building ASP.N ET websites, you often don’t need all the advanced stuff that gener-
ics offer you. The List collection is so useful it had to be discussed here. Without a doubt, you’ll use
that collection in your own code one way or another.

STATEMENTS
To make a program or a website do something useful, you need to provide it with code statements
that it can execute. Statements cover a wide range of actions, such as show this button, send this
e-mail, execute this and that code when a user clicks that button, and so on. However, simply
executing these actions is not enough. You often need to execute some code only when a certain
condition is true. For example, if a visitor to an e-commerce website is buying more than $100
worth of merchandise at one time, she might get a discount of 10 percent. O therwise, she’ll pay the
full price. Conditions or decisions are therefore very important statements in a programming lan-
guage. Another important set of statements is the loops. Loops enable you to repeat a certain piece
of code a number of times. For example, you can have a loop that goes from 1 to 10, performing
some action on each iteration. Or you can loop through the products in a shopping cart, summing
up their total price, for example.

The fi nal important set of statements is the operators. Operators enable you to do something with
your values; or, to be more exact, they enable you to operate on them. For example, you use opera-
tors to add or subtract values, concatenate (combine) them, or compare them to each other.

The following three sections dig deeper into operators, decision making, and loops.

c05.indd 157c05.indd 157 10/8/2012 9:52:20 AM10/8/2012 9:52:20 AM

158 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

Operators
The most important operators can be grouped logically into fi ve different types; these types are cov-
ered in this section. Of these fi ve types, the assignment operators are probably the easiest to under-
stand and use.

Assignment Operators
The assignment operators are used to assign a value to a variable. This value can come from many
sources: a constant value, like the number 6, the value of another variable, or the result of an
expression or a function, which are discussed later. In its simplest form, an assignment looks like
this, where the number 40 is assigned to the age variable:

VB.NET

Dim age As Integer = 40

C#

int age = 40;

What if the person this age variable is referring to just had his birthday? You’d need to add 1 to the
age value. That’s where arithmetic operators come into play.

Arithmetic Operators
Arithmetic operators enable you to perform most of the familiar calculations on variables and val-
ues, like adding, subtracting, and dividing. The following table lists the common arithmetic opera-
tors for both VB.N ET and C#.

VB.NET C# USAGE

+ + Adds two values to each other

− − Subtracts one value from another

* * Multiplies two values

/ / Divides two values

\ n/a Divides two values but always returns a rounded integer

^ n/a Raises one value to the power of another

Mod % Divides two whole numbers and returns the remainder

The fi rst four operators probably look familiar, and their usage is pretty straightforward. The fol-
lowing code snippet shows the basic operations you can perform with these operators:

VB.NET

Dim firstNumber As Integer = 100
Dim secondNumber As Single = 23.5
Dim result As Double = 0

c05.indd 158c05.indd 158 10/8/2012 9:52:20 AM10/8/2012 9:52:20 AM

Statements x 159

result = firstNumber + secondNumber ' Results in 123.5
result = firstNumber - secondNumber ' Results in 76.5
result = firstNumber * secondNumber ' Results in 2350
result = firstNumber / secondNumber ' Results in 4.25531914893617

C#

int firstNumber = 100;
float secondNumber = 23.5F;
double result = 0;

result = firstNumber + secondNumber; // Results in 123.5
result = firstNumber - secondNumber; // Results in 76.5
result = firstNumber * secondNumber; // Results in 2350
result = firstNumber / secondNumber; // Results in 4.25531914893617

Note that in the C# example you need to add the letter F to the value of 23.5. This tells the compiler
you really want it to be a float rather than a double.

VB.N ET also supports the \ operator, which basically performs the division and then drops the
remainder from the value, effectively rounding the return value down to the nearest integer.

VB.NET

result = firstNumber \ secondNumber ' Results in 4

C# doesn’t have a special operator for this. However, when you try to divide two integers, the result
is always an integer as well. This means that 7 (stored as an int) divided by 2 (stored as an int) will
be 3. It’s important to realize that this rounding occurs, or you may end up with unexpected results.

The fi nal two operators need a bit more explanation. First, the ^ operator — for raising one number
to the power of another — is available only in the VB.N ET language:

VB.NET

Dim result As Double

result = 2 ^ 3 ' Results in 8 (2 * 2 * 2)
result = 3 ^ 2 ' Results in 9 (3 * 3)

C# doesn’t support this operator, but you can easily replicate its behavior using Math.Pow, which is
made available by the .N ET Framework. The following code snippet is functionally equivalent to
the preceding one:

C#

result = Math.Pow(2, 3); // Results in 8 (2 * 2 * 2)
result = Math.Pow(3, 2); // Results in 9 (3 * 3)

Of course Math.Pow is available to VB.N ET as well, so if you’re using that language, you have two
options to choose from.

The fi nal operator is called the modulus operator. It returns the remainder of the division of two
numbers, like this:

VB.NET

Dim firstNumber As Integer = 17
Dim secondNumber As Integer = 3

c05.indd 159c05.indd 159 10/8/2012 9:52:21 AM10/8/2012 9:52:21 AM

160 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

Dim result As Integer = firstNumber Mod secondNumber ' Results in 2

C#

int firstNumber = 17;
int secondNumber = 3;
int result = firstNumber % secondNumber; // Results in 2

Simply put, the modulus operator tries to subtract the second number from the fi rst as many times
as possible and then returns the remainder. In the preceding example this will succeed fi ve times,
subtracting a total of 15, leaving a remainder of 2 , which is then returned and stored in the result.
The modulus operator is often used to determine if a number is odd or even.

When working with operators, it’s important to keep their precedence in mind. To see why this is
important, consider the following calculation:

2 + 10 * 4

What is the outcome of this? You may think the answer is 48 if you fi rst add 2 and 10 together, and
then multiply the result by 4. However, the right answer is 42; fi rst the multiplication operator is
applied on 10 and 4, resulting in 40. Then 2 is added, which leads to 42 as the fi nal result. The fol-
lowing table shows the operator precedence for both VB.N ET and C#.

VB.NET C#

^ Exponentiation *, /, % Multiplication, division, and
modulus

*, / Multiplication and division +, − Addition and subtraction

\ Integer division

Mod Modulus arithmetic

+, − Addition and subtraction and string
 concatenation using the plus (+) symbol

& String concatenation

To force a different operator order, you can use parentheses around expressions. The contents of the
expressions are evaluated fi rst, resulting in a different order. For example:

(2 + 10) * 4
This does result in 48 now, because the addition operator is applied before the multiplication
operator.

Both languages also enable you to combine the arithmetic and assignment operators, enabling you
to take the value of a variable, perform some arithmetic operation on it, and assign the result back
to the variable. The following examples show how this works:

VB.NET

Dim someNumber1 As Integer = 3
Dim someNumber2 As Integer = 3
Dim someNumber3 As Integer = 3

c05.indd 160c05.indd 160 10/8/2012 9:52:21 AM10/8/2012 9:52:21 AM

Statements x 161

Dim someNumber4 As Integer = 3
someNumber1 += 3 ' Results in someNumber1 having the value 6
someNumber2 -= 3 ' Results in someNumber2 having the value 0
someNumber3 *= 3 ' Results in someNumber3 having the value 9
someNumber4 /= 3 ' Results in someNumber4 having the value 1

C#

 int someNumber1 = 3;
int someNumber2 = 3;
int someNumber3 = 3;
int someNumber4 = 3;
someNumber1 += 3; // Results in someNumber1 having the value 6
someNumber2 -= 3; // Results in someNumber2 having the value 0
someNumber3 *= 3; // Results in someNumber3 having the value 9
someNumber4 /= 3; // Results in someNumber4 having the value 1

C# also enables you to increase a variable’s value by 1 using the ++ operator, like this:

C#

int someNumber = 3;
someNumber++; // Results in someNumber having the value 4

This construct is used often in loops, as you’ll see later in the chapter.

Both languages also use arithmetic assignment operators to concatenate string values, as you’ll see
shortly.

Another common set of operators is the comparison operators, which enable you to compare values.

Comparison Operators
Just as with the arithmetic operators, VB.N ET and C# each have their own set of comparison
operators to compare one value to another. A comparison operator always compares two values or
ex pressions and then returns a boolean value as the result. The following table lists the most com-
mon comparison operators.

VB.NET C# Usage

= == Checks if two values are equal to each other

<> != Checks if two values are not equal

< < Checks if the fi rst value is less than the second

> > Checks if the fi rst value is greater than the second

<= <= Checks if the fi rst value is less than or equal to the second

>= >= Checks if the fi rst value is greater than or equal to the second

Is is In VB.NET: Compares two objects. In C#: Checks if a variable is of a
certain type

c05.indd 161c05.indd 161 10/8/2012 9:52:21 AM10/8/2012 9:52:21 AM

162 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

The fi rst thing you’ll notice is that C# uses a double equals symbol (==) for the standard comparison
operator. This clearly makes it different from the assignment operator. It’s a common mistake in
C# to use only a single equals symbol if you intend to compare two values. Consider the following
example:

if (result = 4)
{
 // Do something here with result
}

The intention here is to see if result equals 4. However, because the assignment operator is used
instead of a proper comparison operator, you’ll get the compile error that is displayed in Figure 5-2.

FIGURE 5-2

At fi rst the error message may look a lit tle strange. But if you look at the code a lit tle closer, it starts
to make more sense. First, result gets assigned a value of 4. This value is then used for the if state-
ment. However, the if statement needs a boolean value to determine whether it should run the code
inside the if block. Because you can’t convert an integer value to a boolean like this, you get a com-
pile error. The fi x is easy, though; just use the proper comparison operator instead:

if (result == 4)
{
 // Do something here with result
}

Similar to the simple comparison operator, you can use the other operators to compare values:

VB.NET

4 > 5 ' 4 is not greater than 5; evaluates to False
4 <> 5 ' 4 is not equal to 5; evaluates to True
5 >= 4 ' 5 is greater than or equal to 4; evaluates to True

C#

4 > 5 // 4 is not greater than 5; evaluates to false
4 != 5 // 4 is not equal to 5; evaluates to true
5 >= 4 // 5 is greater than or equal to 4; evaluates to true

The Is keyword in VB.N ET and is in C# do something completely different. In VB.N ET, Is com-
pares two instances of objects, something you learn more about in the second half of this chapter. In
C#, you use is to fi nd out if a certain variable is compatible with a certain type. You can accomplish
that in VB.N ET using the TypeOf operator. The following two examples are functionally equivalent:

VB.NET

Dim myTextBox As TextBox = New TextBox()

If TypeOf myTextBox Is TextBox Then

c05.indd 162c05.indd 162 10/8/2012 9:52:21 AM10/8/2012 9:52:21 AM

Statements x 163

 ' Run some code when myTextBox is a TextBox
End If

C#

TextBox myTextBox = new TextBox();

if (myTextBox is TextBox)
{
 // Run some code when myTextBox is a TextBox
}

O ne of the arithmetic operators enables you to add two values to each other. That is, you use the
plus (+) symbol to add two values together. But what if you want to combine two values, rather than
add them up? That’s where the concatenation operators are used.

Concatenation Operators
To concatenate two strings, you use the + in C# and the & character in VB.N ET. Additionally,
you can use += and &= to combine the concatenation and assignment operators. Consider this
example:

VB.NET

Dim firstString As String = "Hello "
Dim secondString As String = "World"
Dim result As String

' The following three blocks are all functionally equivalent
' and result in the value "Hello World"

result = firstString & secondString

result = firstString
result = result & secondString

result = firstString
result &= secondString

C#

string firstString = "Hello ";
string secondString = "World";
string result;

// The following three blocks are all functionally equivalent
// and result in the value "Hello World"

result = firstString + secondString;

result = firstString;
result = result + secondString;

result = firstString;
result += secondString;

c05.indd 163c05.indd 163 10/8/2012 9:52:21 AM10/8/2012 9:52:21 AM

164 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

In addition to the & and &= concatenation operators in VB.N ET, you could use + and += as well.
However, depending on the data types of the expressions you’re trying to concatenate, you may not
get the result you’d expect. Take a look at this code snippet:

Dim firstNumber As String = "4"
Dim secondNumber As Integer = 5
Dim result As String = firstNumber + secondNumber

Because firstNumber is a String, you may expect the fi nal result to be 45, a concatenation of 4 and
5. However, by default, the VB.N ET compiler will silently convert the string "4" into the number
4, after which addition and not concatenation takes place, giving result a value of "9", the string
representation of the addition.

To avoid this ambiguity, always use the & and &= operators to concatenate values. Additionally, you
can tell VB.N ET to stop converting these values for you automatically by adding the following line
to the top of your code fi les:

Option Strict On

This forces the compiler to generate errors when an implicit conversion is about to occur, as in the
previous example.

The fi nal group of operators worth looking into is the logical operators, which are discussed in the
next section.

Logical Operators
The logical operators are used to combine the results of multiple individual expressions, and to
make sure that multiple conditions are true or false, for example. The following table lists the most
common logical operators.

VB.NET C# Usage

And & Returns True when both expressions result in a True value.

Or | Returns True if at least one expression results in a True value.

Not ! Reverses the outcome of an expression.

AndAlso && Enables you to short-circuit your logical And condition
checks.

OrElse || Enables you to short-circuit your logical Or condition checks.

The And, Or, and Not operators (&, |, and ! in C#) are pretty straightforward in their usage, as dem-
onstrated in the following code snippets:

VB.NET

Dim num1 As Integer = 3
Dim num2 As Integer = 7

c05.indd 164c05.indd 164 10/8/2012 9:52:21 AM10/8/2012 9:52:21 AM

Statements x 165

If num1 = 3 And num2 = 7 Then ' Evaluates to True because both
 ' expressions are True

If num1 = 2 And num2 = 7 Then ' Evaluates to False because num1 is not 2

If num1 = 3 Or num2 = 11 Then ' Evaluates to True because num1 is 3

If Not num1 = 5 Then ' Evaluates to True because num1 is not 5

C#

int num1 = 3;
int num2 = 7;

if (num1 == 3 & num2 == 7) // Evaluates to true because both
 // expressions are true

if (num1 == 2 & num2 == 7) // Evaluates to false because num1 is not 2

if (num1 == 3 | num2 == 11) // Evaluates to true because num1 is 3

if (!(num1 == 5)) // Evaluates to true because num1 is not 5

The AndAlso and OrElse operators in VB.N ET and the && and || operators in C# work very simi-
lar to their And and Or counterparts (& and |) in C#. The difference is that with these operators the
second expression is never evaluated when the fi rst one already determines the outcome of the entire
expression. So with a simple And operator:

If num1 = 2 And num2 = 7 Then

both expressions are checked. This means that both num1 and num2 are asked for their values to see
if they equal 2 and 7, respectively. However, because num1 does not equal 2, there really isn’t a point
in asking num2 for its value anymore because the result of that expression will never change the fi nal
outcome of the combined expressions. This is where the AndAlso (&& in C#) operator enables you to
short-circuit your logic:

VB.NET

If num1 = 2 AndAlso num2 = 7 Then

C#

if (num1 == 2 && num2 == 7)

With this code, the expression num2 = 7 (num2 == 7 in C#) is never evaluated because num1 already
didn’t meet the required criteria.

This may not seem like a big deal with these simple expressions, but it can be a real performance
booster if one of the expressions is actually a slow and long-running operation. Consider this fi cti-
tious code:

VB.NET

If userName = "Administrator" And GetNumberOfRecordsFromDatabase() > 0 Then

C#

if (userName == "Administrator" & GetNumberOfRecordsFromDatabase() > 0)

c05.indd 165c05.indd 165 10/8/2012 9:52:22 AM10/8/2012 9:52:22 AM

166 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

The code for this If block executes only when the current user is called Administrator
and the fi ctitious call to the database returns at least one record. Now, imagine that
GetNumberOfRecordsFromDatabase() is a long-running operation. It would be a waste of time to
execute it if the current user weren’t Administrator. AndAlso (&& in C#) can fi x this problem:

VB.NET

If userName = "Administrator" AndAlso GetNumberOfRecordsFromDatabase() > 0 Then

C#

if (userName == "Administrator" && GetNumberOfRecordsFromDatabase() > 0)

Now, GetNumberOfRecordsFromDatabase() will only be executed when the current user is
Administrator. The code will be ignored for all other users, resulting in increased performance for
them.

Most of the previous examples used an If statement to demonstrate the logical operators. The If
statement itself is a very important language construct as well. The If statement and other ways to
make decisions in your code are discussed next.

Making Decisions
M aking decisions in an application is one of the most common things you do as a developer. For
example, you need to hide a button on a Web Form when a user is not an administrator. Or you
need to display the even rows in a table with a light gray background and the odd rows with a white
background. You can make all these decisions with a few different logic constructs, explained in the
following sections.

If, If Else, and ElseIf Constructs
The If statement (if in C#) is the simplest of all decision-making statements. The If statement con-
tains two relevant parts: the condition being tested and the code that is executed when the condition
evaluates to True (true in C#.) For example, to make a button visible only to administrators you
can use code like this:

VB.NET

If User.IsInRole("Administrators") = True Then
 DeleteButton.Visible = True
End If

C#

if (User.IsInRole("Administrators") == true)
{
 DeleteButton.Visible = true;
}

Note that VB.N ET uses the If and End If keywords, whereas C# uses if together with a pair of
curly braces to indicate the code block that is being executed. Also, with C#, the parentheses around
the condition being tested are required, whereas VB.N ET requires you to use the keyword Then
after the condition.

c05.indd 166c05.indd 166 10/8/2012 9:52:22 AM10/8/2012 9:52:22 AM

Statements x 167

This code explicitly checks for the value True / true. However, this is not required and it’s quite
common to leave it out. The following example is equivalent:

If User.IsInRole("Administrators") Then
 DeleteButton.Visible = True
End If

C#

if (User.IsInRole("Administrators"))
{
 DeleteButton.Visible = true;
}

I’ll use this succinct version in the remainder of the examples in this chapter. Often you want to per-
form a different action if the condition is not True. Using the negation operator Not or ! you could
simply write another statement:

VB.NET

If User.IsInRole("Administrators") Then
 DeleteButton.Visible = True
End If
If Not User.IsInRole("Administrators") Then
 DeleteButton.Visible = False
End If

C#

if (User.IsInRole("Administrators"))
{
 DeleteButton.Visible = true;
}
if (!User.IsInRole("Administrators"))
{
 DeleteButton.Visible = false;
}

Clearly, this leads to messy code, because you need to repeat each expression evaluation twice: once
for the True case and once for the False case. Fortunately, there is an easier solution: the Else
block (else in C#):

VB.NET

If User.IsInRole("Administrators") Then
 DeleteButton.Visible = True
Else
 DeleteButton.Visible = False
End If

C#

if (User.IsInRole("Administrators"))
{
 DeleteButton.Visible = true;
}
else

c05.indd 167c05.indd 167 10/8/2012 9:52:22 AM10/8/2012 9:52:22 AM

168 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

{
 DeleteButton.Visible = false;
}

For simple conditions this works fi ne. But consider a scenario in which you have more than two
options. In those scenarios you can use ElseIf in VB.N ET or the else if ladder in C#.

Imagine that your site uses three different roles: administrators, content managers, and standard
members. Administrators can create and delete content; content managers can only create new con-
tent, whereas members can’t do either of the two. To show or hide the relevant buttons, you can use
the following code:

VB.NET

If User.IsInRole("Administrators") Then
 CreateNewArticleButton.Visible = True
 DeleteArticleButton.Visible = True
ElseIf User.IsInRole("ContentManagers") Then
 CreateNewArticleButton.Visible = True
 DeleteArticleButton.Visible = False
ElseIf User.IsInRole("Members") Then
 CreateNewArticleButton.Visible = False
 DeleteArticleButton.Visible = False
End If

C#

if (User.IsInRole("Administrators"))
{
 CreateNewArticleButton.Visible = true;
 DeleteArticleButton.Visible = true;
}
else if (User.IsInRole("ContentManagers"))
{
 CreateNewArticleButton.Visible = true;
 DeleteArticleButton.Visible = false;
}
else if (User.IsInRole("Members"))
{
 CreateNewArticleButton.Visible = false;
 DeleteArticleButton.Visible = false;
}

Although this makes your code a bit more readable, you can still end up with diffi cult code when
you have many expressions to test. If that’s the case, you can use the Select Case (VB.N ET) or
switch (C#) statement.

Select Case/switch Constructs
Imagine you’re building a website for a concert hall that has shows on Saturday. During the week,
visitors can buy tickets online for Saturday’s gig. To encourage visitors to buy tickets as early as
possible, you decide to give them an early-bird discount. The earlier in the week they buy their tick-
ets, the cheaper they are. Your code to calculate the discount percentage can look like this, using a
Select Case/switch statement:

c05.indd 168c05.indd 168 10/8/2012 9:52:22 AM10/8/2012 9:52:22 AM

Statements x 169

VB.NET

 Dim today As DateTime = DateTime.Now
Dim discountPercentage As Double = 0

Select Case today.DayOfWeek
 Case DayOfWeek.Monday
 discountPercentage = 40
 Case DayOfWeek.Tuesday
 discountPercentage = 30
 Case DayOfWeek.Wednesday
 discountPercentage = 20
 Case DayOfWeek.Thursday
 discountPercentage = 10
 Case Else
 discountPercentage = 0
End Select

C#

 DateTime today = DateTime.Now;
double discountPercentage = 0;

switch (today.DayOfWeek)
{
 case DayOfWeek.Monday:
 discountPercentage = 40;
 break;
 case DayOfWeek.Tuesday:
 discountPercentage = 30;
 break;
 case DayOfWeek.Wednesday:
 discountPercentage = 20;
 break;
 case DayOfWeek.Thursday:
 discountPercentage = 10;
 break;
 default:
 discountPercentage = 0;
 break;
}

For each day where the discount is applicable (Monday through Thursday) there is a Case block.
The differences between VB.N ET and C# syntax are quite small: C# uses a lowercase c for case
and requires a colon after each case label. Additionally, you need to exit each block with a break
statement. At run time, the condition (today.DayOfWeek) is evaluated and the correct block is exe-
cuted. It’s important to understand that only the relevant block is executed, and nothing else. When
no valid block is found (the code is executed on a day between Friday and Sunday), the code in the
Case Else or default block fi res. You’re not required to write a Case Else or default block,
although it’s recommended to do so because it makes your code more explicit and easier to read.
The preceding examples could have left it out, because discountPercentage already gets a default
value of 0 at the top of the code block.

To get a feel for the statements you have seen so far, the following Try It O ut exercise shows you
how to use them in a small demo application.

c05.indd 169c05.indd 169 10/8/2012 9:52:22 AM10/8/2012 9:52:22 AM

170 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

TRY IT OUT Creating a Simple Web-Based Calculator

In this exercise you create a simple calculator that is able to add, subtract, multiply, and divide values.
You see how to use some of the logical and assignment operators and learn to use the If and Select
Case/switch constructs.

 1. Start by creating a new Web Form called CalculatorDemo.aspx in the Demos folder. Make sure
you don’t name the page Calculator or you’ll run into trouble later in this chapter when you create
a class by that name. Once again, make sure you’re using the Code Behind model and select the
correct programming language.

 2. Switch the page to Design View, and click in the dashed rectangle to put the focus on it. Choose
Table Í Insert Table from the main menu and add a table with three rows and three columns.

 3. Merge all three cells of the fi rst row by selecting them with the mouse (either by dragging the
mouse or by clicking each cell while holding down the Ctrl key), right-clicking the selection, and
choosing Modify Í Merge Cells from the menu that appears.

 4. Add the following controls to the page, set their ID and other properties as in the following table,
and arrange the controls as shown in Figure 5-3.

CONTROL TYPE CONTROL ID PROPERTY SETTINGS

Label ResultLabel Clear its Text property. To do this, right-click the property
name in the Properties Grid and choose Reset.

TextBox ValueBox1

DropDownList OperatorList Add four list items for the following arithmetic operators
using the DropDownList’s Smart Tasks panel.

+

-

*

/

TextBox ValueBox2

Button CalculateButton Set the Text property of the button to Calculate.

When you’re done, your page should look like Figure 5-3 in Design View.

FIGURE 5-3

c05.indd 170c05.indd 170 10/8/2012 9:52:22 AM10/8/2012 9:52:22 AM

Statements x 171

 5. Double-click the Calculate button and add the following bolded code in the code placeholder that
VS added for you:

VB.NET

Protected Sub CalculateButton_Click(sender As Object,
 e As EventArgs) Handles CalculateButton.Click
 If ValueBox1.Text.Length > 0 AndAlso ValueBox2.Text.Length > 0 Then

 Dim result As Double = 0
 Dim value1 As Double = Convert.ToDouble(ValueBox1.Text)
 Dim value2 As Double = Convert.ToDouble(ValueBox2.Text)

 Select Case OperatorList.SelectedValue
 Case "+"
 result = value1 + value2
 Case "-"
 result = value1 - value2
 Case "*"
 result = value1 * value2
 Case "/"
 result = value1 / value2
 End Select
 ResultLabel.Text = result.ToString()
 Else
 ResultLabel.Text = String.Empty
 End If
End Sub

C#

protected void CalculateButton_Click(object sender, EventArgs e)
{
 if (ValueBox1.Text.Length > 0 && ValueBox2.Text.Length > 0)
 {
 double result = 0;
 double value1 = Convert.ToDouble(ValueBox1.Text);
 double value2 = Convert.ToDouble(ValueBox2.Text);

 switch (OperatorList.SelectedValue)
 {
 case "+":
 result = value1 + value2;
 break;
 case "-":
 result = value1 - value2;
 break;
 case "*":
 result = value1 * value2;
 break;
 case "/":
 result = value1 / value2;
 break;
 }
 ResultLabel.Text = result.ToString();
 }

c05.indd 171c05.indd 171 10/8/2012 9:52:22 AM10/8/2012 9:52:22 AM

172 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

 else
 {
 ResultLabel.Text = string.Empty;
 }
}

 6. Save all changes and press Ctrl+F5 to open the page in the browser. If you get an error instead of
seeing the page, make sure you typed the code exactly as shown here, and that you named all con-
trols according to the table you saw earlier.

 7. Enter a number in the fi rst and second text boxes, choose an operator from the drop-down list, and
click the Calculate button. The code in the Code Behind fi res and then — based on the item you
selected in the drop-down list — the correct calculation is performed and the label is updated with
the result.

 8. Go ahead and try some other numbers and operators; you’ll see that the calculator carries out the
right operation every time you click the Calculate button.

How It Works

When you enter two values and click the Calculate button, the following code in the Code Behind fi res:

VB.NET

If ValueBox1.Text.Length > 0 AndAlso ValueBox2.Text.Length > 0 Then

C#

if (ValueBox1.Text.Length > 0 && ValueBox2.Text.Length > 0)

This code is necessary to ensure that both text boxes contain a value. The code uses a simple If
statement to ensure that both fi elds have a value. It also uses AndAlso or && to avoid checking the
Text property of the second TextBox when the fi rst is empty. In Chapter 9 you see a much cleaner
way to perform this validation. In that chapter you’ll also see how to make sure users enter valid
numbers, as currently the code crashes when you enter anything that cannot be converted to a
Double.

The code then declares a Double to hold the result of the calculation and then gets the values
from the two text box controls, converts the values to a Double using the ToDouble method of the
Convert class, and then sets up a Select Case (switch in C#) block to handle the type of opera-
tor you have chosen in the drop-down list:

VB.NET

Select Case OperatorList.SelectedValue
 Case "+"
 result = value1 + value2

C#

switch (OperatorList.SelectedValue)
{
 case "+":
 result = value1 + value2;
 break;

c05.indd 172c05.indd 172 10/8/2012 9:52:22 AM10/8/2012 9:52:22 AM

Statements x 173

For each item in the drop-down list, there is a Case statement. When you have chosen the +
operator from the list, the code in the fi rst case block fi res, and result is assigned the sum
of the numbers you entered in the two text boxes. Likewise, when you choose the subtrac-
tion operator, for example, the two values are subtracted from each other.

At the end, the result is converted to a String and then displayed on the label called
ResultLabel.

The Select Case/switch statements close off the discussion about making decisions in your code.
There’s one more group of statements left: loops that enable you to loop over code or over objects in
a collection.

Loops
Loops are extremely useful in many applications, because they enable you to execute code repeti-
tively, without the need to write that code more than once. For example, if you have a website
that needs to send a newsletter by e-mail to its 20,000 subscribers, you write the code to send the
newsletter once, and then use a loop that sends the newsletter to each subscriber the code fi nds in a
database.

Loops come as a few different types, each with their own usage and advantages.

The For Loop
The For loop simply repeats its code a predefi ned number of times. You defi ne the exact number of
iterations when you set up the loop. The For loop takes the following format:

VB.NET

For counter [As datatype] = start To end [Step stepSize]
 ' Code that must be executed for each iteration
Next [counter]

C#

for (startCondition; endCondition; step definition)
{
 // Code that must be executed for each iteration
}

This looks a lit tle odd, but a concrete example makes this a lot easier to understand:

VB.NET

For loopCount As Integer = 1 To 10
 Label1.Text &= loopCount.ToString() & "
"
Next

C#

for (int loopCount = 1; loopCount <= 10; loopCount++)
{
 Label1.Text += loopCount.ToString() + "
";
}

c05.indd 173c05.indd 173 10/8/2012 9:52:23 AM10/8/2012 9:52:23 AM

174 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

Although the syntax used in both languages is quite different, both code examples perform the same
action: They write out numbers from 1 to 10 on a Label control. That is, the loop is started by the
assignment of 1 to the variable loopCount. Next, the value is converted to a String and assigned
to the Label control. Then loopCount is increased by 1, and the loop continues. This goes on until
loopCount is 10, and then the loop ends. In this example, hard-coded numbers are used. However,
you can replace the start and end conditions with dynamic values from variables or other objects.
For example, if you’re working with the roles array you saw earlier, you can write out each role in
the array like this:

VB.NET

For loopCount As Integer = 0 To roles.Length - 1
 Label1.Text &= roles(loopCount) & "
"
Next

C#

for (int loopCount = 0; loopCount < roles.Length; loopCount++)
{
 Label1.Text += roles[loopCount] + "
";
}

Because arrays are zero-based, you need to address the fi rst item with roles(0) in VB.N ET and
roles[0] in C#. This also means that the loop needs to start at 0. The Length property of an
array returns the total number of items that the array contains. So when three roles are in the
array, Length returns 3. Therefore, in VB.N ET the code subtracts one from the Length and uses
that value as the end condition of the loop, causing the loop to run from 0 to 2 , accessing all three
elements.

The C# example doesn’t subtract 1 from the Length, though. Instead it uses the expression:
loopCount < roles.Length;

So, as long as loopCount is less than the length of the array, the loop continues. Again, this causes
the loop to access all three items, from 0 to 2.

The previous examples loop by adding 1 to the loopCount variable on each iteration. To use a
greater step increase, you use the keyword Step in VB.N ET, whereas C# enables you to defi ne the
step size directly in the step defi nition:

VB.NET

For loopCount As Integer = 0 To 10 Step 2
 Label1.Text &= loopCount.ToString() & "
"
Next

C#

for (int loopCount = 0; loopCount <= 10; loopCount = loopCount + 2)
{
 Label1.Text += loopCount.ToString() + "
";
}

This loop assigns the even numbers between 0 and 10 to the Label control.

If you are looping over an array or a collection of data, there’s another loop at your disposal that’s a
bit easier to read and work with: the For Each or foreach loop.

c05.indd 174c05.indd 174 10/8/2012 9:52:23 AM10/8/2012 9:52:23 AM

Statements x 175

The For Each/foreach Loop
The For Each loop in VB.N ET and the foreach loop in C# simply iterate over all the items in a
collection. Taking the roles array as an example, you can execute the following code to print each
role name on the Label control:

VB.NET

For Each role As String In roles
 Label1.Text &= role & "
"
Next

C#

foreach (string role in roles)
{
 Label1.Text += role + "
";
}

Because the roles variable is an array of strings, you need to set up the loop with a String as well,
as is done with the role variable. You would change this variable’s type if the collection contained
items of a different type.

In addition to the For and the For Each loops, there is one more loop that you need to look at: the
While loop.

The While Loop
As its name implies, the While loop is able to loop while a certain condition is true. Unlike the other
two loops, which usually end by themselves, the While loop could loop forever if you’re not careful.
It could also not execute at all if its condition is never met. The following example shows how to use
the While loop:

VB.NET

Dim success As Boolean = False
While Not success
 success = SendEmailMessage()
End While

C#

bool success = false;
while (!success)
{
 success = SendEmailMessage();
}

This code tries to send an e-mail message using the fi ctitious SendEmailMessage method and will
do so until it succeeds — that is, as long as the variable success has the value False (false in C#).
Note that Not and ! are used to reverse the value of success. The SendEmailMessage method is
supposed to return True when it succeeds and False when it doesn’t. If everything works out as
planned, the code enters the loop and calls SendEmailMessage. If it returns True, the loop condi-
tion is no longer met, and the loop ends. However, when SendEmailMessage returns False, for
example because the mail server is down, the loop continues and SendEmailMessage is called
again.

c05.indd 175c05.indd 175 10/8/2012 9:52:23 AM10/8/2012 9:52:23 AM

176 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

To avoid endless loops with the While loop, it’s often a good idea to add a condition that terminates
the loop after a certain number of tries. For example, the following code helps to avoid an infi nite
loop if the mail server is down:

VB.NET

Dim success As Boolean = False
Dim loopCount As Integer = 0
While Not success AndAlso loopCount < 3
 success = SendEmailMessage()
 loopCount = loopCount + 1
End While

C#

bool success = false;
int loopCount = 0;
while (!success && loopCount < 3)
{
 success = SendEmailMessage();
 loopCount = loopCount + 1;
}

With this code, the variable loopCount is responsible for exiting the loop after three attempts to call
SendEmailMessage. Instead of using loopCount = loopCount + 1, you can also use the combined
concatenation and assignment operators, like this:

VB.NET

loopCount += 1

C#

loopCount += 1;

// Alternatively C# enables you to do this:
loopCount++;

All examples have the same result: the loopCount value is increased by one, after which the new
total is assigned to loopCount again.

Besides the While loop, you have a few other alternatives, such as the Do While loop (do while in
C#), which ensures that the code to be executed is always executed at least once, and the Do Until
loop (not available in C#), which goes on until a certain condition is true, as opposed to looping
while a certain condition is true, as is the case with the While loop.

Exiting Loops Prematurely
It’s common to have the need to exit a loop before it has completely fi nished. You can do this with
Exit For in VB.N ET and break in C#, like this:

VB.NET

For loopCount As Integer = 1 To 10
 If loopCount = 5 Then

c05.indd 176c05.indd 176 10/8/2012 9:52:23 AM10/8/2012 9:52:23 AM

Organizing Code x 177

 Exit For
 End If
 Label1.Text &= loopCount.ToString() & "
"
Next

C#

for (int loopCount = 1; loopCount <= 10; loopCount++)
{
 if (loopCount == 5)
 {
 break;
 }
 Label1.Text += loopCount.ToString() + "
";
}

With this code, the label will only show the numbers 1 to 4, as the loop is exited as soon as loop-
Count has reached the value of 5. Note: This example doesn’t have a lot of real-world usage as you
would rewrite the code to loop four times only, but it shows the concept quite nicely.

You can use Continue For in VB and continue in C# to stop processing the current iteration and
move on with the next, if available.

So far, the code you’ve seen has been comprised of short and simple examples that can be placed
directly in the Code Behind of a web page; for example, in Page_Load or in a Button’s Click han-
dler that you have seen before. However, in real-world websites, you probably want to structure and
organize your code a lot more. In the next section, you see different ways to accomplish this.

ORGANIZING CODE
When you start adding more than just a few pages to your website, you’re almost certain to end up
with some code that you can reuse in multiple pages. For example, you may have some code that
reads settings from the Web.config fi le that you need in multiple fi les. Or you want to send an
e-mail with user details from different pages. So you need to fi nd a way to centralize your code. To
accomplish this in an ASP.N ET website, you can use functions and subroutines, which are discussed
next. To make these functions and subroutines available to all the pages in your site, you need to
create them in a special location, which is discussed afterward.

Methods: Functions and Subroutines
Functions and subroutines (subs) are very similar; both enable you to create a reusable block of code
that you can call from other locations in your application. The difference between a function and a
subroutine is that a function can return data, whereas a sub can’t. Together, functions and subrou-
tines are referred to as m ethods. You’ll see that term again in the fi nal part of this chapter that deals
with object orientation.

To make functions and subs more useful, they can be param eterized. That is, you can pass in addi-
tional information that can be used inside the function or subs. Functions and subs generally take
the following format:

c05.indd 177c05.indd 177 10/8/2012 9:52:23 AM10/8/2012 9:52:23 AM

178 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

VB.NET

' Define a function
Public Function FunctionName ([parameterList]) As DataType

End Function

' Define a subroutine
Public Sub SubName ([parameterList])

End Sub

C#

// Define a function
public DataType FunctionName([parameterList])
{

}

// Define a subroutine
public void SubName([parameterList])
{

}

The complete fi rst line, starting with Public, is referred to as the m ethod signature because it
defi nes the look of the function, including its name and its parameters. The Public keyword (pub-
lic in C#) is called an access m odifi er and defi nes to what extent other web pages or code fi les can
see this method. This is discussed in detail later in the chapter. For now, you should realize that
Public has the greatest visibility, so the method is visible to any calling code.

The name of the function is followed by parentheses, which in turn can contain an optional param-
eter list. The italic parts in these code examples will be replaced with real values in your code. The
parts between the square brackets ([]) are optional. To make it a lit tle more concrete, here are some
examples of functions and subs:

VB.NET

Public Function Add(a As Integer, b As Integer) As Integer
 Return a + b
End Function

Public Sub SendEmailMessage(emailAddress As String)
 ' Code to send an e-mail goes here
End Sub

C#

public int Add(int a, int b)
{
 return a + b;
}

public void SendEmailMessage(string emailAddress)
{

c05.indd 178c05.indd 178 10/8/2012 9:52:23 AM10/8/2012 9:52:23 AM

Organizing Code x 179

 // Code to send an e-mail goes here
}

In these code examples it’s clear that functions return a value, and subs don’t. The Add method
uses the Return keyword (return in all lowercase in C#) to return the sum of a and b. The Sub in
VB.N ET and the void method in C# don’t require the Return keyword, although you can use it to
exit the method prematurely.

Finally, both the function and subroutine have a param eter list that enables you to defi ne the name
and data type of variables that are passed to the method. Inside the method you can access these
variables as you would access normal variables. In the case of the Add method, you have two param-
eters: one for the left side of the addition and one for the right side. The SendEmailMessage method
has only a single parameter: a String holding the user’s e-mail address.

In earlier versions of VB.N ET you would see the keyword ByVal in front of each parameter in the
parameter list. This is the default type for all parameters, so VS no longer adds it for you. The oppo-
site of ByVal is ByRef. These keywords determine the way a value is sent to the function or subrou-
tine. When you specify ByVal, a copy of the variable is made. Any changes made to that copy inside
the method are lost as soon as the method fi nishes. In contrast, when you specify ByRef, a reference
to the variable is sent to the method. Any changes made to the incoming variable refl ect on the origi-
nal variable as well. The following short example demonstrates how this works:

Public Sub ByValDemo(someValue As Integer) ' No ByVal needed as it's the default
 someValue = someValue + 20
End Sub

Public Sub ByRefDemo(ByRef someValue As Integer)
 someValue = someValue + 20
End Sub

Dim x As Integer = 0
ByValDemo(x)

Label1.Text = x.ToString() ' Prints out 0; A copy of x is sent to ByValDemo,
 ' leaving the original value of x unmodified.

Dim y As Integer = 0
ByRefDemo(y)

Label1.Text = y.ToString() ' Prints out 20; A reference to y is sent
 ' to ByRefDemo so when that method modified
 ' someValue, it also changed the variable y.

C# has a similar construct using the ref keyword. The biggest difference from VB.N ET is that you
need to specify the ref keyword in the call to the method as well:

public void ByRefDemo(ref int someValue)
{
 someValue = someValue + 20;
}

int y = 0;
ByRefDemo(ref y); // Just as in the VB example, y contains 20
 // after the call to ByRefDemo

c05.indd 179c05.indd 179 10/8/2012 9:52:23 AM10/8/2012 9:52:23 AM

180 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

Be careful when using reference parameters like this; before you know it the method may change
important variables in the calling code. This can lead to bugs that are hard to track down.

To make your sitewide methods accessible to pages in your website, you should place them in a cen-
tralized location. The App_Code folder of your website is a perfect location for your code.

The App_Code Folder
The App_Code folder is a special ASP.N ET folder. It’s designed specifi cally to hold code fi les, like
classes that you’ll use throughout the site. Code that applies only to one page (like the handler of a
Button control’s Click event) should remain in the page’s Code Behind, as you have seen so far.

NOTE The App_Code folder is specifi c to Web Site Projects, the project type
used for the Planet Wrox sample website. Web Application Projects, on the
other hand, don’t use or support an App_Code folder. However, that project type
enables you to create code fi les in pretty much any other location. When you
build sites using the Web Application Project model, you’re advised to create
a central code folder (called Code or CodeFiles, for example) to store all your
code fi les. To follow along with the samples in this and later chapters, it’s impor-
tant that you’re using a Web Site Project as explained in Chapter 2.

To add the App_Code folder to your site, right-click the site’s name in the Solution Explorer and
choose Add Í Add ASP.N ET Folder Í App_Code. The folder is added to the site and gets a special
icon, shown in Figure 5-4.

FIGURE 5-4

With the App_Code folder in place, you can start adding class fi les to it. Class fi les have an exten-
sion that matches the programming language you have chosen for the site: .cs for C# fi les and .vb
for fi les containing VB.N ET code. Inside these class fi les you can create classes that in turn contain
methods (functions and subroutines) that can carry out common tasks. Classes are discussed in
more detail in the fi nal section of this chapter; for now, focus on the methods in the code fi le and
how they are called, rather than on why you need to add the code to a class fi rst.

The next exercise shows you how to use the App_Code folder to optimize the calculator you created
in an earlier Try It O ut.

c05.indd 180c05.indd 180 10/8/2012 9:52:24 AM10/8/2012 9:52:24 AM

Organizing Code x 181

TRY IT OUT Optimizing the Calculator

In this exercise, you create a class called Calculator that exposes four methods: Add, Subtract,
Multiply, and Divide. When the class is set up and is capable of performing the necessary computing
actions, you modify the CalculatorDemo.aspx fi le so it uses your new Calculator class. Although
this is a trivial example when it comes to the amount of code you need to write and the added fl exibility
you gain by moving your code from the ASPX page to the App_Code folder so it can be reused by other
applications, it’s comprehensive enough to show you the concept, yet short enough to enable you to
understand the code. For now, just focus on how the calculator works and how to call its methods. In
the section on object orientation later in this chapter, you see exactly what a class is.

 1. If you haven’t already done so, start by adding an App_Code folder to your site by right-clicking
the site and choosing Add Í Add ASP.NET Folder Í App_Code.

 2. Right-click this newly created folder and choose Add Í Add New Item.

 3. In the dialog box that follows, select the appropriate programming language, and click Class.

 4. Type Calculator as the name of the fi le and click Add. This creates a class fi le that in turn con-
tains a class called Calculator. Note that it’s common practice to name classes using what’s called
Pascal casing, where each word starts with a capital letter.

 5. Right after the line of code that defi nes the Calculator class, add the following four methods,
replacing any code that was already present in the class:

VB.NET

Public Class Calculator

 Public Function Add(a As Double, b As Double) As Double
 Return a + b
 End Function

 Public Function Subtract(a As Double, b As Double) As Double
 Return a - b
 End Function

 Public Function Multiply(a As Double, b As Double) As Double
 Return a * b
 End Function

 Public Function Divide(a As Double, b As Double) As Double
 Return a / b
 End Function

End Class

C#

public class Calculator
{
 public double Add(double a, double b)
 {
 return a + b;
 }

 public double Subtract(double a, double b)

c05.indd 181c05.indd 181 10/8/2012 9:52:24 AM10/8/2012 9:52:24 AM

182 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

 {
 return a − b;
 }

 public double Multiply(double a, double b)
 {
 return a * b;
 }

 public double Divide(double a, double b)
 {
 return a / b;
 }
}

 6. Next, modify the Code Behind of the CalculatorDemo.aspx page so it uses the class you just cre-
ated. You need to make two changes: First you need to add a line of code that creates an instance
of the Calculator class, and then you need to modify each Case block to use the relevant calcula-
tion methods in the calculator:

VB.NET

Dim myCalculator As New Calculator()
Select Case OperatorList.SelectedValue
 Case "+"
 result = myCalculator.Add(value1, value2)
 Case "-"
 result = myCalculator.Subtract(value1, value2)
 Case "*"
 result = myCalculator.Multiply(value1, value2)
 Case "/"
 result = myCalculator.Divide(value1, value2)
End Select

C#

Calculator myCalculator = new Calculator();
switch (OperatorList.SelectedValue)
{
 case "+":
 result = myCalculator.Add(value1, value2);
 break;
 case "-":
 result = myCalculator.Subtract(value1, value2);
 break;
 case "*":
 result = myCalculator.Multiply(value1, value2);
 break;
 case "/":
 result = myCalculator.Divide(value1, value2);
 break;
}

 7. Save all your changes and open the page in the browser. The calculator still works as before; only
this time the calculations are not carried out in the page’s Code Behind fi le, but by the Calculator
class in the App_Code folder instead.

c05.indd 182c05.indd 182 10/8/2012 9:52:24 AM10/8/2012 9:52:24 AM

Organizing Code x 183

How It Works

The fi le you created in the App_Code folder contains a class called Calculator. You learn more about
classes in the fi nal section of this chapter, but for now it’s important to know that a class is like a defi -
nition for an object that can expose methods you can call at run time. In this case, the defi nition for
the Calculator class contains four methods to perform arithmetic operations. These methods accept
parameters for the left-hand and right-hand sides of the calculations. Each method simply carries out
the requested calculation (Add, Subtract, and so on) and returns the result to the calling code.

The code in the Code Behind of the CalculatorDemo.aspx page fi rst creates an instance of the
Calculator class. That is, it creates an object in the computer’s memory based on the class defi nition.
To do this, it uses the New (new in C#) keyword to create an instance of Calculator, which is then
stored in the variable myCalculator. You learn more about the New keyword later in this chapter when
objects are discussed. Note that the data type of this variable is Calculator, the name of the class.

VB.NET

Dim myCalculator As New Calculator()

C#

Calculator myCalculator = new Calculator();

O nce the Calculator instance is created, you can call its methods. Just as you saw earlier with other
methods, the methods of the Calculator class accept parameters that are passed in by the calling code:

VB.NET

Case "+"
 result = myCalculator.Add(value1, value2)

C#

case "+":
 result = myCalculator.Add(value1, value2);
 break;

The Add method then adds the two values and returns the result as a Double, which is stored in the
variable result. Just as in the fi rst version of the calculator, at the end the result is displayed on the
page with a Label control.

Functions and subroutines are a great way to organize your web application. They enable you to
create reusable blocks of code that you can easily call from other locations. Because code you need
more than once is defi ned only once, it’s much easier to maintain or extend the code. If you fi nd a
bug in a function, simply fi x it in its defi nition in the App_Code folder, and all pages using that func-
tion automatically benefi t from the change. In addition to the increased maintainability, functions
and subs also make your code easier to read: Instead of wading through long lists of code in a page,
you just call a single function and work with the return value (if any). This makes the code easier on
your brain, minimizing the chance of bugs in your application.

Functions and subs are not the only way to organize code in your .N ET projects. Another common
way to organize things is to use namespaces.

c05.indd 183c05.indd 183 10/8/2012 9:52:24 AM10/8/2012 9:52:24 AM

V413HA
V

184 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

Organizing Code with Namespaces
Namespaces seem to cause a lot of confusion with new developers. They think they’re scary, they
think way too many of them exist, or they don’t see the need to use them. None of this is true, and
with a short explanation of them, you’ll understand and maybe even like namespaces.

N am espaces are intended to solve two major problems: to organize the enormous amount of func-
tionality in the .N ET Framework and in your own code, and to avoid nam e collisions, where two
different types share the same name. O ne common misconception about namespaces is that there is
a direct relation with .N ET assemblies (fi les with a .dll extension that are loaded and used by the
.N ET Framework), but that’s not the case. Although you typically fi nd namespaces like System
.Web.UI in a DLL called System.Web.dll, it’s possible (and common) to have multiple namespaces
defi ned in a single DLL or to have a namespace be spread out over multiple assemblies. Keep that in
mind when adding references to assemblies, as explained later.

To see what a namespace looks like, open one of the Code Behind fi les of the ASPX pages you’ve
created so far. You’ll see something similar to this:

VB.NET

Partial Class Demos_CalculatorDemo
 Inherits System.Web.UI.Page

C#

public partial class Demos_CalculatorDemo : System.Web.UI.Page
{

Note that the defi nition of the class name is followed by the Inherits keyword in VB and a colon in
C#, which in turn are followed by System.Web.UI.Page. You see later what this Inherits keyword
is used for. In this code, Page is the name of a class (a data type), which is defi ned in the System
.Web.UI namespace. By placing the Page class in the System.Web.UI namespace, developers (and
compilers) can see this class is about a web page. By contrast, imagine the following (fi ctitious) class
name:

Microsoft.Word.Document.Page

This code also refers to a Page class. However, because it’s placed in the Microsoft.Word
.Document namespace, it’s easy to see that it’s referring to a page of a Word document, not a web
page. This way there is no ambiguity between a web page and a Word document page. This in turn
helps the compiler understand which class you are referring to.

Another benefi t of namespaces is that they help you fi nd the right data type. Instead of displaying
thousands and thousands of items in the IntelliSense list, you get a few top-level namespaces. When
you choose an item from that list and press the dot key (.), you get another relatively short list with
types and other namespaces that live inside the chosen namespace.

Namespaces are nothing more than simple containers that you can refer to by name using the dot
notation. They are used to prefi x each data type that is available in your application. For example,
the Double data type lives in the System namespace, thus its fully qualifi ed name is System
.Double. Likewise, the Button control you’ve added to your web pages lives in the System.Web
.UI.WebControls namespace, thus its full name is System.Web.UI.WebControls.Button.

c05.indd 184c05.indd 184 10/8/2012 9:52:24 AM10/8/2012 9:52:24 AM

Organizing Code x 185

It’s also easy to create your own namespaces. As long as they don’t collide with an existing name,
you can pretty much make up your own namespaces as you see fi t. For example, you could wrap the
Calculator class in the following namespace (in Calculator.vb or Calculator.cs in App_Code):

VB.NET

Namespace Wrox.Samples

 Public Class Calculator
 ...
 End Class

End Namespace

C#

namespace Wrox.Samples
{
 public class Calculator
 {
 ...
 }
}

With the calculator wrapped in this namespace, you could create a new instance of it like this:

VB.NET

Dim myCalculator As New Wrox.Samples.Calculator()

C#

Wrox.Samples.Calculator myCalculator = new Wrox.Samples.Calculator();

Although you get some help from IntelliSense to fi nd the Calculator class, typing these long names
becomes boring after a while. Fortunately, there’s a fi x for that as well.

After you have created your own namespaces, or if you want to use existing ones, you need to make
them available in your code. You do this with the keyword Imports (in VB.N ET) or using (in C#).
For example, to make your Calculator class available in the Calculator demo page without specify-
ing its full name, you can add the following namespace to your code:

VB.NET

Imports Wrox.Samples

Partial Class Demos_CalculatorDemo
 Inherits System.Web.UI.Page

C#

using Wrox.Samples;

public partial class Demos_CalculatorDemo : System.Web.UI.Page
{

With this Imports/using statement in place, you can now simply use Calculator again instead of
Wrox.Samples.Calculator.

c05.indd 185c05.indd 185 10/8/2012 9:52:24 AM10/8/2012 9:52:24 AM

186 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

If you are using C#, you’ll see a number of using statements by default in the Code Behind of
an ASPX page for namespaces like System and System.Web.UI.WebControls. If you’re using
VB.N ET, you won’t see these references. Instead, with a VB.N ET website, the default namespaces
are included in the machine’s global Web.config fi le under the <namespaces> element.

Q uite often, you know the name of the class, but you don’t know the namespace it lives in. VS
makes it very easy to fi nd the namespace and add the required Imports or using statement for you.
Simply type the name of the class you want to use and then place the cursor in the class name and
press Ctrl+. (Ctrl+Dot). You see a menu appear that lets you select the right namespace, as shown in
Figure 5-5.

FIGURE 5-5

If the dialog box doesn’t offer to add an Imports or using statement, the assembly that contains
the class you’re looking for may not be referenced by the project. If that’s the case, right-click the
website in the Solution Explorer and choose Add Reference. In the dialog box that follows you can
choose from the many built-in .N ET assemblies on the .N ET tab or browse to a third-party assem-
bly using the Browse button. O nce the reference is added you should be able to add an Imports or
using statement for the class you’re looking for by pressing Ctrl+. again on the class name.

O nce you start writing lots of code, you may quickly forget where you declared what, or what a
variable or method is used for. It’s therefore wholeheartedly recommended to put comments in your
code.

Writing Comments
No matter how clean a coder you are, it’s likely that someday you will run into code that makes you
raise your eyebrows and think, “ What on earth is this code supposed to do?” O ver the years, the
way you program will change; you’ll learn new stuff, optimize your coding standards, and fi nd ways
to code more effi ciently. To make it easier for you to recognize and understand your code now and
two years from now, it’s a good idea to comment your code. You have two main ways to add com-
ments in your code fi les: inline and as XM L comments.

Commenting Code Inline
Inline comments are written directly in between your code statements. You can use them to com-
ment on existing variables, diffi cult loops, and so on. In VB.N ET, you can comment out only one
line at a time using the tick (') character, which you place in front of the text that you want to use as
a comment. To comment a single line in C#, you use two slashes (//). Additionally, you can use /*
and */ to comment out an entire block of code in C#. The following examples show some different
uses of comments:

c05.indd 186c05.indd 186 10/8/2012 9:52:24 AM10/8/2012 9:52:24 AM

Organizing Code x 187

VB.NET

' Usage: explains the purpose of variables, statements and so on.
' Used to store the number of miles the user has traveled last year.
Dim distanceInMiles As Integer

' Usage: comment out code that's not used (anymore).
' In this example, SomeUnfinishedMethod is commented out
' to prevent it from being executed.
' SomeUnfinishedMethod()

' Usage: End of line comments.
If User.IsInRole("Administrators") Then ' Only allow admins in this area
End If

C#

// Usage: explains the purpose of variables, statements and so on.
// Used to store the number of miles the user has traveled last year.
int distanceInMiles;

// Usage: comment out code that's not used (anymore).
// In this example, SomeUnfinishedMethod is commented out
// to prevent it from being executed.
// SomeUnfinishedMethod();

// Usage: End of line comments.
if (User.IsInRole("Administrators")) // Only allow admins in this area
{ }

/*
 * This is a block of comments that is often used to add additional
 * information to your code, for example to explain a difficult loop. You can
 * also use this to (temporarily) comment a whole block of code.
*/

To comment out the code, simply type the code character (' or //) at the location where you want
the comment to start. To comment out a block of code, select it in the text editor and press Ctrl+K
followed by Ctrl+C. Similarly, press Ctrl+K followed by Ctrl+U to uncomment a selected block of
code.

Alternatively, you can choose Edit Í Advanced Í Comment Selection or Uncomment Selection from
the main menu.

Inline comments are usually good for documenting small details of your code. However, it’s also a
good idea to provide a high-level overview of what your code does. For example, for a method called
SendEmailMessage it would be good to have a short description that explains what the method does
and what the parameters are used for. This is exactly what XM L comments are used for.

Writing XML Comments
XM L comments are comments that you add as XM L elements (using angle brackets: < >) in your
code to describe its purpose, parameters, return value, and more. The VS IDE helps you by writing
these comments. All you need to do is position your cursor on the line just before a class or method

c05.indd 187c05.indd 187 10/8/2012 9:52:25 AM10/8/2012 9:52:25 AM

188 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

and type ''' (three tick characters) for VB or /// (three forward slashes) for C#. As soon as you do
that, the IDE inserts XM L tags for the summary and, optionally, the parameters and return type
of a method. O nce again, consider a SendEmailMessage method. It could have two parameters of
type String: one for the e-mail address to send the message to, and one for the mail body. With the
XM L comments applied, the method could look like this:

VB.NET

''' <summary>
''' Sends out an e-mail to the address specified by emailAddress.
''' </summary>
''' <param name="emailAddress">The e-mail address of the recipient.</param>
''' <param name="mailBody">The body of the mail message.</param>
''' <returns>This method returns True when the message was sent successfully;
''' and False otherwise.</returns>
''' <remarks>Attention: this method assumes a valid mail server is
''' available.</remarks>
Public Function SendEmailMessage(emailAddress As String,
 mailBody As String) As Boolean
 ' Implementation goes here
End Function

C#

/// <summary>
/// Sends out an e-mail to the address specified by emailAddress.
/// </summary>
/// <param name="emailAddress">The e-mail address of the recipient.</param>
/// <param name="mailBody">The body of the mail message.</param>
/// <returns>This method returns true when the message was sent successfully;
/// and false otherwise.</returns>
/// <remarks>Attention: this method assumes a valid mail server is
/// available.</remarks>
public bool SendEmailMessage(string emailAddress, string mailBody)
{
 // Implementation goes here
}

The cool thing about this type of commenting is that the comments you type here show up in
IntelliSense in the code editor when you try to call the method (see Figure 5-6).

FIGURE 5-6

This makes it much easier for you and other developers to understand the purpose of the method
and its parameters.

In addition to aiding development in the code editor, you can also use the XM L comments to create
good-looking, M SDN -like documentation. A number of third-party tools are available that help you
with this, including M icrosoft’s own Sandcastle (http://msdn.microsoft.com/en-us/vstudio/
bb608422.aspx) and Document! X from Innovasys (www.innovasys.com/).

c05.indd 188c05.indd 188 10/8/2012 9:52:25 AM10/8/2012 9:52:25 AM

Object Orientation Basics x 189

OBJECT ORIENTATION BASICS
A chapter about writing code in ASP.N ET wouldn’t be complete without a section on object ori-
entation (O O). Object orientation, or object-oriented programming, is a highly popular style of
programming where the software is modeled as a set of objects interacting with each other. Object
orientation is at the heart of the .N ET Framework. Literally everything inside the framework is an
object, from simple things like integers to complex things like a DropDownList control, a connection
to the database, or a data-driven control.

Because object orientation is such an important aspect of .N ET, it’s important to be familiar with
the general concepts of object-oriented programming. At the same time, you don’t have to be an
expert on OO to be able to build websites with ASP.N ET. This section gives you a 10,000-foot over-
view of the most important terms and concepts. This helps you get started with object orientation,
so you can start building useful applications in the next chapter instead of keeping your nose in the
books for the next three weeks.

Important OO Terminology
In object orientation, everything revolves around the concept of objects. In OO everything is, in
fact, an object. But what exactly is an object? And what do classes have to do with them?

Objects
O bjects are the basic building blocks of object-oriented programming languages. Just like in the real
world, an object in OO -land is a thing, but stored in the computer’s memory. It can be an integer holding
someone’s age or an open database connection to a SQL Server located on the other side of the world,
but it can also be something more conceptual, like a web page. In your applications, you create a new
object with the New (new in C#) keyword, as you saw with the calculator example. This process of creat-
ing new objects is called instantiating and the objects you create are called instances. You can instantiate
complex or custom types like Calculator, as well as simple types like Integers and Strings:

VB.NET

Dim myCalculator As Calculator = New Calculator()

Dim age As Integer = New Integer()

C#

Calculator myCalculator = new Calculator();

int age = new int();

Because it’s so common to create variables of simple types like Integer (int in C#) and String
(string in C#), the compiler allows you to leave out the new keyword and the assignment.
Therefore, the following code is functionally equivalent to the preceding age declaration:

VB.NET

Dim age As Integer

C#

int age;

c05.indd 189c05.indd 189 10/8/2012 9:52:25 AM10/8/2012 9:52:25 AM

190 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

All data types listed at the beginning of this chapter except System.Object can be created without
the New keyword.

O nce you have created an instance of an object, such as the myCalculator object, it’s ready to
be used. For example, you can access its methods and properties to do something useful with the
object. But before you look at methods and properties, you need to understand classes.

Classes
Classes are the blueprints of objects. Just as you can use a single blueprint to build a bunch of simi-
lar houses, you can use a single class to create multiple instances of that class. So the class acts as
the defi nition of the objects that you use in your application. At its most basic form, a class looks
like this:

VB.NET

Public Class ClassName

End Class

C#

public class ClassName
{
}

Because this code simply defi nes an empty class, it cannot do anything useful. To give the class some
behavior, you can give it fi elds, properties, m ethods, and constructors. In addition, you can let the
class inherit from an existing class to give it a head start in terms of functionality and behavior.
You’ll come to understand these terms in the next couple of sections.

Fields
Fields are simple variables declared at the class level that can contain data. They are often used as
backing variables for properties (as you’ll see in the next section), but that doesn’t have to be the
case. Here’s a quick example of a fi eld in a Person class:

VB.NET

Public Class Person
 Private _firstName As String
End Class

C#

public class Person
{
 private string _firstName;
}

Fields are often marked as Private (private in C#), which makes them visible only in the class that
defi nes them. If you have the need to expose fi elds to other classes as well, you should use proper-
ties, which are discussed next. Later in the chapter you learn more about the Private keyword and
other access modifi ers.

c05.indd 190c05.indd 190 10/8/2012 9:52:25 AM10/8/2012 9:52:25 AM

Object Orientation Basics x 191

Properties
Properties of an object are the characteristics the object has. Consider a Person object. What kind
of properties does a Person have? It’s easy to come up with many different characteristics, but the
most common are:

 ‰ First name
 ‰ Last name
 ‰ Date of birth

You defi ne a property in a class with the Property keyword (in VB.N ET) or with a property header
similar to a method in C#. In both languages, you use a Get block (get in C#) and a Set block
(set in C#) to defi ne the so-called getters and setters of the property. The getter is accessed when
an object is asked for the value of a specifi c property, and the setter is used to assign a value to the
property. Properties only provide access to underlying data stored in the object; they don’t contain
the actual data. To store the data, you need what is called a back ing variable. This is often a simple
fi eld defi ned in the class that is able to store the value for the external property. In the following
example, the variable _firstName is the backing variable for the FirstName property:

VB.NET

Public Class Person
 Private _firstName As String
 Public Property FirstName() As String
 Get
 Return _firstName
 End Get
 Set(value As String)
 _firstName = value
 End Set
 End Property
End Class

C#

 public class Person
{
 private string _firstName;
 public string FirstName
 {
 get { return _firstName; }
 set { _firstName = value; }
 }
}

It is common to prefi x the private backing variables with an underscore, followed by the fi rst word in
all lowercase, optionally followed by more words that start with a capital again. So the FirstName
property has a backing variable called _firstName, LastName has one called _lastName, and so on.
This way, all variables that apply to the entire class are nicely packed together in the IntelliSense list.
Simply type an underscore in your code and you’ll get the full list of private variables. Note that the
underscore is typically not used when defi ning variables inside a function or a subroutine.

c05.indd 191c05.indd 191 10/8/2012 9:52:25 AM10/8/2012 9:52:25 AM

192 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

Just like the Public keyword you saw earlier, Private is also an access modifi er. You learn more
about access modifi ers later in this chapter.

The main reason for a property in a class is to encapsulate data. The idea is that a property enables
you to control the data that is being assigned to it. This way, you can perform validation or manipu-
lation of the data before it’s stored in the underlying backing variable. Imagine that one of the busi-
ness rules of your application states that all fi rst names must be written with the fi rst letter as a
capital. In non–object-oriented languages, the developer setting the name would have to keep this
rule in mind every time a variable was fi lled with a fi rst name. In an OO approach, you can make
the FirstName property responsible for this rule so others don’t have to worry about it anymore.
You can do this type of data manipulation in the setter of the property:

VB.NET

Set(value As String)
 If Not String.IsNullOrEmpty(value) Then
 _firstName = value.Substring(0, 1).ToUpper() & value.Substring(1)
 Else
 _firstName = String.Empty
 End If
End Set

C#

set
{
 if (!string.IsNullOrEmpty(value))
 {
 _firstName = value.Substring(0, 1).ToUpper() + value.Substring(1);
 }
 else
 {
 _firstName = string.Empty;
 }
}

This code demonstrates that in both VB.N ET and C#, the value parameter is accessible, just as a
parameter is accessible to a method. The value parameter contains the value that is being assigned
to the property. In VB.N ET, the value parameter is defi ned explicitly in the property’s setter. In C#
it’s not specifi ed explicitly, but you can access it nonetheless.

The code fi rst checks if the value that is being passed is not Nothing (null in C#) and that it
doesn’t contain an empty string, using the handy String.IsNullOrEmpty method.

The code in the If block then takes the fi rst letter of value, using the Substring method of the
String class, to which it passes the values 0 and 1. The 0 indicates the start of the substring and the 1
indicates the length of the string that must be returned. String indexing is zero-based as well, so a start
of 0 and a length of 1 effectively returns the fi rst character of the value parameter. This character is
then changed to uppercase using ToUpper(). Finally, the code takes the remainder of the value param-
eter using Substring again and assigns the combined name back to the backing variable. In this call to
Substring, only the start index is passed, which returns the string from that position to the end.

You can now use code that sets the name with arbitrary casing. But when you try to access the name
again, the fi rst name will always begin with a proper fi rst character:

c05.indd 192c05.indd 192 10/8/2012 9:52:25 AM10/8/2012 9:52:25 AM

Object Orientation Basics x 193

VB.NET

Dim myPerson As Person = New Person() ' Create a new instance of Person
myPerson.FirstName = "imar" ' Accessing setter to change the value

Label1.Text = myPerson.FirstName ' Accessing getter that now returns Imar

C#

Person myPerson = new Person(); // Create a new instance of Person
myPerson.FirstName = "imar"; // Accessing setter to change the value

Label1.Text = myPerson.FirstName; // Accessing getter that now returns Imar

For simple properties that don’t need any data manipulation or validation, you can use so-called
autom atic properties. With these properties, you can use a much more condensed syntax without
the need for a private backing variable. When the code is compiled, the compiler creates a hidden
backing variable for you, and you’ll need to refer to the public property. Here’s the DateOfBirth
property of the Person class, written as an automatic property:

VB.NET

Public Property DateOfBirth As DateTime

C#

public DateTime DateOfBirth { get; set; }

The Visual Basic implementation of automatic properties has one advantage over the C# ver-
sion: You can declare the property and give it a value in one shot. The following snippet defi nes a
CreateDate property and assigns it with the current date and time:

VB.NET

Public Property CreateDate As DateTime = DateTime.Now

To assign a default value to an automatic property in C#, you need to set its value using construc-
tors, which are discussed later.

If you later decide you need to write code in the getter or the setter of the property, it’s easy to
extend the relevant code blocks without breaking your existing applications. Until that time, you
have nice, clean property defi nitions that don’t clutter up your class.

Creating Read-Only and Write-Only Properties
At times, read-only or write-only properties make a lot of sense. For example, the ID of an object
could be read-only if it is assigned by the database automatically. When the object is constructed
from the database, the ID is assigned to the private backing variable. The public Id property is then
made read-only to stop calling code from accidentally changing it. Likewise, you can have a write-
only property for security reasons. For example, you could have a Password property on a Person
object that you can only assign to if you know it, but no longer read it afterward. Internally, code
within the class can still access the backing variables to work with the password value. Another
good candidate for a read-only property is one that returns a combination of data. Consider a
FullName property of a Person class that returns a combination of the FirstName and LastName
properties. You use the setter of each individual property to assign data, but you can have a read-
only property that returns the concatenated values.

c05.indd 193c05.indd 193 10/8/2012 9:52:26 AM10/8/2012 9:52:26 AM

194 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

Read-only or write-only properties in C# are simple: Just leave out the setter (for a read-only prop-
erty) or the getter (for a write-only property). VB.N ET is a bit more verbose and wants you to spec-
ify the keyword ReadOnly or WriteOnly explicitly. The following code snippet shows a read-only
FullName property in both VB.N ET and C#:

VB.NET

Public ReadOnly Property FullName() As String
 Get
 Return _firstName & " " & _lastName
 End Get
End Property

C#

public string FullName
{
 get { return _firstName + " " + _lastName; }
}

When you try to assign a value to a read-only property, you’ll get a compilation error in VS.

Similar to properties, objects can also have methods.

Methods
If properties are the things that a class has (its characteristics), then methods are the things a class
can do or the operations it can perform. A Car class, for example, has properties such as Brand,
Model, and Color. Its methods could be Drive(), Brake(), and OpenDoors(). Methods give objects
the behavior that enables them to do something.

You have already seen methods at work earlier, when this chapter discussed some ways to write
organized code using subs and functions. You simply add methods to a class by writing a function
or a sub between the start and end elements of the class. For example, imagine the Person class has
a Save method that enables the object to persist itself in the database. The method’s signature could
look like this:

VB.NET

Public Class Person
 Public Sub Save()
 ' Implementation goes here
 End Sub
End Class

C#

public class Person
{
 public void Save()
 {
 // Implementation goes here
 }
}

If you want to call the Save method to have the Person object save itself to the database, you create
an instance of it, set the relevant properties such as FirstName, and then call Save:

c05.indd 194c05.indd 194 10/8/2012 9:52:26 AM10/8/2012 9:52:26 AM

Object Orientation Basics x 195

VB.NET

Dim myPerson As Person = New Person()
myPerson.FirstName = "Jim"
myPerson.Save()

C#

Person myPerson = new Person();
myPerson.FirstName = "Jim";
myPerson.Save();

The Save method would then know how to save the Person in the database.

Methods can also have parameters, as you saw earlier in the section on XM L comments. The
SendEmailMessage method accepts two parameters — one for the e-mail address and one for the
message body — whose values are then accessible from within the method.

Note that a new instance of the Person class is created with the New (new in C#) keyword followed
by the class name. When this code fi res, it calls the object’s constructor, which is used to create
instances of objects.

Constructors
Constructors are special methods in a class that help you create an instance of your object. They run
as soon as you try to create an instance of a class, so they are a great place to initialize your objects
to some default state. Earlier you learned that you create a new instance of an object using the New
(new in C#) keyword:

VB.NET

Dim myCalculator As Calculator = New Calculator()

C#

Calculator myCalculator = new Calculator();

The New keyword is followed by the object’s constructor: the name of the class. By default, when you
create a new class fi le in VS, you get a default constructor for C# but not for VB.N ET. That’s not
really a problem, though, because the compiler generates a default constructor for you if no other
constructor exists. A default constructor has no arguments and takes the name of the class in C#
and the reserved keyword New in VB.N ET:

VB.NET

Public Class Person
 Public Sub New()

 End Sub
End Class

C#

public class Person
{
 public Person()
 {

 }
}

c05.indd 195c05.indd 195 10/8/2012 9:52:26 AM10/8/2012 9:52:26 AM

196 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

Although this default constructor is nice for creating standard instances of your classes, sometimes
it is really useful to be able to send some information into the class up front, so it’s readily available
as soon as it is constructed. For example, with the Person class, it could be useful to pass in the
fi rst and last names and the date of birth to the constructor so that data is available immediately
afterward. To enable this scenario, you can create a specialized constructor. To have the constructor
accept the names and the date of birth, you need the following code:

VB.NET

Public Sub New(firstName As String, lastName As String, dateOfBirth As DateTime)
 _firstName = firstName
 _lastName = lastName
 _dateOfBirth = dateOfBirth
End Sub

C#

public Person(string firstName, string lastName, DateTime dateOfBirth)
{
 _firstName = firstName;
 _lastName = lastName;
 _dateOfBirth = dateOfBirth;
}

With this code, you can create a new Person object:

VB.NET

Dim myPerson As Person = New Person("Imar", "Spaanjaars", New DateTime(1971, 8, 9))

C#

Person myPerson = new Person("Imar", "Spaanjaars", new DateTime(1971, 8, 9));

The constructor accepts the values passed to it and assigns them to the private backing variables, so
right after this line of code, the myPerson object is fully initialized.

You can have multiple constructors for the same class, as long as each one has a different method
signature.

Visual Basic supports a slightly different syntax to declare and initialize an object in one fell swoop
using the Dim myVariable As New ClassName syntax. The following code is equivalent to the pre-
vious instantiation of a Person instance:

Dim myPerson As New Person("Imar", "Spaanjaars", New DateTime(1971, 8, 9))
In addition to constructors, .N ET offers another quick way to create an object and initialize a few
properties: object initializers. With an object initializer, you provide the initial values for some of
the properties at the same time you declare an instance of your objects. The following code creates a
Person object and assigns it a value for the FirstName and LastName properties:

VB.NET

Dim myPerson As New Person() With {.FirstName = "Imar", .LastName = "Spaanjaars"}

c05.indd 196c05.indd 196 10/8/2012 9:52:26 AM10/8/2012 9:52:26 AM

Object Orientation Basics x 197

C#

Person myPerson = new Person() { FirstName = "Imar", LastName = "Spaanjaars" };

In VB.N ET, you need the With keyword in front of the properties list. In addition, you need to pre-
fi x each property name with a dot (.). O ther than that, the syntax is the same for both languages.
Object initializers are great if you need to set a bunch of properties on an object quickly without
being forced to write specialized versions of the constructors.

Although it’s useful to have this Person class in your application, at times you may need specialized
versions of a Person. For example, your application may require classes like Employee and Student.
What should you do in this case? Create two copies of the Person class and name them Employee
and Student, respectively?

Although this approach certainly works, it has a few large drawbacks. The biggest problem is the
duplication of code. If you decide to add a SocialSecurityNumber property, you now need to add it
in multiple locations: in the general Person class and in the Employee and Student classes. O bject
inheritance, a major pillar of object orientation, is designed to solve problems of this kind.

Inheritance
Earlier you learned that System.Object is the parent of all other data types in .N ET, including
all the built-in types and types that you defi ne yourself, meaning that each type in .N ET (except
Object itself) inherits from Object. O ne of the benefi ts of inheritance is that you can defi ne a
behavior at a high level (for example in the Object class) that is available to inheriting classes auto-
matically without the need to duplicate that code. In the .N ET Framework, the Object class defi nes
a few members that all other objects inherit, including the ToString() method.

To let one class inherit another, you need to use the Inherits keyword in
VB.N ET and the colon (:) in C#, as shown in the following example that
defi nes a Student class that inherits Person:

VB.NET

Public Class Student
 Inherits Person

C#

public class Student : Person
{
}

To see how inheritance works, think again about the Person class shown in
earlier examples. That class had a few properties, such as FirstName and
LastName, and a Save method. But if it is inheriting from Object, does it
also have a ToString() method? You bet it does. Figure 5-7 shows the rela-
tionship between the Object class and the Person class that inherits from
Object.

FIGURE 5-7

c05.indd 197c05.indd 197 10/8/2012 9:52:26 AM10/8/2012 9:52:26 AM

198 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

Figure 5-7 shows that Person inherits from Object (indicated by the arrow pointing in the direction
of the class that is being inherited from), which in turn means that a Person instance can do what-
ever an Object can do. So, for example, you can call ToString() on your Person object:

Label1.Text = myPerson.ToString() ' Writes out Person

The default behavior of the ToString() method defi ned in Object is to say its own class name. In
the preceding example, it means that the Person class inherits this behavior and thus says Person
as its name. Usually, this default behavior is not enough, and it would be much more useful if the
Person could return the full name of the person it is representing, for example. You can easily do
this by overriding the ToString() method. O verriding a method or property redefi nes the behav-
ior the class inherits from its parent class. To override a method you use the keyword Overrides
in VB.N ET and override in C#. The following snippet redefi nes the behavior of ToString in the
Person class:

VB.NET

Public Overrides Function ToString() As String
 Return FullName & ", born at " & _dateOfBirth.ToShortDateString()
End Function

C#

public override string ToString()
{
 return FullName + ", born at " + _dateOfBirth.ToShortDateString();
}

With this defi nition of ToString in the Person class, it no longer returns the word Person, but now
returns the full name of the person it is representing:

Label1.Text = myPerson.ToString() ' Imar Spaanjaars, born at 8/9/1971

Notice how the code uses the read-only FullName property to avoid coding the logic of concatenat-
ing the two names again. You can’t just override any method member you want to. For a method
to be overridable, the parent class needs to mark the member with the keyword virtual (in C#) or
Overridable (in VB.N ET).

Object inheritance in .N ET enables you to create a hierarchy of objects that enhance, or add func-
tionality to, other objects. This enables you to start out with a generic base class (Object). O ther
classes can then inherit from this class, adding specialized behavior. If you need even more special-
ized classes, you can inherit again from the class that inherits from Object, thus creating a hierar-
chy of classes that keep getting more specialized. This principle works for many classes in the .N ET
Framework, including the Page class. You may not realize it, but every ASPX page you create in VS
is actually a class that inherits from the class System.Web.UI.Page. This Page class in turn inher-
its from TemplateControl, which inherits from Control, which inherits from Object. The entire
hierarchy is shown in Figure 5-8. At the bottom you see the class MyWebPage, which could be a Code
Behind class of a page such as MyWebPage.aspx.

c05.indd 198c05.indd 198 10/8/2012 9:52:26 AM10/8/2012 9:52:26 AM

Object Orientation Basics x 199

FIGURE 5-8

In Figure 5-8 you can see that TemplateControl is an abstract class — a class that cannot be
instantiated; that is, you cannot use New (new in C#) to create a new instance of it. It serves solely as
a common base class for others (like Page) that can inherit from it. The exact classes between Page
and Object are not really relevant at this stage, but what’s important is that your page inherits all
the behavior that the Page class has. The fact that all your ASPX pages inherit from Page is more
useful than you may think at fi rst. Because it inherits from Page, you get loads of properties and
methods defi ned in this class for free. For example, the Page class exposes a Title property that,
when set, ends up as a <title> element in the page. Your page can simply set this property, and the
parent Page class handles the rest for you:

VB.NET

Title = "Beginning ASP.NET 4.5 in C# and VB from Wrox"

C#

Title = "Beginning ASP.NET 4.5 in C# and VB from Wrox";

You use inheritance in the next chapter when you create a BasePage class that serves as the parent
class for most of the pages you create in the Planet Wrox website.

In earlier examples, including the override for the ToString() method, you have seen the keyword
Public. Additionally, when creating backing variables, you saw the keyword Private. These key-
words are called access m odifi ers and determine the visibility of your code.

c05.indd 199c05.indd 199 10/8/2012 9:52:26 AM10/8/2012 9:52:26 AM

200 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

Access Modifi ers
Earlier in this chapter I mentioned that a core concept of OO is encapsulation. By creating members
such as functions and properties, you make an object responsible for the implementation. O ther
objects interacting with this object consider those methods and properties as black boxes. That is,
they pass some data in and optionally expect some result back. How the method performs its work
is of no interest to them; it should just work as advertised. To enable an object to shield some of its
inner operations, you need a way to control access to types and members. You do this by specify-
ing an access modifi er in front of the class, property, or method name. The following table lists the
available access modifi ers for C# and VB.N ET and explains their purpose.

C# VB.NET Description

public Public The class or member can be accessed from everywhere, including code
outside the current application.

protected Protected Code with a protected access modifi er is available only within the type
that defi nes it or within types that inherit from it. For example, a protected
member defi ned in the Page class is accessible to your ASPX page
because it inherits from Page.

internal Friend Limits the accessibility of your code to other code within the same assem-
bly. An assembly is a set of one or more compiled code fi les (either an
.exe or a .dll fi le) containing reusable .NET code.

private Private A class or member that is accessible only within the type that defi nes
it. For example, with the Person class, the _firstName variable is
accessible only from within the Person class. Other code, like an ASPX
page, cannot access this fi eld directly, and needs to access the public
FirstName property to get or set the fi rst name of a person.

Of these four access modifi ers, only protected and internal (Protected and Friend in VB) can
be combined. The other two must be used separately. By combining protected and internal, you
can create members that are accessible by the current class and any class that inherits from it in the
current assembly only.

Using access modifi ers, you can now create properties that are read-only for external code but that
can still be set from within the class by marking the getter as private.

As with some of the other OO concepts, you won’t be spending half your day specifying access
modifi ers in your code. However, it’s good to know that they exist and what they do. That way,
you may have a clue as to why sometimes your classes don’t show up in the IntelliSense list. There’s
a fair chance you forgot to specify the public access modifi er (Public in VB.N ET) on the class
in that case. The default is internal (Friend in VB.N ET), which makes the class visible to other
classes in the same assembly but hides it from code outside the assembly. Adding the keyword pub-
lic or Public in front of the class defi nition should fi x the problem.

c05.indd 200c05.indd 200 10/8/2012 9:52:27 AM10/8/2012 9:52:27 AM

Object Orientation Basics x 201

Events
The fi nal important topic that needs to be discussed in this chapter is events. ASP.N ET is an event-
driven environment, which means that code can execute based on certain events that occur in your
application. Events are raised by certain objects in the application and then handled by others.
M any objects in the .N ET Framework are capable of raising an event, and you can even add your
own events to classes that you write.

To be able to handle an event raised by an object, you need to write an event handler, which is basi-
cally a normal method with a special signature. You can wire up this event handler to the event
using event wiring syntax, although VS takes care of writing that code most of the time for you.
When an object, such as a control in a web page, raises an event, it may have the need to pass addi-
tional information to the event handler, to inform it about relevant data that caused or infl uenced
the event. You can send out this information using an event argum ents class, which is the class
System.EventArgs or any class that inherits it.

To see how all these terms fi t together, consider what happens when you click a button in a web
page. When you click it, the client-side button in the browser causes a postback. At the server, the
Button control sees it was clicked in the browser and then raises its Click event. It’s as if the but-
ton says: “Oh, look, everyone. I just got clicked. In case anyone is interested, here are some details.”
Usually, the code that is interested in the button’s Click event is your own page, which needs to
have an event handler to handle the click. You can create an event handler for the Button by dou-
ble-clicking it in the designer, or you can wire it up using M arkup View as you saw in Chapter 4.
Alternatively, you can double-click the relevant event on the Events tab of the Properties Grid. You
open this tab by clicking the button with the lightning bolt on the toolbar of the Properties Grid (see
Figure 5-9.)

FIGURE 5-9

If you double-click the control in Design View or the event name in the Properties Grid, VS writes
the code for the event handler for you. The following snippet shows the handler for a Button con-
trol’s Click event in VB.N ET and C#:

VB.NET

Protected Sub Button1_Click(sender As Object, e As EventArgs) _
 Handles Button1.Click
End Sub

c05.indd 201c05.indd 201 10/8/2012 9:52:27 AM10/8/2012 9:52:27 AM

202 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

C#

protected void Button1_Click(object sender, EventArgs e)
{
}

In the VB.N ET example, you see a standard method with some arguments, followed by Handles
Button1.Click. This is the event wiring code that hooks up the Button control’s Click event to the
Button1_Click method. Now, whenever the button is clicked, the code inside Button1_Click is
executed.

The C# version doesn’t have this Handles keyword. Instead, with C# you’ll fi nd that VS has added
the following bold code to the Button control in the markup of the page:

<asp:Button ID="Button1" runat="server" Text="Button" OnClick="Button1_Click" />

With this piece of markup, the compiler generates the necessary code to link up the Button1_Click
method to the Click event of the button. At run time you’ll see the exact same behavior: When
you click the button, the code in Button1_Click is executed. Note that if you wire up an event in
M arkup View in VB.N ET, you get the same behavior as in C#; in that case the Handles keyword is
omitted from the Code Behind because there’s already an On handler in M arkup View.

You can also see that this Button1_Click event handler has two parameters: an Object called
sender and an EventArgs class called e. This is a standard .N ET naming scheme and is followed
by all objects that generate events. The sender parameter contains a reference to the object that
triggered the event, Button1 in this example. This enables you to fi nd out who triggered an event in
case you wired up multiple events to the same event handler.

The second parameter is an instance of the EventArgs class and supplies additional arguments
to the event. With a button’s click, there is no additional relevant data to submit, so the plain
and empty EventArgs class is used. However, in later chapters (for example, Chapter 9, which
deals with data-driven Web Forms), you see some examples of classes that fi re events with richer
information.

With the concepts of events, you have come to the end of the section on object orientation. This sec-
tion should have familiarized you with the most important terms used in object-oriented program-
ming. You see practical examples of these concepts in the remainder of this book.

PRACTICAL TIPS ON PROGRAMMING
The following list presents some practical tips on programming:

 ‰ Always give your variables meaningful names. For simple loop counters you can use i,
although loopCount probably describes the purpose of the variable much better. Don’t pre-
fi x variables with the word var. All variables are variables, so adding var only adds noise
to your code. Consider useful names such as _firstName and _categoryId as opposed to
strFName, varFirstName, or catI for private fi elds, and names like FirstName and Person
for public properties and classes, respectively.

c05.indd 202c05.indd 202 10/8/2012 9:52:27 AM10/8/2012 9:52:27 AM

Summary x 203

 ‰ Experiment and experiment. Even more so than with working with controls and ASPX pages,
the best way to learn how to program is by actually doing it. Just type in some code and
hit Ctrl+F5 to see how the code behaves. The compiler will bark at you when something is
wrong, providing you with useful hints on how to fi x it. Don’t be afraid to mess anything
up; just keep trying variations until the code does what you want it to do. If you can’t make
your code work, check out Chapter 18, which deals with debugging. You’ll fi nd useful tips to
locate and fi x many of the errors that may occur in your code.

 ‰ When writing functions or subroutines, try to minimize the number of lines of code. Usually,
methods with more than 40 or 50 lines of code are a sign of bad design. When you see such
code, consider the option to move certain parts to their own routine. This makes your code
much easier to understand, leading to better code with fewer bugs. Even if a method is used
only once, keeping a chunk of code in a separate method can signifi cantly increase the read-
ability and organization of your code.

 ‰ When writing comments in your code, try to describe the general purpose of the code instead
of explaining obvious statements. For example, this comment (seen many times in real code)
is completely useless and only adds noise:

Dim loopCount As Integer = 0 ' Declare loopCount and initialize it to zero

Anyone with just a lit tle bit of coding experience can see what this code does.

SUMMARY
Although programming can get really complex, the bare basics that you need to understand are
relatively easy to grasp. The fun thing about programming is that you don’t have to be an expert to
make useful programs. You can start with a simple Hello World example and work from there, each
time expanding your view on code a lit tle.

This chapter covered two main topics. First, you got an introduction to programming in .N ET using
either C# or VB.N ET. You saw what data types and variables are and learned about operators,
decision making, and loops. You also saw how to write organized code using functions, subs, and
namespaces and how to add comments to your code.

The fi nal section of this chapter dealt with object orientation. Though object orientation in itself is
a very large subject, the basics are easy to pick up. In this chapter you learned about the basic ele-
ments of OO programming: classes, methods, properties, and constructors. You also learned a bit
about inheritance, the driving force behind object-oriented design.

In the next chapter, which deals with creating consistent-looking web pages, you see inheritance
again when you create a BasePage class that serves as the parent for most of the Code Behind
classes in the Planet Wrox project.

c05.indd 203c05.indd 203 10/8/2012 9:52:27 AM10/8/2012 9:52:27 AM

204 x CHAPTER 5 PROGRAMMING YOUR ASP.NET WEB PAGES

EXERCISES

 1. Considering the fact that the oldest person in the world lived to be 122, what’s the best numeric
data type to store a person’s age? Bonus points if you come up with an even better alternative to
store someone’s age.

 2. What does the following code do?

VB.NET

DeleteButton.Visible = Not DeleteButton.Visible

C#

DeleteButton.Visible = !DeleteButton.Visible;

 3. Given the following class Person, what would the code look like for a new class Student that con-
tains a string property called StudentId? Make use of inheritance to create this new class.

VB.NET

Public Class Person
 Public Property Name As String
End Class

C#

public class Person
{
 public string Name { get; set; }
}

You can fi nd answers to these exercises in Appendix A.

c05.indd 204c05.indd 204 10/8/2012 9:52:28 AM10/8/2012 9:52:28 AM

Summary x 205

 ◃ WHAT YOU LEARNED IN THIS CHAPTER

Class A blueprint for objects in a programming language

Collection A special data type that is capable of holding multiple
objects at the same time

Encapsulation Hiding the inner workings and data of a class from the
outside world in order to better manage and protect that
data

Instantiating The process of creating a new object in memory based
on a type’s defi nition

Method An operation on an object, like Brake() for a Car class

Namespace A way to structure classes and other types in a hierarchi-
cal manner

Object Orientation A popular style of programming where the software is
modeled as a set of objects interacting with each other

Overriding Redefi ning the behavior in a child class of a member
defi ned in a parent class

Property A characteristic of an object, like the fi rst name of a
person

c05.indd 205c05.indd 205 10/8/2012 9:52:28 AM10/8/2012 9:52:28 AM

c05.indd 206c05.indd 206 10/8/2012 9:52:28 AM10/8/2012 9:52:28 AM

