
Creating Consistent Looking
Websites

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ‰ How to use master and content pages that enable you to defi ne the
global look and feel of a web page

 ‰ How to work with a centralized base page that enables you to defi ne
common behavior for all pages in your site

 ‰ How to create themes to defi ne the look and feel of your site with an
option for the user to choose a theme at run time

 ‰ How to create skins to make site-wide changes to control layout

 ‰ What the ASP.NET page life cycle is and why it’s important

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can fi nd the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/remtitle.cgi?isbn=1118311809. The code is in the Chapter 6 download.

When you’re building a website you should strive to make the layout and behavior as consis-
tent as possible. Consistency gives your site a professional appearance and it helps your visi-
tors to fi nd their way around the site. Fortunately, ASP.N ET 4.5 and Visual Studio 2012 offer
a number of great features and tools to implement a consistent design, helping you to create
great-looking pages in no time.

In previous chapters you learned how to work with VS, H TM L5, CSS, and server controls
to create your web pages visually. Chapter 5 introduced you to programming in ASP.N ET.
This chapter is the fi rst that combines these concepts, by showing you—among many other
things—how to use programming code to change the appearance of the site.

6

c06.indd 207c06.indd 207 10/8/2012 9:54:17 AM10/8/2012 9:54:17 AM

208 x CHAPTER 6 CREATING CONSISTENT LOOKING WEBSITES

The fi rst section shows you how to create a master page that defi nes the general look and feel of a
page. The ASPX pages in your site can then use this master page without the need to repeat the gen-
eral layout. The remaining sections of this chapter build on top of this master page.

CONSISTENT PAGE LAYOUT WITH MASTER PAGES
With most websites, only part of the page changes when you go from one page to another. The parts
that don’t change usually include common regions like the header, a menu, and the footer. To cre-
ate web pages with a consistent layout, you need a way to defi ne these relatively static regions in a
single template fi le. Versions of ASP.N ET prior to 2.0 did not have a template solution, so you were
forced to duplicate your page layout on every single page in the website, or resort to weird program-
ming tricks. Fortunately, this is no longer the case due to m aster pages. The biggest benefi t of master
pages is that they enable you to defi ne the look and feel of all the pages in your site in a single loca-
tion. This means that if you want to change the layout of your site—for instance, if you want to
move the menu from the left to the right—you need to modify only the master page, and the pages
based on this master pick up the changes automatically.

When master pages were introduced in ASP.N ET 2.0, they were quickly embraced by the developer
community as the template solution for ASP.N ET pages because they are very easy to use. Even bet-
ter, VS has great design-time support, because it enables you to create and view your pages at design
time during development, rather than only in the browser at run time.

To some extent, a master page looks like a normal ASPX page. It contains static H TM L such as the
<html>, <head>, and <body> elements, and it can also contain other H TM L and ASP.N ET Server
Controls. Inside the master page, you set up the markup that you want to repeat on every page, like
the general structure of the page and the menu.

However, a master page is not a true ASPX page and cannot be requested in the browser directly; it
only serves as the template on which real web pages—called content pages—are based.

Instead of the @ Page directive that you saw in Chapter 4, a master page uses an @ Master directive
that identifi es the fi le as a master page:

VB.NET

<%@ Master Language="VB" %>

C#

<%@ Master Language="C#" %>

Just like a normal ASPX page, a master page can have a Code Behind fi le, identifi ed by its CodeFile
and Inherits attributes:

c06.indd 208c06.indd 208 10/8/2012 9:54:23 AM10/8/2012 9:54:23 AM

Consistent Page Layout with Master Pages x 209

VB.NET

<%@ Master Language="VB" CodeFile="Frontend.master.vb"
 Inherits="MasterPages_Frontend" %>

C#

<%@ Master Language="C#" AutoEventWireup="true" CodeFile="Frontend.master.cs"
 Inherits="MasterPages_Frontend" %>

To create regions that content pages can fi ll in, you defi ne ContentPlaceHolder controls in your
page like this:

<asp:ContentPlaceHolder ID="ContentPlaceHolder1" runat="server">
</asp:ContentPlaceHolder>

You can create as many placeholders as you like, although you usually need only a few to create a
fl exible page layout.

The content pages, which are essentially normal ASPX fi les, without the code that they’re going to
take from the master page, are connected to a master page using the MasterPageFile attribute of
the Page directive:

VB.NET

<%@ Page Title="" Language="VB" MasterPageFile="~/MasterPages/Frontend.master"
 AutoEventWireup="false" CodeFile="Default.aspx.vb" Inherits="_Default">

C#

<%@ Page Title="" Language="C#" MasterPageFile="~/MasterPages/Frontend.master"
 AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="_Default">

The page-specifi c content is then put inside a Content control that points to the relevant
ContentPlaceHolder:

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
 runat="Server">
</asp:Content>

Note that the ContentPlaceHolderID attribute of the Content control points to the
ContentPlaceHolder that is defi ned in the master page. Right now it points to the default
name of ContentPlaceHolder1, but in a later exercise you see how to change this.

At run time, when the page is requested, the markup from the master page and the content page are
merged, processed, and sent to the browser. Figure 6-1 shows a diagram of the master page with
just one ContentPlaceHolder and the content page that results in the fi nal page that is sent to the
browser.

c06.indd 209c06.indd 209 10/8/2012 9:54:23 AM10/8/2012 9:54:23 AM

210 x CHAPTER 6 CREATING CONSISTENT LOOKING WEBSITES

Master Page

Header

Menu ContentPlaceHolder

Header

Final Page

Menu

Content Page

FIGURE 6-1

To see this process in action, the following sections guide you through creating master and content
pages.

Creating Master Pages
You can add master pages to the site using the Add New Item dialog box. You can place them in
any custom folder in the site, including the root folder, but from an organizational point of view, it’s
often easier to store them in a separate folder. Just like normal ASPX pages, they support the inline
code model as well as the Code Behind model. The master pages used in the Planet Wrox project use
the Code Behind model exclusively. In the following exercise, you learn how to create a simple mas-
ter page and add some H TM L to it to defi ne the general structure of the pages in your website.

TRY IT OUT Creating a Master Page

 1. Open the Planet Wrox project in Visual Studio if it is not open already.

 2. In Chapter 2 you created a folder called MasterPages to hold your master pages and then added
a single master page to that folder. If you didn’t carry out that exercise, add the master page now.
To do this, create the MasterPages folder in the root of the site, right-click the new folder, choose
Add Í Add New Item, and select the Master Page item. Make sure that the master page uses
Code Behind and that it is using your preferred programming language. Name the master page
Frontend.master. Finally, click Add.

c06.indd 210c06.indd 210 10/8/2012 9:54:23 AM10/8/2012 9:54:23 AM

Consistent Page Layout with Master Pages x 211

 3. Add the following highlighted code between the <form> tags of the master page, replacing the
<div> tags and the ContentPlaceHolder that VS added for you when you created the master
page. Note that this is almost the same code you added to Default.aspx in Chapter 3, except for
the <asp:ContentPlaceHolder> element and the <a> element within the Header <div>. The <a>
element takes the user back to the homepage, and will be styled later.
<form id="form1" runat="server">
 <div id="PageWrapper">
 <header>Header Goes Here</header>
 <nav>Menu Goes Here</nav>
 <section id="MainContent">
 <asp:ContentPlaceHolder ID="cpMainContent" runat="server">
 </asp:ContentPlaceHolder>
 </section>
 <aside id="Sidebar">Sidebar Goes Here</aside>
 <footer>Footer Goes Here</footer>
 </div>
</form>

M ake sure that you have the ContentPlaceHolder within the MainContent <section> tags. You
can drag one from the Toolbox onto the page or enter the code directly, using IntelliSense’s help-
ful hints. In both cases you should give the control an ID of cpMainContent.

 4. Next, switch the master page into Design View and then drag Styles.css from the Styles folder
in the Solution Explorer onto the master page. As soon as you drop the fi le, VS updates the Design
View and shows the layout for the site that you created in Chapter 3. If the design doesn’t change,
switch to Markup View and ensure there’s a <link> tag in the head of the page pointing to your
CSS fi le:
 <asp:ContentPlaceHolder ID="head" runat="server">
 </asp:ContentPlaceHolder>
 <link href="../Styles/Styles.css" rel="stylesheet" type="text/css" />
</head>

The page should now look like Figure 6-2 in Design View.

FIGURE 6-2

c06.indd 211c06.indd 211 10/8/2012 9:54:23 AM10/8/2012 9:54:23 AM

212 x CHAPTER 6 CREATING CONSISTENT LOOKING WEBSITES

Note the area with the purple border around it between the menu and the footer region in your
Design View. This is the ContentPlaceHolder control that is used by the content pages. You see
how to use it in the next exercise.

 5. Drag the fi le modernizr-2.6.2.js from the Scripts folder into the <head> section of the Master
Page below the CSS fi le. Then manually replace the two leading periods with a slash, like this:

<script src="/Scripts/modernizr-2.6.2.js"></script>

 6. You can save and close the master page because you’re done with it for now.

How It Works

Within VS, master pages behave like normal pages. You can add H TM L and server controls to them,
and you can manage the page both in M arkup and Design View. The big difference is, of course, that a
master page isn’t a true page itself; it only serves as a template for other pages in your site.

In the next section you see how to use this master page as the template for a content page.

Creating Content Pages
A master page is useless without a content page that uses it. Generally, you’ll have only a few
master pages, whereas you can have many content pages in your site. To base a content page
on a master page, check the Select M aster Page option at the bottom right of the Add New Item
dialog box when you add a new Web Form to your site. Alternatively, you can set the
MasterPageFile attribute on the page directly in the M arkup View of the page. You saw this @
Page directive earlier in this chapter when master and content pages were introduced.

Content pages can only directly contain Content controls that each map to a ContentPlaceHolder
control in the master page. These content controls in turn can contain standard markup like H TM L
and server control declarations. Because the entire markup in a content page needs to be wrapped
by <asp:Content> tags, it’s not easy to turn an existing ASPX page into a content page. Usually the
easiest thing to do is copy the content you want to keep to the clipboard, delete the old page, and
then add a new page based on the master page to the website. O nce the page is added, you can paste
the markup within the <asp:Content> tags. You see how this works in the following exercise.

TRY IT OUT Adding a Content Page

In this Try It O ut you see how to add a content page to the site that is based on the master page you cre-
ated earlier. O nce the page is added, you add content to the <asp:Content> regions.

 1. In previous exercises you added standard ASPX pages to your project, which should now be
“upgraded” to make use of the new master page. If you want to keep the welcome text you added
to Default.aspx earlier, copy all the HTML between the MainContent <section> tags to the
clipboard (that is, the <h1> and the two <p> elements that you created earlier) and then delete
the Default.aspx page from the Solution Explorer. Next, right-click the website in the Solution
Explorer and choose Add Í Add New Item. Select the correct programming language, click Web

c06.indd 212c06.indd 212 10/8/2012 9:54:23 AM10/8/2012 9:54:23 AM

Consistent Page Layout with Master Pages x 213

Form, name the page Default.aspx, and then, at the bottom of the dialog box, select the check
boxes for Place Code in Separate File and Select Master Page, as shown in Figure 6-3.

FIGURE 6-3

Finally, click the Add button.

 2. In the Select a Master Page dialog box (see Figure 6-4), click the MasterPages folder in the left-
hand pane, and then in the area at the right, click Frontend.master.

FIGURE 6-4

Click OK to add the page to your website.

c06.indd 213c06.indd 213 10/8/2012 9:54:24 AM10/8/2012 9:54:24 AM

214 x CHAPTER 6 CREATING CONSISTENT LOOKING WEBSITES

Instead of getting a full page with H TM L as you got with standard ASPX pages, you now only
get two <asp:Content> placeholders as shown in this VB.N ET example:
<%@ Page Title="" Language="VB" MasterPageFile="~/MasterPages/Frontend.master"
 AutoEventWireup="false" CodeFile="Default.aspx.vb" Inherits="_Default" %>
<asp:Content ID="Content1" ContentPlaceHolderID="head" runat="Server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="cpMainContent" runat="Server">
</asp:Content>

 3. Switch to Design View and note that everything is grayed out and read-only, except for the
<asp:Content> region for cpMainContent. Figure 6-5 shows you how the page should look.

FIGURE 6-5

Also note that VS conveniently lists the master page that this page is based on in the top-right cor-
ner of Design View, visible in Figure 6-5. Clicking the name opens the master page in the editor.

 4. If you still have the old markup from the Default.aspx on the clipboard, click once inside the
cpMainContent placeholder and press Ctrl+V. (Note: you can do this both in Design View and in
Markup View). This adds the markup to the page, right between the <asp:Content> tags.

 5. Save your changes by pressing Ctrl+S and press Ctrl+F5 to open the page in your browser. The
browser should display the page very closely to what you saw in Design View (see Figure 6-5).

 6. Now take a look at the HTML for the page in the browser. You can do this by right-clicking the
page and choosing View Source or View Page Source. Note that the source of the fi nal page in the
browser is a combination of the source of the master page and the content page:
<div id="PageWrapper">
 <header>Header Goes Here</header>
 <nav>Menu Goes Here</nav>
 <section id="MainContent">
 <h1>Hi there visitor and welcome to Planet Wrox</h1>
 <p class="Introduction">
 We're glad you're paying a visit to
 www.PlanetWrox.com, the coolest music community site on the Internet.
 </p>
 ...
The fi rst four lines come from the master page and the bolded lines of H TM L code come from the
content page.

c06.indd 214c06.indd 214 10/8/2012 9:54:24 AM10/8/2012 9:54:24 AM

Consistent Page Layout with Master Pages x 215

 7. Switch back to VS and create a new page called Login.aspx in the root of the site based on the
master page. Notice how VS remembered your last settings with regard to the master page and
Code Behind (make sure both are checked in case you unchecked them earlier). Switch to Markup
View and create an <h1> element inside the cpMainContent placeholder with the text Log in to
Planet Wrox. There’s no need to add any other controls to this page just yet, but it serves as the
basis for the login functionality you create in Chapter 16. Without any content in the MainContent
element, the Sidebar will be moved to the left of the page.

 8. Go back to Default.aspx and switch to Design View. Beneath the welcome text with the header
and two <p> elements, create a new paragraph (press Enter in Design View) and type some text
(for example, You can log in here). Notice how this new paragraph has a class attribute
called Introduction because VS applies the previous class to new paragraphs automatically.
Remove this class using the Clear Styles option of the Apply Styles window, or manually remove it
from the code in Markup View.

 9. Highlight the words “ log in” in Design View and choose Format Í Convert to Hyperlink from
the main menu. In the dialog box that follows, click the Browse button and select the Login.aspx
page that you just created. Click OK twice.

 10. Save all changes and press Ctrl+F5 again to view Default.aspx in the browser. Then click the link
you created in the preceding step. You should now be taken to Login.aspx. Note that the general
layout, like the header and the sidebar, is maintained. The only thing that changes when you go
from page to page is the content in the main content area.

How It Works

When a page based on a master page is requested in the browser, the server reads in both the con-
tent page and the master page, merges the two, processes them, and then sends the fi nal result to the
browser. In step 6 of this exercise you saw that the H TM L in the browser for the requested page con-
tained the markup from both fi les.

M aster pages will save you a lot of work when it comes to updating or radically changing the looks
of your site. Because the entire design and layout of your site is defi ned in the master page, you only
need to touch that single fi le when you want to make any changes. All content pages will pick up the
changes automatically.

A Closer Look at Master Pages
So far you’ve seen a master page with a content placeholder for the main content. But if you look at
the master page in M arkup View, you’ll fi nd another content placeholder in the head section of the
page:

<head runat="server">
 <title></title>
 <asp:ContentPlaceHolder id="head" runat="server">
 </asp:ContentPlaceHolder>
 ...
</head>

This placeholder is added for you automatically to each new master page you create. You can use it
in content pages to add page-specifi c content that belongs between the <head> tags of a page, such

c06.indd 215c06.indd 215 10/8/2012 9:54:24 AM10/8/2012 9:54:24 AM

216 x CHAPTER 6 CREATING CONSISTENT LOOKING WEBSITES

as CSS (both embedded and external style sheets) and JavaScript. You learn more about JavaScript
in Chapters 10 and 11. You need to add content to this placeholder in M arkup View, because it’s not
visible in Design View.

The ContentPlaceHolder called cpMainContent in the master page currently does not contain any
markup itself. However, it doesn’t have to be like this. You can easily add your own content there
that will serve as the default in your content pages as long as it’s not overridden by the content page.
For example, you can have the following ContentPlaceHolder in a master page:

<asp:ContentPlaceHolder ID="cpMainContent" runat="server">
 This is default text that shows up in content pages that don't
 explicitly override it.
</asp:ContentPlaceHolder>

When you base a new page on this master page, you won’t see this default at fi rst in M arkup View.
However, you can open the Content control’s Smart Tasks panel, shown in Figure 6-6, and choose
Default to M aster’s Content.

FIGURE 6-6

When you click Yes when asked if you want to default to the master page content, VS removes the
entire Content control from the M arkup View of the page. However, when you request the page
in the browser you will still see the default content from the master page. In Design View, the con-
tent is still visible, now presented as a read-only area on the design surface. A master page with
default content can be useful if you add a new ContentPlaceHolder to the master page at a later
stage. Existing pages can simply display the default content, without the need for you to touch
all these pages. New pages can defi ne their own content. If you don’t have default content in the
ContentPlaceHolder control in the master page and the content page doesn’t have a Content con-
trol for the ContentPlaceHolder, no output is sent to the browser.

O nce you have defaulted to the master page’s content, you can create custom content again by open-
ing the Smart Tasks panel and choosing Create Custom Content. This copies the default contents
into a new Content control that you can then modify.

Nesting Master Pages
It is also possible to nest master pages. A nested master page is a master that is based on another
master page. Content pages can then be based on the nested master page. This is useful if you have
a website that targets different areas that still need to share a common look and feel. For example,
you can have a corporate website that is separated by departments. The outer master page defi nes
the global look and feel of the site, including corporate logo and other branding elements. You can

c06.indd 216c06.indd 216 10/8/2012 9:54:24 AM10/8/2012 9:54:24 AM

Consistent Page Layout with Master Pages x 217

then have different nested master pages for different departments. For example, the sales depart-
ment’s section could be based on a different master than the marketing department’s, enabling each
to add their own identity to their section of the site. VS 2012 has excellent Design View support for
nested master pages, giving you a good look at how the fi nal page will end up.

Creating a nested master page is easy: check the Select M aster Page check box when you add a
master page just as you do when you add a normal content page to the site. Then add markup and
ContentPlaceHolder controls to the Content controls at locations that you want to override in the
content pages. Finally, you choose your nested master page as the master for new content pages you
create. Inside the content page, you only see the ContentPlaceHolder controls from the nested mas-
ter page, not from its parent.

Master Page Caveats
Although master pages are great and can save you a lot of work, you need to be aware of some
caveats.

For starters, the ASP.N ET run time changes the client ID of your controls in the page. This is the id
attribute that is used in client script to access controls from JavaScript in the browser and with CSS
ID selectors. With normal ASPX pages, the server-side ID of a control is usually inserted one-on-one
in the fi nal H TM L. For example, a Button control with a server-side ID of Button1 in a normal
ASPX page defi ned with this code,

<asp:Button ID="Button1" runat="server" Text="Click Me" />

ends up with a client-side ID like this in the fi nal H TM L:
<input type="submit" name="Button1" value="Click Me" id="Button1" />

However, the same button inside an <asp:Content> control ends up like this:
<input type="submit" name="ctl00$cpMainContent$Button1"
 value="Click Me" id="cpMainContent_Button1" />

The name attribute has been prefi xed with the auto-generated ID of the master page (ctl00)
and both the name and the id attributes contain the ID of the ContentPlaceHolder control
(cpMainContent).

This means that any client-side code that previously referred to Button1 should now refer to
cpMainContent_Button1.

Note that this is not just a master page problem. You’ll also run into this behavior in other situa-
tions; for example, when working with user controls (discussed in Chapter 8) and data-bound con-
trols (discussed in Chapter 13 and onward).

The second caveat is related to the fi rst. Because the name and id of the H TM L elements are
changed, they add considerably to the size of the page. This may not be problematic for a single con-
trol, but once you have pages with lots of controls, this could impact the performance of your site.
The problem gets worse with nested master pages, where both content controls are appended to the
ID. The same button inside a nested master page can end up like this:

<input type="submit" name="ctl00$ctl00$cpMainContent$ContentPlaceHolder1$Button1"
 value="Click Me" id="cpMainContent_ContentPlaceHolder1_Button1" />

c06.indd 217c06.indd 217 10/8/2012 9:54:24 AM10/8/2012 9:54:24 AM

218 x CHAPTER 6 CREATING CONSISTENT LOOKING WEBSITES

To mitigate the problem, you should keep the IDs of your ContentPlaceHolder and Content con-
trols as short as possible. To improve readability, this book uses longer names, like cpMainContent.
However, in your own sites, you could reduce this to MC or cpMC to save some bandwidth on every
request.

NOTE ASP.NET 4 introduced a new feature called ClientIDMode that helps
minimize the problems typically associated with changing client-side IDs. You
learn more about this feature in Chapter 8.

M aster pages enable you to defi ne the general look and feel of your site in a single location, thus
improving the consistency and maintainability of your site. However, there is another way to
improve consistency: centralize the behavior of the pages in your website. You can do this with a so-
called base page, which is discussed next.

USING A CENTRALIZED BASE PAGE
In Chapter 5 you learned that, by default, all ASPX pages derive from a class called System.Web
.UI.Page. This means all of your pages have at least the
behavior defi ned in this class.

However, in some circumstances this behavior is not
enough and you need to add your own stuff to the mix.
For example, you may have the need to add some behav-
ior that applies to all the pages in your site. Instead of
adding this behavior to each and every individual page,
you can create a common base page. All the pages in your
site can then inherit from this intermediate page instead
of from the standard Page class. The left half of Figure
6-7 shows how an ASPX page called MyWebPage inherits
from the Page class directly. The right half shows a situ-
ation where the ASPX page inherits from a class called
BasePage, which in turn inherits from Page.

To have your pages inherit from this base page, you need to do two things:

 ‰ Create a class that inherits from System.Web.UI.Page in the App_Code folder of your
website.

 ‰ Make the web pages in your site inherit from this base page instead of the standard Page
class.

In an upcoming exercise you create a new base page class inside the App_Code folder. For now,
the sole purpose of this class is to check the Title of the page at run time to stop pages with an

FIGURE 6-7

c06.indd 218c06.indd 218 10/8/2012 9:54:24 AM10/8/2012 9:54:24 AM

Using a Centralized Base Page x 219

empty title or a meaningless title like “Untitled Page” making it to the browser. Giving your pages a
unique and helpful title helps the major search engines to index them, so it’s recommended to always
include a title in your web pages. Checking the title programmatically is relatively easy to do, which
enables you to focus on the concept of inheritance rather than on the actual code. In the section that
discusses themes later in this chapter, you modify the base page once more, this time to retrieve the
user’s preference for a theme.

NOTE Older versions of VS used “Untitled Page” as the default title for new Web
Forms. However, starting with the Service Pack 1 release of Visual Studio 2008,
the default title is an empty string. I decided to leave the check for “Untitled
Page” in the base page so you can see how you can check for unwanted titles.

Before you can implement the base class, you need to know more about the A SP.N ET page life
cycle, an important concept that describes the process a web page goes through when requested by a
browser.

An Introduction to the ASP.NET Page Life Cycle
When you think about how a page is served by a web server to the browser and think of this
process as the life cycle of a page, you can probably come up with a few important moments in
the page’s life. For example, the initial request by the browser is the starting point for the page’s
“life.” Similarly, when the page has sent its entire H TM L to the browser, its life may seem to end.
However, more interesting events are going on in the page’s life cycle. The following table describes
eight broad phases the page goes through. Within each phase, at least one event is raised that
enables a page developer to hook into the page’s life cycle and perform actions at the right moment.
You see an example of this in the next exercise.

PHASE DESCRIPTION

Page request A request to an ASPX page starts the life cycle of that page. When the web
server is able and allowed to return a cached copy of the page, the entire life
cycle is not executed. In all other situations, the page enters the start phase.

Start In this phase, the page gets access to properties like Request and Response
that are used to interact with the page’s environment. In addition, during this
phase the PreInit event is raised to signal that the page is about to go into the
initialization phase. You use this event later to set the theme of a page.

Page
initialization

During this phase, the controls you have set up in your page or added program-
matically become available. Additionally, the Page class fi res three events: Init,
InitComplete, and PreLoad.

continues

c06.indd 219c06.indd 219 10/8/2012 9:54:25 AM10/8/2012 9:54:25 AM

220 x CHAPTER 6 CREATING CONSISTENT LOOKING WEBSITES

PHASE DESCRIPTION

Load During this phase, the control properties are loaded from View State and Control
State during a postback. For example, when you change the selected item in a
DropDownList and then cause a postback, this is the moment where the correct
item gets preselected in the drop-down list again, which you can then work with
in your server-side code. Also, during this phase the page raises the Load event.

Validation In the validation phase, the Validation controls used to validate user input are
processed. You learn about validators in Chapter 9.

Postback event
handling

During this phase, the controls in your page may raise their own events. For
example, the DropDownList may raise a SelectedIndexChanged event
when the user has chosen a diff erent option in the list. Similarly, a TextBox may
raise the TextChanged event when the user has changed the text before she
posted back to the server. When all event processing is done, the page raises
the LoadComplete event. Also during this phase the PreRender event is raised
to signal that the page is about to render to the browser. Shortly after that,
SaveStateComplete is raised to indicate that the page is done storing all the
relevant data for the controls in View State.

Rendering Rendering is the phase where the controls (and the page itself) output their
HTML to the browser.

Unload The unload phase is really a clean-up phase. This is the moment where the page
and controls can release resources they were holding on to. During this phase,
the Unload event is raised so you can handle any cleanup you may need to do.

O ne thing that’s important to realize is that all these events fi re at the server, not at the client. So,
even if you change, say, the text of a text box at the client, the TextChanged event of the TextBox
control will fi re at the server after you have posted back the page.

Now you may wonder why you need to know all of this. The biggest reason to have some under-
standing of the page life cycle is that certain actions can be performed only at specifi c stages in the
page life cycle. For example, dynamically changing the theme has to take place in PreInit, as you’ll
see later. To really understand the ASP.N ET page life cycle, you need to know a lit tle more about
controls, state, events, and so on. Therefore, you’ll revisit the page life cycle again in Chapter 15
where you get a good look at all the different events that fi re, and in what order.

In the next exercise, you use the PreRender event of the Page class to check the title. Because a
developer could set the page’s title programmatically during many events, checking for a correct title
should be done as late as possible in the page’s life cycle, which is why PreRender is the best event
for this.

 (continued)

c06.indd 220c06.indd 220 10/8/2012 9:54:25 AM10/8/2012 9:54:25 AM

Using a Centralized Base Page x 221

Implementing the Base Page
Implementing a base page is pretty easy: all you need to do is add a class fi le to your App_Code
folder, add some code to it, and you’re done. What’s often a bit more diffi cult is to make sure each
page in your site inherits from this new base page instead of from the standard System.Web.UI
.Page class. Unfortunately, there is no way to confi gure the application to do this for you automati-
cally when using Code Behind, so you need to modify each page manually. Visual Studio makes it
a lit tle easier for you by enabling you to export a page template that already contains this code. In
the next exercise you add a base page to the site and in a later exercise you see how to export a web
form to a template so you can add fi les that use the base page in no time.

TRY IT OUT Creating a Base Page

 1. Right-click the App_Code folder in the Solution Explorer and choose Add Í Add New Item. Select
Class in the Templates list and name the fi le BasePage. You could choose another name if you
like but BasePage clearly describes the purpose of the class, making it easier to understand what it
does.

 2. Clear the contents of the fi le, and then add the following code:

VB.NET

Public Class BasePage
 Inherits System.Web.UI.Page

 Private Sub Page_PreRender(sender As Object, e As EventArgs) Handles Me.PreRender
 If String.IsNullOrEmpty(Me.Title) OrElse Me.Title.Equals("Untitled Page",
 StringComparison.CurrentCultureIgnoreCase) Then
 Throw New Exception(
 "Page title cannot be ""Untitled Page"" or an empty string.")
 End If
 End Sub

End Class

C#

 using System;

public class BasePage : System.Web.UI.Page
{
 private void Page_PreRender(object sender, EventArgs e)
 {
 if (string.IsNullOrEmpty(this.Title) || this.Title.Equals("Untitled Page",
 StringComparison.CurrentCultureIgnoreCase))
 {
 throw new Exception(
 "Page title cannot be \"Untitled Page\" or an empty string.");
 }

c06.indd 221c06.indd 221 10/8/2012 9:54:25 AM10/8/2012 9:54:25 AM

222 x CHAPTER 6 CREATING CONSISTENT LOOKING WEBSITES

 }

 public BasePage()
 {
 this.PreRender += Page_PreRender;
 }
}

 3. Save the fi le and close it, and then open the Login.aspx page that you created earlier. Open its
Code Behind fi le and change the Inherits code (the colon [:] in C#) so the login page inherits
from the BasePage class you created earlier:

VB.NET

Partial Class Login
 Inherits BasePage
 ...
End Class

C#

public partial class Login : BasePage
{
 ...
}

 4. Save the page and then request it in the browser by pressing Ctrl+F5. If you haven’t changed the
title of the page earlier, you should be greeted by the error shown in Figure 6-8 in your browser.

FIGURE 6-8

Instead of this error, you may see an error that displays the source for the BasePage class where
the title is checked.

 5. Go back to VS and open the login page in Markup View. Locate the Title attribute in the @ Page
directive (or add one if it isn’t there) and set its value to Log in to Planet Wrox. The following
snippet shows the VB.NET version of the @ Page directive but the C# version is almost identical:
<%@ Page Title="Log in to Planet Wrox" Language="VB"
 MasterPageFile="~/MasterPages/Frontend.master" AutoEventWireup="false"
 CodeFile="Login.aspx.vb" Inherits="Login" %>

c06.indd 222c06.indd 222 10/8/2012 9:54:25 AM10/8/2012 9:54:25 AM

Using a Centralized Base Page x 223

 6. Repeat steps 3 and 5 for all the pages in your site. To make this a bit quicker, you can use Find and
Replace to quickly replace all the occurrences of System.Web.UI.Page with BasePage. Make sure
you don’t accidentally replace it in the BasePage fi le in the App_Code folder itself. To prevent this
from happening, make sure you search only in Code Behind fi les, like this:

 ‰ Open the Replace in Files dialog box (press Ctrl+Shift+H or select Edit Í Find and Replace
Í Replace in Files).

 ‰ In the Find What box, enter System.Web.UI.Page. In the Replace With text box, enter
BasePage.

 ‰ Expand the Find Options section and in the Look at These File Types text box, enter
*.aspx.vb or *.aspx.cs depending on the language you use. This leaves the BasePage fi le,
which has a single extension of .vb or .cs, alone.

 ‰ Click Replace All and then click Yes to confi rm the Replace operation.

 7. Save the changes you made to any open page and then browse to Login.aspx again. If everything
worked out as planned, the error should be gone and you now see the login page.

Remember, though, that all other pages in your site now throw an error when you try to access
them. The fi x is easy; just give them all a valid Title. For pages without a Title attribute in their
page directive, you need to do this manually. For other pages, with an empty Title="" attribute,
you can quickly do this by searching the site for Title="" and replacing it with something like
Title="Planet Wrox". (Don’t forget to reset Look at These File Types back to *.*). For pages
other than the demo pages you’ve created so far, you’re better off giving each page a unique title,
clearly describing the content it contains.

How It Works

By default, all pages in your website inherit from the Page class defi ned in the System.Web.UI
namespace. This gives them the behavior required to make them act as web pages that can be requested
by the browser and processed by the server. Because the inheritance model in .N ET enables you to
create a chain of classes that inherit from each other, you can easily insert your own base page class
between a web page and the standard Page class. You do this by changing the Inherits statement (in
VB) and the colon (in C#) to your new BasePage:

VB.NET

Partial Class Login
 Inherits BasePage

C#

public partial class Login : BasePage

Inside this new BasePage class you add an event handler that is called when the class fi res its
PreRender event. As you learned earlier, this event is raised quite late in the page’s life cycle, when the
entire page has been set up and is ready to be rendered to the client:

VB.NET

Private Sub Page_PreRender(sender As Object, e As EventArgs) Handles Me.PreRender
 ' Implementation here

c06.indd 223c06.indd 223 10/8/2012 9:54:25 AM10/8/2012 9:54:25 AM

224 x CHAPTER 6 CREATING CONSISTENT LOOKING WEBSITES

End Sub

C#

private void Page_PreRender(object sender, EventArgs e)
{
 // Implementation here
}

Note that Visual Basic uses the Handles keyword to tell the compiler that the Page_PreRender method
will be used to handle the event. In C#, you need to hook up this handler manually. A good place to do
this is in the class’s constructor:

public BasePage()
{
 this.PreRender += Page_PreRender;
}

This highlighted line of code serves the same purpose as the Handles keyword in VB.N ET: it tells the
compiler what method to run when the page raises its PreRender event.

Inside the event handler, the code checks the current page title. If the page title is still an empty string
(the default for any new page you add to your web project) or Untitled Page it throws an exception.

VB.NET

If String.IsNullOrEmpty(Me.Title) OrElse Me.Title.Equals("Untitled Page",
 StringComparison.CurrentCultureIgnoreCase) Then
 Throw New Exception(
 "Page title cannot be ""Untitled Page"" or an empty string.")
End If

C#

if (string.IsNullOrEmpty(this.Title) || this.Title.Equals("Untitled Page",
 StringComparison.CurrentCultureIgnoreCase))
{
 throw new Exception(
 "Page title cannot be \"Untitled Page\" or an empty string.");
}

This code uses the handy IsNullOrEmpty method of the String class to check if a value is null
(Nothing in VB) or an empty string. It also uses the Equals method to check if the page title is equal to
Untitled Page. It uses StringComparison.CurrentCultureIgnoreCase to do a case-insensitive com-
parison, so untitled page or Untitled Page would both match.

Notice how the keywords Me (in VB.N ET) and this (in C#) are used. These keywords are context-
sensitive and always refer to the instance of the class where they are used. In this example, Me and
this refer to the current instance of the BasePage class. This BasePage instance has a Title property
(which it inherits from Page) that can be checked for unwanted values. If it still contains the default
title (an empty string) or the text “Untitled Page,” the code raises (or throws) an exception. This imme-
diately stops execution of the page so you as a page developer can fi x the problem by providing a valid
title before the page ends up in public. In Chapter 18 you learn more about exceptions and how to pre-
vent and handle them.

c06.indd 224c06.indd 224 10/8/2012 9:54:26 AM10/8/2012 9:54:26 AM

Using a Centralized Base Page x 225

To display a double quote (") in the error message, both languages use a different format. In Visual
Basic, you need to double the quotes. In C#, you need to prefi x the double quote with a backslash (\) to
escape the double quote. In both cases, a double quote character ends up in the error message.

Because every new page you add to the site should now inherit from this new base page, you should
create a page template that already has the correct code in its Code Behind and markup, making it
easy to add the correct page to the site right from the start. This is discussed next.

Creating Reusable Page Templates
Visual Studio comes with a great tool to export templates for a number of different fi le types includ-
ing ASPX pages, class fi les, and even CSS fi les. By creating a custom template, you defi ne the code or
markup that you need in every fi le once and then create new fi les based on this template, giving you
a jump start with the fi le and minimizing the code you need to type. The next exercise shows you
how to create your own templates.

TRY IT OUT Creating a Reusable Page Template

In this exercise you see how to create a template fi le for all new ASPX pages you add to your site. To
avoid confl icts with existing pages in your current site, you create a new temporary page and use that
for the template. Afterward, you can delete the temporary fi le.

 1. Add a new Web Form to the root of the site and call it Temporary.aspx. Make sure it uses Code
Behind, uses your programming language, and is based on the master page in the MasterPages
folder.

 2. Open the Code Behind of this new page (by pressing F7) and change the Inherits line (the colon
in C#) so the page inherits from BasePage instead of from System.Web.UI.Page. Also rename the
class from Temporary to $relurlnamespace$_$safeitemname$:

VB.NET

Partial Class $relurlnamespace$_$safeitemname$
 Inherits BasePage
 ...
End Class

C#

public partial class $relurlnamespace$_$safeitemname$: BasePage
{
 ...
}

M ake sure you don’t remove any of the existing code, like the using statements or the Page_Load
method in the C# version.

Don’t worry about any compile errors you may get about unexpected characters like $. O nce you
start adding pages based on this template, $relurlnamespace$_$safeitemname$ will be replaced
by the name of the page you’re adding.

c06.indd 225c06.indd 225 10/8/2012 9:54:26 AM10/8/2012 9:54:26 AM

226 x CHAPTER 6 CREATING CONSISTENT LOOKING WEBSITES

 3. Switch to Markup View, and change the Inherits attribute from Temporary to $relurlnamespa
ce$_$safeitemname$ as shown in this C# example:
<%@ Page Title="" Language="C#" MasterPageFile="~/MasterPages/Frontend.master"
 AutoEventWireup="true" CodeFile="Temporary.aspx.cs"
 Inherits="$relurlnamespace$_$safeitemname$" %>

You must leave the CodeFile attribute alone; VS will change it to the right Code Behind fi le auto-
matically whenever you add a new page to the site.

 4. Optionally, add other code you want to add to your pages by default, like a comment block with a
copyright notice.

 5. Save all changes and then choose File Í Export Template. In the dialog box that follows, select
Item Template and choose your programming language from the drop-down list at the bottom of
the screen, shown in Figure 6-9.

FIGURE 6-9

 6. Click Next and place a check mark in front of Temporary.aspx, which you fi nd near the bottom
of the list. Click Next again to go to the Select Item References dialog box.

 7. There is no need to set anything in the Select Item References dialog box now. If you had a web
page referencing specifi c assemblies (.dll fi les) you could pick them here, so VS adds the references
for you automatically next time you add a fi le based on this template. Click Next again to go to
the Select Template Options screen. Type MyBasePage as the new template name, and optionally

c06.indd 226c06.indd 226 10/8/2012 9:54:26 AM10/8/2012 9:54:26 AM

Using a Centralized Base Page x 227

type a short note describing the purpose of the template. Make sure the Automatically Import the
Template into Visual Studio option is checked. Figure 6-10 shows the fi nal dialog box.

FIGURE 6-10

 8. Click Finish to create the template. VS opens a File Explorer (Windows Explorer in Windows 7)
showing a copy of the new template as a zip fi le. You can close that window, because you don’t
need it.

If you want to carry out this exercise for both VB.N ET and C#, be sure to rename the resulting
zip fi le fi rst before you make an export for the second language; otherwise the zip fi le gets over-
written. To rename the fi le, open File Explorer, go to your Documents folder and then browse to
Visual Studio 2012\Templates\ItemTemplates. You’ll fi nd a fi le called MyBasePage.zip,
which you can rename to something like MyBasePageCS.zip. Note that the fi le’s location is differ-
ent from the one you see in Figure 6-10; the output location contains just a copy of the exported
template that you can use as a backup.

 9. Back in VS, delete the temporary fi le Temporary.aspx you created. Then right-click the website
in the Solution Explorer and choose Add Í Add New Item. Note that your custom template now
shows up in the list of templates, shown in Figure 6-11. If you click it, VS shows you the descrip-
tion you gave it earlier. Note: you may have to restart VS and reopen your website for the template
to appear.

 10. Type a new name for the page, such as TestPage.aspx, and click Add to add it to your site. Look
at the markup and the Code Behind of the fi le and verify that $relurlnamespace$_$safeitemn

c06.indd 227c06.indd 227 10/8/2012 9:54:26 AM10/8/2012 9:54:26 AM

228 x CHAPTER 6 CREATING CONSISTENT LOOKING WEBSITES

ame$ has been renamed to _TestPage to refl ect the new name of the page. If everything looks OK,
you can delete TestPage.aspx because it’s not used in the Planet Wrox website.

FIGURE 6-11

How It Works

When you export the template, Visual Studio creates a zip fi le with the necessary fi les—an ASPX fi le
and a Code Behind fi le in this exercise. This zip fi le is then stored in the ItemTemplates subfolder
of the Visual Studio 2012 folder under your Documents folder. Some of the fi les in the zip fi le con-
tain the placeholders $relurlnamespace$ and $safeitemname$. When you add a new fi le to the site
that is based on your template using the Add N ew Item dialog box, VS replaces $relurlnamespace$
with the name of the folder (nothing, in the case of a fi le added to the root of the site) and $safeitem-
name$ with the actual name of the page. In this exercise, you typed TestPage.aspx as the new name
for the page, so you ended up with a class in the Code Behind called _TestPage, which in turn inherits
from the global BasePage. The underscore (_) is hard-coded between the two placeholders and is really
only needed when adding a Web Form based on this template to a subfolder. However, it’s a valid start
of a class identifi er so you can safely leave it in for pages at the root of your website. If you add a fi le to
a subfolder, such as the Demos folder, the class name is prefi xed with the name of the folder so you end
up with a class called Demos_TestPage. In addition to $relurlnamespace$ and $safeitemname$, you
can use a few other placeholders. Search the M SDN site at http://msdn.microsoft.com for the term
$safeitemname$ to fi nd the other template parameters.

If you need to make a change to the exported template, either redo the entire export process, or manu-
ally edit the fi les in the zip fi le.

c06.indd 228c06.indd 228 10/8/2012 9:54:26 AM10/8/2012 9:54:26 AM

Themes x 229

With this exported template you now have a very quick way to add pages to your site that inherit from
the BasePage class. You don’t need to manually change the Code Behind of the class fi le or the markup
of the page anymore.

In addition to master pages and the central BasePage class, you have more options to create consis-
tent-looking websites. O ne of them is themes.

THEMES
So far you’ve seen how to create a master page to defi ne the global
look and feel of the pages in your site. You also saw how to cen-
tralize the behavior of your pages by using a central base page.
However, you have more ways to infl uence the look and feel of
your site: themes and skins. Skins are dealt with later in the chapter
because they are an optional part of themes, which need to be dis-
cussed fi rst.

A them e is a collection of fi les that defi nes the look of a page. A
theme typically includes skin fi les, CSS fi les, and images. You defi ne
themes in the special App_Themes folder in the root of your website.
Within this folder you create one or more subfolders that defi ne the
actual themes. Inside each subfolder, you can have a number of fi les
that make up the theme. Figure 6-12 shows the Solution Explorer
for a website that defi nes two themes: Monochrome and DarkGrey.

A link to each CSS fi le in the theme folder is added to your page’s
<head> section automatically whenever the theme is active. You see
how this works later. The images in the theme folder can be referenced from the CSS fi les. You can
use them to change common elements of the website, such as background images, or images used in
bulleted lists or navigation lists.

To create a theme, you need to do the following:

 ‰ Create the special App_Themes folder if it isn’t already present in your site.
 ‰ For each theme you want to create, create a subfolder with the theme’s name, like

Monochrome or DarkGrey in Figure 6-12.
 ‰ Optionally, create one or more CSS fi les that will be part of the theme. Although naming the

CSS fi les after the theme helps in identifying the right fi les, this is not a requirement. Any CSS
fi le you add to the theme’s folder is added to the page at run time automatically.

 ‰ Optionally, add one or more images to the theme folder. The CSS fi les should refer to these
images with a relative path as explained later.

FIGURE 6-12

c06.indd 229c06.indd 229 10/8/2012 9:54:26 AM10/8/2012 9:54:26 AM

