
Navigation
WHAT YOU WILL LEARN IN THIS CHAPTER:

 ‰ How to move around in your site using server controls and plain
HTML

 ‰ How to address pages and other resources like images

 ‰ How to use the ASP.NET Menu, TreeView, and SiteMapPath
navigation controls

 ‰ How to send users from one page to another programmatically

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can fi nd the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/remtitle.cgi?isbn=1118311809. The code is in the Chapter 7 download.

When your site contains more than a handful of pages, it’s important to have a solid and clear
navigation structure that enables users to fi nd their way around your site. If you implement a
good navigation system, all the disconnected web pages in your project form a complete and
coherent website.

When you think about important parts of a navigation system, the fi rst thing that you may
come up with is a menu. Menus come in all sorts and sizes, ranging from simple and static
H TM L links to complex, fold-out menus driven by CSS or JavaScript. But there’s more to
navigation than menus alone. ASP.N ET comes with a number of useful navigation controls
that enable you to set up a navigation system in no time. These controls include the Menu,
TreeView, and SiteMapPath, which you learn about in this chapter.

Besides visual controls like Menu, navigation is also about structure. A well-organized site is
easy for your users to navigate. The Web.sitemap fi le that is used by the navigation controls
helps you defi ne the logical structure of your site.

7

c07.indd 253c07.indd 253 10/8/2012 9:55:52 AM10/8/2012 9:55:52 AM

254 x CHAPTER 7 NAVIGATION

Another important part of navigation takes place at the server. Sending a user from one page to
another in Code Behind based on some condition is a very common scenario. For example, imagine
an administrator entering a new CD or concert review in the M anagement section of the website.
When the review is completed, you may want to show the administrator the full details by redirect-
ing her to a new page.

In this chapter, you learn how to use the different navigation options at your disposal. Before you
look at the built-in navigation controls, however, you need to understand the different options you
have to address the resources in your site, such as ASPX pages and images.

DIFFERENT WAYS TO MOVE AROUND YOUR SITE
The most common way to let a user move from one page to another is by using the <a> element.
This element has an href attribute that enables you to defi ne the address of a page or other resource
you want to link to. Between the tags you can place the content you want to link, such as text, an
image, or other H TM L. The following snippet shows a simple example of the <a> element:

You can log in here

With this code in a web page, after users click the text “You can log in here,” they are taken to the
Login.aspx page, which should be in the same folder as the page that contains the link.

The <a> element has a server-side counterpart called the HyperLink. It eventually ends up as an <a>
element in the page. The NavigateUrl property of this control maps directly to the href attribute
of the <a> element. For example, a server-side HyperLink in a content page such as this:

<asp:HyperLink runat="server" id="LoginLink" NavigateUrl="Login.aspx">
 You can log in here</asp:HyperLink>

produces the following H TM L in the browser:
You can log in here

O ther than the ID that is assigned by the ASP.N ET run time, this code is identical to the earlier
example. In both cases, the href attribute points to the Login.aspx page using a relative URL. The
next topic describes the differences between relative and absolute URLs.

Understanding Absolute and Relative URLs
Key to working with links in your site is a good understanding of the different forms a uniform
resource locator (UR L) to a resource inside or outside your website can take. A URL is used to
uniquely identify a resource in your or another website. These URLs are used in different places,
including the href attribute of a hyperlink or a <link> element to point to a CSS fi le, the src attri-
bute pointing to an image or a JavaScript source fi le, and the url() value of a CSS property. A URL
can be expressed as a relative UR L or an absolute UR L . Both have advantages and disadvantages
that you should be aware of.

c07.indd 254c07.indd 254 10/8/2012 9:55:55 AM10/8/2012 9:55:55 AM

Diff erent Ways to Move Around Your Site x 255

Relative URLs
In the previous examples you saw a relative URL that points to
another resource relative to the location where the URL is used. This
means that the page containing the <a> element and the Login.aspx
page should both be placed in the same folder in your site. To refer
to resources in other folders you can use the following URLs. All the
examples are based on a site structure shown in Figure 7-1.

To link from Login.aspx in the root to Default.aspx in the
Management folder, you can use this URL:

Management

To refer to the image Header.jpg from Default.aspx in the
Management folder, you can use this URL:

The two leading periods “navigate” one folder up to the root, and
then the path goes back in the Images folder to point to Header.jpg.

For a deeper folder hierarchy, you can use multiple double periods, one for each folder you want to
go upward in the site hierarchy, like the following element. You can use it to refer to the same
image from pages in the Reviews folder, which is located under the Management folder:

O ne benefi t of relative URLs is that you can move a set of fi les to another directory at the same level
without breaking their internal links. However, at the same time, they make it more diffi cult to
move fi les to a different level in the site hierarchy. For example, if you moved the Login.aspx page
to a separate folder like Members, the link to the Management folder would break. The new Members
folder doesn’t have Management as its subfolder, so Management/Default.aspx is no longer a valid
link.

To overcome this problem, you can use root-based relative URLs.

Root-Based Relative URLs
Root-based relative URLs always start with a leading forward slash to indicate the root of the site. If
you take the link to the Management folder again, its root-based version looks like this:

Management

Note the leading forward slash in front of the Management folder to indicate the root of the website.
This link is unambiguous. It always points to the Default.aspx fi le in the Management folder in the
root. With this link, moving the Login.aspx page to a subfolder doesn’t break it; it still points to
the exact same fi le.

FIGURE 7-1

c07.indd 255c07.indd 255 10/8/2012 9:55:55 AM10/8/2012 9:55:55 AM

256 x CHAPTER 7 NAVIGATION

Relative URLs in Server-Side Controls
With ASP.N ET Server Controls, you have another option at your disposal to refer to resources in
your website: You can use the tilde (~) character to point to the current root of the site. This is espe-
cially useful when you run your website as a separate application folder under the main website.
This would be the case if your main site ran under www.PlanetWrox.com/Site rather than under
www.PlanetWrox.com, for example. To see what that means, consider this image that uses the tilde
in its ImageUrl:

<asp:Image ID="Image1" runat="server" ImageUrl="~/Images/Header.jpg" />

When you use an application folder such as Site, the image is searched for at /Site/Images/
Header.jpg. If you reconfi gure the site to run without an application folder, the image is looked for
at /Images/Header.jpg without requiring you to change any code.

You can also use the ~ syntax on regular H TM L elements, provided you add the runat attribute.
This way, the path is processed at the server and then returned to the client. The following example
shows a plain H TM L link that links to a page in the Management folder:

Management

Previous versions of Visual Studio set up the built-in web server as an application folder, making the
use of the tilde a much needed option. However, the new IIS Express that now ships with VS 2012 does
not use an application folder by default. So, when you start up the web server by requesting a page, its
address will be something like http://localhost:59898/ and not http://localhost:59898/Site/.
If you still see the Site part in the URL, you may be running the older built-in web server instead. If
that’s the case, you can switch to using IIS Express by right-clicking the site in the Solution Explorer and
then choosing Use IIS Express. The remainder of this book assumes you’re using IIS Express and do not
have an application folder in the URL for your site.

Absolute URLs
In contrast to relative URLs that refer to a resource from a document or site root perspective, you
can also use absolute URLs that refer to a resource by its full path. So instead of directly referring
to an image and optionally specifying a folder, you include the full name of the domain and proto-
col information (the http:// prefi x). Here’s an example that refers to the Wrox logo at the Wrox
Programmer to Programmer site (http://p2p.wrox.com), where you go for questions about this
and other Wrox books or for general questions regarding programming:

Absolute URLs are required if you want to refer to a resource outside your own website. With such
a URL, the http:// prefi x is important. If you leave it out, the browser will look for a folder called
p2p.wrox.com inside your ow n website.

Absolute URLs are unambiguous. They always refer to a fi xed location, which helps you to make
sure you’re always referring to the exact same resource, no matter where the source document is
located. This may make you think that they are ideal to use everywhere—including references to

c07.indd 256c07.indd 256 10/8/2012 9:55:55 AM10/8/2012 9:55:55 AM

Using the Navigation Controls x 257

resources within your own site—but that’s not the case. The extra protocol and domain information
adds to the size of the page in the browser, making it unnecessarily slower to download. But more
important, it creates diffi culties if you’re changing your domain name, or if you want to reuse some
functionality in a different website. For example, if you previously had your site running on www.
mydomain.com but you’re moving it to www.someotherdomain.com, you will need to update all the
absolute URLs in the entire website.

You will also have trouble with absolute URLs during development. Q uite often, you test your web-
site on a URL such as http://localhost. If you were to point all your images to that URL, they
would all break as soon as you put your site on a production domain like www.PlanetWrox.com.

In short, use absolute URLs with caution. You always need them when referring to resources outside
your website, but you should give preference to relative URLs within your own projects wherever
possible.

Understanding Default Documents
In the context of URLs you should also know about default docum ents. When you browse to a site
like www.domainname.com you magically see a page appear. How does this work? Each web server
has so-called default documents, a list of document names that can be served to a browser when no
explicit document name is supplied. So, when you browse to www.domainname.com, the web server
scans the directory requested (the root folder in this example) and processes the fi rst fi le from its
default documents list it fi nds on disk. In most ASP.N ET scenarios, the web server is set up to use
Default.aspx as the default document. So, when you browse to www.domainname.com on an ASP.
N ET web server, you are actually served the page www.domainname.com/Default.aspx.

In the links you create, you should generally leave out Default.aspx when it isn’t needed. It
decreases the page size, but more important, it makes it easier for your users to type the address.

Now that you have seen how you can use URLs to point to documents and other fi les, it’s time to
look at some higher-level controls that make use of these URLs: the ASP.N ET navigation controls.

USING THE NAVIGATION CONTROLS
ASP.N ET 4.5 offers three useful navigation tools: SiteMapPath, TreeView, and Menu. Figure 7-2
shows basic examples of the three navigation controls, without any styling applied.

The SiteMapPath on the left shows the user the path to the current page. This helps if users want to
go up one or more levels in the site hierarchy. It also helps them to understand where they are. The
TreeView can display the structure of your site and enables you to expand and collapse the different
nodes; in Figure 7-2 the entire tree is expanded. The Menu control on the right initially only displays
the Home menu item. However, as soon as you move the mouse over the menu item, a submenu
appears. In Figure 7-2 one of these child elements is the Reviews item, which in turn has child ele-
ments itself.

c07.indd 257c07.indd 257 10/8/2012 9:55:55 AM10/8/2012 9:55:55 AM

Similar to index.htm or
index.html on other web

servers.

