
Validating User Input

WHAT YOU WILL LEARN IN THIS CHAPTER:

What user input is and why it’s important to validate it

What ASP.NET 4 has to offer to aid you in validating user input

How to work with the built-in validation controls and how to create
solutions that are not supported out of the box

How to send e-mail using ASP.NET

How to read text files

So far you have been creating a fairly static web site where you control the layout and content
by adding fixed pages to the site and its navigation menus. But you can make your site a lot
more attractive by incorporating dynamic data. This data usually flows in two directions: it
either comes from the server and is sent to the end user’s browser, or the data is entered by the
user and sent to the server to be processed or stored.

Data coming from the server can be retrieved from many different data sources, including files
and databases, and is often presented with the ASP.NET data controls. You see how to access
databases in Chapter 12 and onward.

The other flow of data comes from the user and is sent to the server. The scope of this infor-
mation is quite broad, ranging from simple page requests and “Contact Us” forms to complex
shopping cart scenarios and wizard-like user interfaces. The underlying principle of this data
flow is basically the same in all scenarios — users enter data in a Web Form and then submit it
to the server.

To prevent your system from receiving invalid data, it’s important to validate this data before
you allow your system to work with it. Fortunately, ASP.NET 4 comes with a bag of tools to
make data validation a simple task.

9

298 CHAPTER 9 VALIDATING USER INPUT

The first part of this chapter gives you a good look at the validation controls that ASP.NET sup-
ports. You see what controls are available, how to use and customize them, and in what scenarios
they are applicable.

The second half of this chapter shows you how to work with data in other ways. You see how to
send the information a user submits to your system by e-mail and how to customize the mail body
using text-based templates.

By the end of the chapter, you will have a good understanding of the flow of information to an
ASP.NET web application and the various techniques you have at your disposal to validate this data.

GATHERING DATA FROM THE USER
Literally every web site on the Internet has to deal with input from the user. Generally, this input
can be sent to the web server with a number of different techniques of which and are the
most common. In Chapter 4 you briefly saw the difference between these two methods and saw
that data is appended to the actual address of the page being requested whereas with the
method the data is sent in the body of the request for the page.

With the method, data is added to the requested address for a page. You can retrieve it using the
 property of the object as discussed in Chapter 7. Imagine you are requesting

the following page:

With this example, the query string is . The question mark is used to
separate the query string from the rest of the address, and the query string itself consists of name/
value pairs separated by an ampersand (). Each name and value in turn are separated by the
equals symbol (). To access individual items in the query string, you can use the method of the

 collection:

VB.NET

C#

The method, on the other hand, gets its data from a form with controls that have been sub-
mitted to the server. Imagine you have a form with two controls: a called to hold the

502211c09.indd 298 2/19/10 10:00:04 AM

Gathering Data from the User 299

user’s age and a to submit that age to the server. In the control’s event you
could write the following code to convert the user’s input to an integer:

VB.NET

C#

Note that in this case, there is no need to access a collection like as you saw with the
earlier. ASP.NET shields you from the complexity of manually retrieving data from the submitted form,
and instead populates the various controls in your page with the data from the form.

All is well as long as users enter values that look like an age in the text box. But what happens when
a user submits invalid data, either deliberately or by accident? What if a user sends the text I am 38
instead of just the number 38? When that happens, the code will crash. The method of the

 class throws an exception (an error) when you pass it something that cannot be represented
as a number. As soon as the exception is thrown, page execution stops completely. Chapter 18 digs
deeper into exception handling.

To avoid these problems, you need to validate all the data that is being sent to the server. When it
doesn’t look valid, you need to reject it and make sure your application deals with it gracefully.

Validating User Input in Web Forms
People concerned with validating user input often use the mantra: Never trust user input. Although
this may seem like paranoia at first, it is really important in any open system. Even if you think you
know who your users are and even if you trust them completely, they are often not the only users
that can access your system. As soon as your site is out on the Internet, it’s a potential target for
malicious users and hackers who will try to find a way into your system. In addition to these evil
visitors, even your trustworthy users may send incorrect data to your server by accident.

To help you overcome this problem as much as possible, ASP.NET ships with a range of validation
controls that help you validate data, before it is used in your application. In the following sections, you
see how to use the standard validation controls to ensure the user submits valid data into the system.

The ASP.NET Validation Controls

ASP.NET 4 comes with six useful controls to perform validation in your
web site. Five of them are used to perform the actual validation whereas
the final control — the is used to provide feedback
to the user about any errors made in the page. Figure 9-1 shows the avail-
able controls in the Validation category of the Toolbox.

The validation controls are extremely helpful in validating the data that
a user enters in the system. They can easily be hooked to other controls
like the or a ; however, they also support cus-
tom validation scenarios. Figure 9-2 demonstrates two of the validation FIGURE 9-1

502211c09.indd 299 2/19/10 10:00:04 AM

300 CHAPTER 9 VALIDATING USER INPUT

controls — and — at work to prevent a user from sub-
mitting the form without entering required and valid data.

FIGURE 9-2

The great thing about the validation controls is that they can check the input at the client and at
the server. When you add a validation control to a web page, the control renders JavaScript that
validates the associated control at the client. This client-side validation works on most modern web
browsers with JavaScript enabled, including Internet Explorer, Firefox, Chrome, Opera, and Safari.
At the same time, the validation is also carried out at the server automatically. This makes it easy to
provide your user with immediate feedback about the data using client-side script, while your web
pages are safe from bogus data at the server.

A Warning on Client-Side Validation

Although client-side validation may seem enough to prevent users from sending invalid data to your
system, you should never rely on it as the only solution to validation. It’s easy to disable JavaScript
in the browser, rendering the client-side validation routines useless. In addition, a malicious user can
easily bypass the entire page in the browser and send information directly to the server, which will
happily accept and process it if you don’t take countermeasures.

In general, you should see client-side validation as a courtesy to your users. It gives them immediate
feedback so they know they forgot to enter a required field, or entered incorrect data without a full
postback to the server. Server-side validation, on the other hand, is the only real means of valida-
tion. It’s effectively the only way to prevent invalid data from entering your system.

The following section discusses how you can employ the validation controls to protect your data.

Using the Validation Controls

To declare a validation control in your ASPX page, you use the familiar declarative syntax. For
example, to create the control used in Figure 9-2, you need the fol-
lowing code:

502211c09.indd 300 2/19/10 10:00:04 AM

Gathering Data from the User 301

To give you an idea of how the validation controls work, the following exercise guides you through
the process of using the in a contact form that is placed in a user control.
The exercise is followed by an in-depth discussion of the various validation controls.

NOTE Visual Web Developer comes with a number of useful code snippets that
enable you to quickly insert controls like the validation controls in Markup View.
In the following exercise, you see how to add the necessary controls using the
Toolbox, Design View, and drag and drop, but it’s useful to know how to quickly
add controls in Markup View as well. For example, to insert a in Markup
View, type and then press Tab. VWD completes the full control code
for you. To insert a , type the letters , then press
Ctrl+Spacebar to have VWD complete the word for
you, and then press Tab again to insert the entire tag. If you do this directly below
a control with its ID set, VWD even sets the correct
attribute for you. This latter trick doesn’t work in the next exercise because the
various controls are not directly next to each other, but are placed in separate
table cells. VWD still inserts the code for the for you
but you need to manually set the property to the ID of the
associated .

Using the RequiredFieldValidatorTRY IT OUT

In this exercise you create a user control called . It can be placed in a web page so
visitors to your site can leave some feedback. In later exercises you extend the control by sending the
response by e-mail to your e-mail account.

 1. Open the Planet Wrox project and add a new user control in the folder. Call the control
. Make sure it uses your programming language and a Code Behind file.

 2. Switch to Design View and insert a table by choosing Table Insert Table. Create a table with
eight rows and three columns.

 3. Merge the three cells of the first row. To do this, select all three cells, right-click the selection, and
choose Modify Merge Cells.

 4. In the merged cell, type some text that tells your users they can use the contact form to get in touch
with you.

 5. In the first cell of the second row type the word . Into the second cell of the same row, drag a
 and set its to . Into the last cell of the same row, drag a

from the Validation category of the Toolbox. Finally, into the second cell of the last row, drag a
. Rename the button to by setting its and set its property to . When

you’re done, your Design View looks like Figure 9-3.

302 CHAPTER 9 VALIDATING USER INPUT

FIGURE 9-3

 6. Click the once in Design View and then open up its Properties Grid by
pressing F4. Set the following properties on the control.

PROPERTY VALUE

ErrorMessage

Enter your name

*

Name

 7. Save the changes to the user control and then close it because you’re done with it for now.

 8. Add the following CSS declaration to the CSS files for both themes (and
):

Save and close both files.

 9. Open from the folder and switch to Design View. From the Solution
Explorer, drag the user control into the main content area of the page,
identified by the purple border. Switch back to Markup View, and you should see this control
declaration:

502211c09.indd 302 2/19/10 10:00:05 AM

Gathering Data from the User 303

 10. Save the page and press Ctrl+F5 to open it in your browser. If you get an error, make sure
you renamed the to and that you set the property on the

 to .

 11. Leave the Name text box empty and click the Send button. Note that the page is not submitted to
the server. Instead, you should see a red asterisk appear at the very right of the row for the name
field to indicate an error. If the asterisk is not red, press Ctrl+F5 or Ctrl+R to get a fresh copy of
the theme’s CSS file from the server and click the Send button again.

 12. Enter your name and click Send again. The page now successfully posts back to the server.

How It Works

With the attached to the through the prop-
erty, client-side JavaScript is sent to the browser that validates the control at the client.

NOTE This is the first chapter where you’ll actually write some JavaScript on your
own. Don’t worry about it too much because you won’t have to write a whole lot
of it. The examples should be pretty easy to follow, even if you don’t have any
prior experience with JavaScript. If you want to learn more about JavaScript, con-
sider getting a copy of Professional JavaScript for Web Developers, 2nd Edition
by Nicholas C. Zakas (Wrox, ISBN: 978-0-470-22780-0).

The control is able to validate another control like a . It does this by
comparing the value of the other control with its own property and making sure that the
other control’s value is different. By default, this property is an empty string, which means that anything
except an empty string is considered a valid value. Whenever you try to submit the form to the server by
clicking the Send button, the validation control checks the control it is attached to. When the text box is
still empty, the asterisk from its property is shown (formatted with the CSS class),
and the form is not submitted. You see how to use and display the property later in this
chapter. When the user enters something in the text box, validation succeeds and the page submits
to the server successfully.

Besides the control, the Validation category of the Toolbox contains a
number of other controls that are discussed next.

The Standard Validation Controls

The five validation controls (the ones in the Validation category of the Toolbox whose names end
in) ultimately all inherit from the same base class, and thus share some common behav-
ior. Four of the five validation controls operate in the same way, and contain built-in behavior that
enables you to validate associated controls. The last control, the , enables you to
write custom validation rules not supported out of the box.

304 CHAPTER 9 VALIDATING USER INPUT

The following table lists a number of common properties that are shared by the validation controls
and that you typically use when working with them.

PROPERTY DESCRIPTION

This property determines whether or not the hidden error message

takes up space. With the set to , the error message

takes up screen estate, even when it is hidden. This is similar to the

CSS setting you saw in earlier chapters. The

 setting hides the error message using until

it needs to be displayed. With a setting of , the error message is

not visible at all. This is useful if you are using a ,

which you see later in this chapter.

This property enables you to set the CSS attribute that is applied

to the error message text.

This property holds the error message used in the

 control. When the property is empty, the

 value is also used as the text that appears on the page.

The property is used as the text that the validation control displays

on the page. This could be an asterisk (*) to indicate an error, or text like

“Enter your name.”

This property contains the server ID of the control that needs to be

validated.

This property determines whether the control provides validation at the

client. The default is .

This property determines whether client-side script gives the focus to

the first control that generated an error. This setting is by default.

Validation controls can be grouped together, enabling you to perform

validation against a selection of controls. All controls with the same

 are checked at the same time, which means that

controls that are not part of that group are not checked. Consider, for

example, a login page with a Login button and fields for a user name

and password. The same page may also contain a search box that

enables you to search the site. With the , you can

have the Login button validate the user name and password boxes,

whereas the Search button triggers validation for just the search box.

You don’t typically set this property at design time, but at runtime it pro-

vides information about whether the validation test has passed.

502211c09.indd 304 2/19/10 10:00:06 AM

Gathering Data from the User 305

The Difference between the Text and ErrorMessage Properties

At first glance, these two properties seem to serve the same purpose. Both of them can be used
to provide feedback to the user in the form of an error message. But when used in combination
with a control, there’s a subtle difference between the two. When you set
both the properties at the same time, the validation control displays the property, whereas
the uses the . Figure 9-4 shows a sample login page with two

 controls. Both the validation controls have their property set to an
asterisk () to give the user a visual cue there is a problem. The below the con-
trol then displays the full properties.

FIGURE 9-4

You’ve already seen the at work, so the next sections give you a good
look at the three remaining standard validation controls. A later section then shows you how to use
the and the controls.

RangeValidator

The control enables you to check whether a value falls within a certain range. The
control is able to check data types like strings, numbers, dates, and currencies. For example, you can
use it to make sure a number is between 1 and 10, or a selected date falls between today and the next
two weeks. The following table lists its most important properties.

PROPERTY DESCRIPTION

This property determines the lowest acceptable value. For example, when

checking an integer number between 1 and 10, you set this property to 1.

This property determines the highest acceptable value. For example, when

checking an integer number between 1 and 10, you set this property to 10.

This property determines the data type that the validation control checks. This

value can be set to , , , , or to check

the respective data types.

502211c09.indd 305 2/19/10 10:00:06 AM

306 CHAPTER 9 VALIDATING USER INPUT

The following example shows a that ensures the value entered in the text box
is a whole number that lies between 1 and 10:

RegularExpressionValidator

The control enables you to check a value against a regular expression
that you set in the property of the control. Regular expressions offer a
compact syntax that enables you to search for patterns in text strings. Regular expressions are
a complex subject, but fortunately, Visual Web Developer comes with a few built-in expressions
that make it easy to validate values like e-mail addresses and zip codes. If you want to learn more
about regular expressions, pick up a copy of Wrox’s Beginning Regular Expressions by Andrew
Watt (ISBN: 978-0-7645-7489-4).

The following example shows a control that ensures a user enters a
value that looks like an e-mail address:

CompareValidator

The can be used to compare the value of one control to another value. This is
often used in sign-up forms where users have to enter a password twice to make sure they type the
same password both times. Instead of comparing to another control, you can also compare against
a constant value.

The following table lists the additional properties for the control.

PROPERTY DESCRIPTION

This property contains the ID of the control that the validator compares

against. When this property is set, has no effect.

This property determines the type of compare operation. For example,

when is set to both controls must contain the same

value for the validator to be considered valid. Similarly, you have options

like , , and to perform differ-

ent validation operations.

This property determines the data type that the validation control checks.

This value can be set to , , , , or

to check the respective data types.

502211c09.indd 306 2/19/10 10:00:06 AM

Gathering Data from the User 307

PROPERTY DESCRIPTION

This property enables you to define a constant value to compare against.

This is often used in agreements where you have to enter a word like Yes

to indicate you agree to some condition. Simply set the

to the word and the to the control you want to

validate and you’re done. When this property is set, make sure that the

 property is empty because that will otherwise take

precedence.

This example shows a that ensures that two controls contain the same
password:

In the following exercise you see most of these controls at work, except for the .
However, its usage is similar to the other validation controls, so it’s just as easy to add it to your web
page or user control when you need it.

Extending the Contact FormTRY IT OUT

In the previous Try It Out you started with the basics for the contact form by creating a user control
holding a table and a few controls to let users enter their name. In this exercise, you extend the form
and add fields for an e-mail address, a home phone number, and a business phone number. You will use
the validation controls to ensure the e-mail address is in a valid format, and that at least one of the two
phone numbers is filled in. To make sure users enter a correct e-mail address, they are asked to enter
it twice. If you don’t like this behavior, you can simply delete the row with the text box for the second
e-mail address and ignore the .

 1. Open from the folder again and switch it to Design View.

 2. In the second column, drag five additional text boxes in the empty table cells between the text box
for the name and the Send button. From top to bottom, name the new controls by setting their ID
as follows:

 3. Set the property of the control to and then make the control a
little wider and taller in the designer so it’s easier for a user to add a comment.

502211c09.indd 307 2/19/10 10:00:06 AM

308 CHAPTER 9 VALIDATING USER INPUT

 4. In the first cell of the rows to which you added the controls, add the text as shown in
Figure 9-5.

FIGURE 9-5

 5. In the last cell of the row for the first e-mail address, drag a and a
. In the last cell of the row for the second e-mail address, drag a

 and a . Finally, in the last cell for the comments
row, drag a . When you’re done, your form looks like Figure 9-6.

FIGURE 9-6

 6. For each of the five validation controls you added, open the Properties Grid and set the prop-
erty to an asterisk (), the property to and the to . To
do this for all controls at once, select the first validator control, then press the Ctrl key and click
the others. When you make changes to the Properties Grid while you’ve selected multiple controls,
the changes are applied to all of them.

502211c09.indd 308 2/19/10 10:00:07 AM

Gathering Data from the User 309

 7. Next, set the remaining properties for the controls as shown in the following table.

CONTROL PROPERTIES YOU NEED TO SET

(for the first e-mail address)
Enter an e-mail address

Enter a valid e-mail address

(for the second e-mail address)
Confirm the e-mail address

Retype the e-mail address

(for the Comments field)
Enter a comment

 8. Still in Design View, click the
 once, open its Properties

Grid, and locate the property.
When you click the property in the grid, the grid shows a
button with an ellipsis. When you click that button you get
a dialog box that enables you to select a regular expression,
shown in Figure 9-7.

 9. Click Internet e-mail address from the list and note that
VWD inserts a long regular expression in the Validation
Expression box. Click OK to add the property to the
control and dismiss the dialog box.

 10. Save all the changes and then request the page from the folder in your browser.
If you get errors, make sure you set all the properties on the relevant controls
as shown earlier. Play around with the various validation controls by leaving out required data or
by entering bogus data. Only when you have entered all required fields and typed the same e-mail
address in both text boxes will the page submit to the server. At this stage, you will only see the red
asterisks appear to give an indication of the problem. After you have seen how these validators work,
you will learn how to use the to provide more detailed information to the user.

FIGURE 9-7

502211c09.indd 309 2/19/10 10:00:07 AM

310 CHAPTER 9 VALIDATING USER INPUT

How It Works

Just like the control, the other validation controls emit JavaScript to the cli-
ent, which is triggered when you click the Send button or when the value of one of the client controls is
changed. The works by looking at the value of two different controls. Only when
both contain the same data will it return true. It’s important to realize that the
control does not trigger its validation code when the text boxes are empty. Therefore, it’s important to
hook up a control as well. This control first makes sure the user entered at
least some data and then the control ensures the text is the same in both text boxes.

The control works by checking the pattern of the data that it is validat-
ing. If you look at the property of the control, you see a long, cryptic string.
This pattern ensures that the e-mail address contains some text, optionally followed by some separation
character like a dash (-) or period, followed by more text. It also ensures there’s an @ symbol in the
address, followed by a domain name, a period, and then at least one more character to represent the
top-level domain like , , or . With this expression, is consid-
ered a valid e-mail address. So is , whereas isn’t.

Note that the control only roughly checks the syntax of the e-mail
address. It’s still perfectly possible to enter a non-existent e-mail address that just looks valid or even
an invalid e-mail address as . However, in many cases, this validator is good enough to filter out
common typos that users make when entering e-mail addresses.

The validation controls you have seen so far are very easy to use. You add them to a page, set a few
properties, and then they do all the hard work for you. However, they do not support every pos-
sible validation scenario you may come up with. For example, what if you wanted to ensure that a
user entered at least one of the two phone numbers? And what if you wanted to present your users
with a full list of all the errors they made in the form? This is where the and the

 controls come in.

The CustomValidator and ValidationSummary Controls

The control enables you to write custom validation functions for both the client
(in JavaScript) and the server (using VB.NET or C#). This gives you great flexibility with regard to
the data you want to validate and the rules you want to apply.

The control provides the user with a list of errors that it retrieves from the
individual validation control’s properties. It can display these errors in three different
ways: using a list embedded in the page, using a JavaScript alert box, or using both at the same time.
You control this setting with the and properties. Additionally, the

 property enables you to change the way the list of errors is presented. The default set-
ting is where each error is an item in a bulleted list, but other options are (without
bullets) and .

You learn how to write client- and server-side validation methods and how to use the
control in the following exercise.

502211c09.indd 310 2/19/10 10:00:07 AM

Gathering Data from the User 311

Writing Client- and Server-Side Validation MethodsTRY IT OUT

In this exercise you see how to use the in your page to ensure at least one of the two
phone numbers is entered. The validation is carried out at the client and at the server. Additionally, you
see how to use the control to provide feedback to your users about the errors they
made in the form.

 1. Go back to the user control in VWD and switch it to Design View. Right-click
the row with the control in it (right-click a cell, not the button) and choose Insert Row
Below from the context menu to insert a new table row. Alternatively, you can click in a cell of the
row to select it and then press Ctrl+Alt+down arrow to have the row inserted for you as well.

 2. Select the three cells of the row you just inserted with your mouse, right-click them, and choose
Modify Merge Cells to create a single cell that spans all three columns.

 3. From the Validation category of the Toolbox, drag a control into this newly
created cell and set its property to .

 4. In the empty cell after the text box for the Home phone number, drag a control
and set the following properties.

PROPERTY VALUE

ErrorMessage

Dynamic

Enter your home or business phone number

*

ValidatePhoneNumbers

 5. Double-click the control in Design View to have VWD write an event handler
for the event. Add the following code to the handler:

VB.NET

502211c09.indd 311 2/19/10 10:00:07 AM

312 CHAPTER 9 VALIDATING USER INPUT

C#

 6. Switch to Markup View of the user control and add the following block of JavaScript code right
before the table with the controls:

If you find that VDW is adding your opening curly braces () at the end of a line, rather than on
their own line, choose Tools Options from the main menu. Then expand the path Text Editor
JScript Formatting and check off both items in the New Lines category. This is purely a format-
ting preference; the JavaScript runs fine with or without the curly brace on its own line.

 7. Save all the changes by pressing Ctrl+Shift+S and then request the page in your
browser. Note that you can’t submit the form if you haven’t at least entered one of the two phone
numbers. Also note that the control shows a list of all the problems with the
data entered in the form. The client-side JavaScript function now ensures
that you enter at least one phone number before you can submit the page back to the server.
Figure 9-8 shows how the page ends up in Google Chrome.

 8. Go back to VWD and click the control in Design View. On the Properties
Grid, change to and to . (Quick tip: you can easily
choose the next item in a drop-down list on the Properties Grid by double-clicking the value. For
Booleans, this means that if you double-click False it turns to True and vice versa). Also, set its

 property to: “Please correct the following errors before you press the Send button:”.

502211c09.indd 312 2/19/10 10:00:07 AM

Gathering Data from the User 313

FIGURE 9-8

 9. Open the page in the browser again and click the Send but-
ton once more. Note that instead of the inline list with
errors you now get a client-side alert, shown in Figure 9-9.
The list of errors is preceded with the of the

.

How It Works

When you added the control, you set up two event handlers: one for the client- and
one for the server-side validation check, both in bold in the following snippet:

If you’re using VB.NET, you won’t see the attribute because that is set up in the
Code Behind using the keyword.

The JavaScript function you set in the is trig-
gered at the client when you click the Send button. This function is defined in the markup section of the
user control and contains two references to the text boxes for the phone numbers:

FIGURE 9-9

502211c09.indd 313 2/19/10 10:00:07 AM

314 CHAPTER 9 VALIDATING USER INPUT

The calls to the are wrapped in a server-side block. This code runs at the server, and
then returns the of the control to the client. If you look at the HTML for the Contact page in
the browser, you find the following code:

Here you can see how the server-side properties of the controls have been transformed into
their client counterparts. This is a much better solution than hard-coding the attributes of the
text boxes in the final HTML, because they can easily be changed by the ASP.NET runtime. You saw
how and why this happened in the preceding chapter.

To make the final JavaScript in the browser slightly shorter and easier to read, you can use the
 property you saw in the preceding chapter to “fix” the IDs of the phone number con-

trols. Because it’s unlikely you will have two user controls in a single page, you can safely
assume you won’t end up with two client controls with the same name if you fixate the client control
IDs. In order to do this, you need to set the for these two controls to , like this:

Because the control IDs are now fixed, they end up as-is in the final HTML:

Because the controls now have a fixed client ID, you could also get rid of the property alto-
gether in the JavaScript in the user control and directly use the following code there:

This may be a bit easier to type and use, but at a cost: if you rename any of these server controls,
your code will break without a good error message or warning. So it’s still recommended to use the

 to get the control’s client ID at runtime.

Eventually, the client IDs are passed to the JavaScript function on the object
to get a reference to their respective text boxes in JavaScript. The code then examines the proper-
ties of these two text box controls. If one of them is not an empty string, the validation succeeds. But
how does the method report back to the validation mechanism that the vali-
dation succeeded or not? When the ASP.NET validation mechanism calls the
method it passes two arguments: , which is a reference to the actual in
the HTML, and . The object exposes an property that enables you to determine
whether or not the validation succeeded:

502211c09.indd 314 2/19/10 10:00:07 AM

Gathering Data from the User 315

With this code, if both text boxes are empty, is set to , so validation won’t succeed, stop-
ping the form from being submitted. If at least one of the text boxes contains a value, is set to

. In this example, the argument is not used, but you could use it to highlight or otherwise
change the validation control based on whether or not it’s valid.

At the server, the control calls the server-side validation method, which performs the
same check:

VB.NET

C#

By checking the data at the client and at the server, you ensure your system only accepts valid data.
Even when the browser doesn’t support JavaScript (possibly because the user turned it off deliberately)
your data is still checked at the server. However, it’s important to realize that you still need to check
whether the page is valid before you work with the data submitted to it. You do this by checking the

 property of the page:

VB.NET

C#

The property returns when all the controls in the page or in the active
are valid. By checking the property on the server before you work with the data, you can be

502211c09.indd 315 2/19/10 10:00:08 AM

316 CHAPTER 9 VALIDATING USER INPUT

sure that the data is valid according to your validation controls, even if the user turned off JavaScript in
the browser, and sent the form to the server without any client-side checks. You see the prop-
erty used again later in this chapter, when sending e-mail is discussed.

Besides the validation controls you have seen so far, ASP.NET comes with another validation mech-
anism, which is discussed next.

Understanding Request Validation
By design, an ASP.NET page throws an exception whenever one of the controls on a page contains
content that looks like HTML tags. For example, you see the error shown in Figure 9-10 when you
enter or

 as the contents for the comments text box in the contact form.

FIGURE 9-10

The ASP.NET runtime does this to prevent users from entering HTML or JavaScript that can poten-
tially mess with the design or workings of your web site. If you’re sure you want to allow your users
to enter HTML, you can disable request validation by setting the attribute in the

 directive to :

With this setting set to , users can enter HTML without causing an error. Just make sure you
really want to allow users to enter HTML when you set to .

PROCESSING DATA AT THE SERVER
The information that a user inputs on your Web Forms is typically not the only data that makes
your web site an interactive, data-driven system. In most web sites, you have information coming
from other data sources as well, such as databases, text, XML files, and web services. In addition,
there is also data going out of your system. You may want to send an e-mail to the owner of the

502211c09.indd 316 2/19/10 10:00:08 AM

Processing Data at the Server 317

web site whenever someone posted information through the contact page or you may want to notify
people whenever you add a new feature or review to the web site. For these scenarios, it’s important
to understand how ASP.NET 4 enables you to send e-mail. This is discussed in the next section.

Sending E-mail from Your Web Site
Writing code that sends e-mail from an ASP.NET page is pretty straightforward. Inside the

 namespace you find a number of classes that make it easy to create and send e-mail
messages. These classes enable you to create new messages; add addressees in the To, CC, and Bcc
fields; add attachments; and, of course, send the messages.

The following table describes four classes that you typically work with when sending e-mail from a
.NET application.

CLASS DESCRIPTION

This class represents the message you’re going to send. It has properties such as

 and to set the message contents; , , and properties to set

the addressees; and an collection to attach files to the message.

This class represents a sender or receiver address used in the e-mail. It has a few

constructor overloads that enable you to set the e-mail address and display name.

This class represents files you can attach to a . When you construct

an instance, you can pass in the name of the file you want to send.

You then add the attachment to the using the method of its

 collection.

This class is used to send the actual message. By default, an instance of this class

checks the file for settings such as the SMTP server (which stands

for Simple Mail Transfer Protocol) to send the mail to and an optional user name

and password that is used for sending e-mail.

Configuring Your Web Site for Sending E-mail

Although the code to send e-mail is pretty easy, configuring your application and network can often
be a bit trickier. The machine you are using to send e-mail must be able to access an SMTP server,
either locally available on your network or over the Internet. In most cases, you should use the SMTP
server that you also use in your e-mail client (for example, Microsoft Outlook). If you’re hosting your
site with an external hosting party, you need to use the SMTP server they provide. Contact your net-
work administrator or your ISP if you are unsure about your SMTP server.

When you have the address of the SMTP server, you can configure it globally in the file
in the element. When you are using the SMTP server from your ISP, the configura-
tion setting looks like this:

502211c09.indd 317 2/19/10 10:00:08 AM

318 CHAPTER 9 VALIDATING USER INPUT

The element must be added as a direct child of the file’s root element
. Within you add a element, which in turn contains an

 element. Finally, the element has a attribute that points to your SMTP server.

The element accepts an optional attribute that lets you set the name and e-mail address
of the sender in the format . Because the angle brackets (< >) in XML have
special meaning, you need to escape them with and . When you send e-mail programmati-
cally, you can override this From address as you see in the next Try It Out exercise.

If your ISP requires you to authenticate before you can send the e-mail or they want you to use a dif-
ferent port number, you can add this information to the element:

Some mail servers — like the one supplied by Gmail — require you to use SSL, a technique that
encrypts the data going to the mail server to improve security. In ASP.NET prior to version 4,
you had to enable SSL programmatically in your own code. Fortunately, with the inclusion of the

 attribute on the element, this is no longer the case. To use a Gmail server
or any other mail server that requires SSL, you use a element that looks like this:

Don't forget to enter your password and user name — which in the case of Gmail is your full Gmail
e-mail address.

During development there’s an easier way to handle mail sent by your application: drop it in a folder on
your local hard drive directly. To do this, create a folder like . You need to create the folder
yourself because it won’t be created automatically. Then configure the element as follows:

With these settings in , your messages are not sent over the network, but are dropped as
physical files (with an extension) in the folder you configured in the
attribute. You can read these files with mail clients like Windows Mail (on Vista) or Windows Live
Mail (which you can download from the Internet). I prefer this setting during development over the
networked version because mail arrives instantly, and doesn’t clutter up my mail account or Inbox.

Refer to the online MSDN documentation at for more information
about the different settings that the element takes.

502211c09.indd 318 2/19/10 10:00:08 AM

Processing Data at the Server 319

Creating E-mail Messages

To create and send an e-mail message, you need to carry out four steps. First, you need to create an
instance of the class. You then configure the message by adding a body and a subject.
The next step is to provide information about the sender and receivers of the message, and finally
you need to create an instance of the class to send the message. The following exercise
shows you how to code these four steps.

Sending E-mail MessagesTRY IT OUT

In this exercise, you create a simple page in the folder. The code in this page creates an e-mail
message that is sent when the page loads. In a later exercise you modify the contact form so it can send
the user’s response by e-mail.

 1. Under the folder create a new file called . Make sure it’s based on your own
base page template so that it has the right master page and inherits from automatically.
Change the page’s to .

 2. Switch to the Code Behind by pressing F7 and at the top of the file, before the class definition, add
the following statement to make the classes in the namespace available to your
code:

VB.NET

C#

 3. Add the following code to a handler. If you’re using VB.NET you need to set up the
handler first using the two drop-down lists at the top of the Document Window (or by double-
clicking the page in Design View):

VB.NET

C#

502211c09.indd 319 2/19/10 10:00:08 AM

320 CHAPTER 9 VALIDATING USER INPUT

Change the e-mail addresses and names in the two lines that set the and addresses to
your own. If you have only one e-mail address, you can use the same address for the sender and
the receiver.

 4. Open and right before the closing tag, add the following settings:

Don’t forget to change to the name of your SMTP server. Also, be sure
to enter your name and e-mail address in the attribute. If necessary, add the ,

, and attributes to the element as shown earlier. If you're using Gmail
or another server that requires SSL for sending your e-mail, your element should
look like this:

Check with your host for specific requirements concerning the port number when SSL is used;
typical port numbers include 465 and 587.

 5. Save all changes, switch back to , and request it in your browser. After a while, you
should receive an e-mail message at the address you specified in step 3 of this exercise or in your
local pickup folder.

COMMON MISTAKES If you get an error, there are a couple of things you can
check. First, make sure you entered the right SMTP server in . You
may need to talk to your Internet provider or network administrator to get the
right address and optionally a user name and password. Also make sure that
the mail server you are using actually allows you to send messages. If you get
an error such as “The SMTP server requires a secure connection or the client
was not authenticated,” your provider may require you to log in or to use SSL
to secure the connection. If that’s the case, check the user name, password
and port number in or try setting the attribute of the

 element as shown earlier.

Processing Data at the Server 321

Finally, if you get the error “The specified string is not in the form required for an
e-mail address,” check if you entered a valid e-mail address in the attri-
bute in the file. You get this error if you leave out the symbol or
make some other syntax error.

If you can’t make sending mails from your local machine work, you can always
use the delivery option to store the files on your
local machine.

How It Works

You added the following or statement to the Code Behind file:

VB.NET

C#

This statement is used to make the classes in this namespace available in your code without prefixing
them with their full namespace. This enables you, for example, to create a instance
like this:

VB.NET

C#

Without the or statement, you would need this longer code instead:

VB.NET

C#

After the / statement, the code creates a new object and sets its
and properties. The code then assigns addresses for the sender and recipient of the e-mail message:

VB.NET

502211c09.indd 321 2/19/10 10:00:08 AM

322 CHAPTER 9 VALIDATING USER INPUT

C#

The property of the is of type , so you can assign a new
directly. The constructor of the class accepts the e-mail address and friendly name as
strings so you can create and assign the address with a single line of code.

The property of the class is a collection, so you cannot assign a directly.
Instead, you need to use the method to assign an address. This also enables you to add multiple
recipients by calling multiple times, each time passing in a different instance. You
use the and properties in a similar way to assign e-mail addresses to the carbon copy and blind
carbon copy fields of an e-mail message.

The final two lines of the code send out the actual message:

VB.NET

C#

When the method is called, the scans the file for a configured SMTP
server or local drop folder. It then contacts that server and delivers the message or saves it locally.

In the preceding Try It Out exercise, the body text for the e-mail message is hardcoded. This isn’t
always the best solution because it means you need to scan and change your code whenever you
want to change the text. It’s often better to use a text-based template instead. You see how to do this
in the next section.

Reading from Text Files
The .NET Framework comes with a few handy classes and methods that make working with files
very easy. For example, the class located in the namespace enables you to read
from and write to files, create and delete files, and move files around. This class contains only static
methods, which means you don’t have to create an instance of the class first. Instead, you directly
call methods on the class. For example, to read the complete contents of a text file, you can use
the following code:

VB.NET

C#

502211c09.indd 322 2/19/10 10:00:09 AM

Processing Data at the Server 323

In this example, the file name in C# is prefixed with an symbol, to avoid the need to prefix each
backslash () with an additional backslash. In C#, the backslash has a special meaning (it’s used to
“escape” other characters that have a special meaning), so to use it in a string you normally need
to prefix it with another backslash. Using the symbol tells the compiler that it should treat each
backslash it finds as literal, ignoring the special meaning of the character. It also preserves any line
breaks inside the string.

The following table lists the most common methods of the class that enable you to work with files.

METHOD VALUE

Appends a specified string to a text file. If the file does not exist, it’s created

first.

Copies a file from one location to another.

Deletes the specified file from disk.

Checks if the specified file exists on disk.

Moves the specified file to a different location.

Reads the contents of a text file.

Writes the contents of a string to a new file and overwrites the target file if it

already exists.

You can use these methods for all kinds of purposes. For example, when a user has uploaded a file,
you can use the method to move it to a different folder. Additionally, when you want to get rid
of uploaded files that you don’t need anymore, you use the method.

The method is useful to read the complete contents of a text file. For example, when
sending text by e-mail, you could store the body text of the e-mail in a text file. When you’re about
to send the e-mail, you call and assign the contents that this method returns to the
body of the e-mail. You see how this works in the following Try It Out.

Sending Mail from the ContactForm User ControlTRY IT OUT

This exercise shows you how to use e-mail to send the user data from the contact form to your own
Inbox. As the body of the e-mail message, the code reads in a text file that contains placeholders. These
placeholders are filled with the actual user data from the form and then sent by e-mail.

 1. Start by adding a new text file to the folder in your web site. If you don’t have the
 folder yet, right-click the web site and choose Add ASP.NET Folder App_Data. Create the

text file by right-clicking the folder and choosing Add New Item. Then click Text File
and name the file .

502211c09.indd 323 2/19/10 10:00:09 AM

324 CHAPTER 9 VALIDATING USER INPUT

 2. Enter the following text in the text file, including the placeholders wrapped in a pair of double hash
symbols:

Save and close the file.

 3. Open the Code Behind of the user control and import the following
namespaces (without the comments) at the top of the file:

VB.NET

C#

 4. Switch to Markup View and add and attributes to the table
with the server controls. This way you can hide the entire table programmatically when the form
has been submitted. To do this, locate the opening table tag and modify it like this:

 5. Scroll down to the end of the file and right after the closing tag, add a label called
. Set its property to . Hide the label by setting the property

to :

 6. Switch the control into Design View and set of the back to
 and to . Next, double-click the Send button. Inside the event handler

that VWD adds for you, add the following code:

VB.NET

502211c09.indd 324 2/19/10 10:00:09 AM

Processing Data at the Server 325

C#

Again, make sure you replace the e-mail addresses for the and properties of the
 with your own.

502211c09.indd 325 2/19/10 10:00:09 AM

326 CHAPTER 9 VALIDATING USER INPUT

 7. Save all your changes and once again request the page in the browser. Enter your
details and click the Send button. You’ll see the text Message Sent appear.

 8. Check the e-mail account you sent the e-mail to and after a while, you should receive an e-mail
message, similar to Figure 9-11.

FIGURE 9-11

How It Works

The mail-sending part of this exercise is pretty similar to the demo page you created earlier. What’s
different, however, is where the body text for the mail message comes from. Instead of hardcoding the
body in the Code Behind of the control, you moved the text to a separate file. This file
in turn contains a few placeholders that are replaced at runtime with the user’s details. To read in the
entire file at once, you use the following code:

VB.NET

C#

502211c09.indd 326 2/19/10 10:00:09 AM

Processing Data at the Server 327

The first line uses to translate a virtual path into its physical counterpart. By using
the virtual path, it’s easier to move your site to a different location because it doesn’t depend on any
hardcoded paths. returns a physical path such as

. This path is then fed to the method
of the class, which opens the file and returns its contents, which are then assigned to the

 variable.

NOTE Reading this file every time you need it isn’t very efficient. In Chapter 15
you see how to cache the contents of this file so you don’t have to read it on
every request.

The code then uses a number of calls to the method of the class to replace the static
placeholders in the message body with the details the user entered in the contact form. The return value
of the method — the new text with the replaced strings — is reassigned to the variable.
After the final call to , the no longer contains the placeholders, but the user’s details
instead:

VB.NET

C#

The method is case sensitive, so if you find that some placeholders are not replaced correctly,
make sure you used the same capitalization in the code and in the message body.

The placeholders are wrapped in a pair of double hash symbols (). The hash symbols are arbitrarily
chosen, but help to identify the placeholders, minimizing the risk that you accidentally replace some
text that is supposed to be in the actual message.

In addition to the method, you could also use to format the message. The
 method accepts a string containing numeric placeholders wrapped in curly braces and a number

of values (that correspond to the numbers used in the placeholders) to replace the placeholders with.
You see more of this method in the next chapter.

Once the message body is set up, it’s assigned to the object, which is then sent using the
, identical to what you saw in an earlier exercise.

328 CHAPTER 9 VALIDATING USER INPUT

When you filled in your details in the contact form and clicked the Send button, you may have noticed
some page flicker, as the page submits to the server and is then reloaded with the success message. This
page flicker can easily be minimized or completely removed using Ajax technologies, which are dis-
cussed in the next chapter.

PRACTICAL TIPS ON VALIDATING DATA
The following list provides practical tips on validating data:

Always validate all user input. Whenever you have a public web site on the Internet, you lose
the ability to control its users. To stop malicious users from entering bogus data in your sys-
tem, always validate your users’ input using the ASP.NET validation controls.

Always provide useful error messages in your validation controls. Either assign the error mes-
sage to the property and leave the empty, or use a
control to show a list of error messages.

Consider using the attribute of the validation controls to move the style definitions
for the error messages to a separate CSS file instead of setting them directly on the validation
controls.

Whenever you are writing code that sends an e-mail message, consider moving the body of
the e-mail to a separate text file stored in the folder because it makes your applica-
tion much easier to maintain.

When storing data in text or XML files, always store them in the folder that is
designed specifically for this purpose. This way, all your data files are nicely packed together.
More importantly, by default the web server blocks access to the files in this folder so a visi-
tor to your site cannot directly request them.

When sending e-mails as a test, always send them to an existing and valid address. Even
though an address like may appear to be invalid, there’s a fair chance the
account exists and is monitored, leading to the possible loss of sensitive data like passwords
you may be sending through e-mail.

Consider using as the for SMTP mail dur-
ing development. It avoids the need to send messages over the network, resulting in a faster
response and a cleaner Inbox.

502211c09.indd 328 2/19/10 10:00:09 AM

Summary 329

SUMMARY
User input is an important aspect of most interactive web sites. The input comes from different sources
in your web site: the contact form you created in this chapter, the query string, and other sources. To
stop users from entering invalid or even dangerous content into your system, it’s important to validate
all input before you work with it.

The biggest benefit of the validation controls that ship with ASP.NET 4 is that they work at the cli-
ent and at the server, enabling you to create responsive forms where users get immediate feedback
about any errors they make, without the need for a full postback. At the same time, the data is vali-
dated at the server, ensuring that data coming from clients that don’t use JavaScript is valid as well.

To store the information that users submit to your site, you have a couple of options. The data can
be stored in a database or a text file or sent by e-mail. The latter option is particularly useful for
contact forms, so you get an immediate alert when someone leaves a comment at your web site.
Sending e-mail is a breeze with the classes in the namespace. These classes enable
you to create an e-mail message, add subject, body, sender, and recipient information, and then send
the message using the class.

EXERCISES

1. To make the user control even more reusable, you can create a string prop-
erty such as on it that enables you to set the name of the page that uses the
control. You then add this string to the declaration of the control in the containing page. Finally,
you can add the description to the subject of the message that you send. This way, you can
see from which page the contact form was called. What code do you need to write to make this
happen?

2. Why is it so important that you check the value of the property of the when pro-
cessing data? What can happen if you forget to make this check?

3. What’s the difference in behavior between the and the property of the
class?

4. When you use a , you can write validation code at the client and at the server.
How do you tell the ASP.NET runtime what client-side validation method to call during the valida-
tion process?

5. How do you tell the validation mechanism that validation succeeded or failed in your
 routines?

Answers to Exercises can be found in Appendix A.

502211c09.indd 329 2/19/10 10:00:09 AM

330 CHAPTER 9 VALIDATING USER INPUT

WHAT YOU LEARNED IN THIS CHAPTER ◃

Client-side validation Validation that takes place in the client’s browser. Mainly serves

as a courtesy to users and offers quick feedback

 class Contains methods that enable you to work with files, including

reading and writing text files

 method A method on the class to replace numeric placeholders

in a string with other values

Regular expressions A compact and flexible syntax for finding strings of text in other

strings

 method A method on the class to replace one value in a string

with another

Server-side validation Validation that takes place at the server. You always need

server-side validation to protect your data as client-side valida-

tion can be bypassed

SMTP Server A server responsible for accepting and delivering e-mail

SSL A technique to encrypt (and thus protect) data flowing between

two machines

 namespace The namespace for e-mail classes such as ,

 and

Validation controls A set of ASP.NET server controls that enable you to validate

user input at the client and at the server

502211c09.indd 330 2/19/10 10:00:09 AM

