
Fit and Vulnerable: Attacks and Defenses for a

Health Monitoring Device

Mahmudur Rahman, Bogdan Carbunar, Madhusudan Banik

School of Computing and Information Sciences
Florida International University, Miami, FL

Email: {mrahm004, carbunar, mbani002}@cs.fiu.edu

Abstract. The fusion of social networks and wearable sensors is be-
coming increasingly popular, with systems like Fitbit automating the
process of reporting and sharing user fitness data. In this paper we show
that while compelling, the integration of health data into social net-
works is fraught with privacy and security vulnerabilities. Case in point,
by reverse engineering the communication protocol, storage details and
operation codes, we identified several vulnerabilities in Fitbit. We have
built FitBite, a suite of tools that exploit these vulnerabilities to launch
a wide range of attacks against Fitbit. Besides eavesdropping, injection
and denial of service, attacks can also lead to financial rewards. We have
built FitLock, a lightweight Fitbit extension that defends against these
attacks. Our experiments on BeagleBoard and Xperia devices show that
FitLock’s end-to-end overhead is only 2.4%.

1 Introduction

Recent advances in wearable, user-friendly devices equipped with smart sensors
(e.g., pedometers, heart rate and sleep monitors) and wireless technologies, are
facilitating the emergence of social sensor networks (SSNs): sites that collect
and share not only regular social networking information (e.g., status updates,
location reports, friend lists) but also user health-centric data.

Fitbit [1], a popular social sensor network centers its existence on fitness sen-
sor data. Fitbit (see Figure 1) consists of (i) trackers, wireless-enabled, wearable
devices that record their users’ daily step counts, distance traversed, calories
burned and floors climbed as well as sleep patterns when worn during the night,
(ii) an online social network (called webserver in the following) that automat-
ically captures, displays and shares fitness data of its users and (iii) user USB
base stations that act as bridges between trackers and the webserver. Trackers
communicate to bases in a wireless fashion over the ANT [2] protocol.

While popular and useful in its encouragement of healthy lifestyles, the com-
bination of health sensors and social networks makes social sensor networks the
source of significant privacy and security issues. In this paper we show that
Fitbit is vulnerable to a diverse set of attacks. Besides standard social network-
ing problems, including infiltration attacks [3] and private data leaks to general

account holders 1, Fitbit is made vulnerable by the wireless nature of tracker
communications and poor security practices.

In order to expose Fitbit’s vulnerabilities, in a first contribution, we have
reverse engineered the semantics of tracker memory banks, the command types
and the tracker-to-social network communication protocol. Furthermore, we have
built FitBite, a suite of tools that exploit Fitbit’s design, and used it to prove the
feasibility of several attacks. For instance, we show that FitBite allows attackers
to capture and modify the data stored on any tracker situated within a radius
of 15 ft. This is an important privacy breach, as information accessible from
a tracker includes personally identifiable information (user name, zipcode, city,
height, weight) and fitness data.

Fig. 1. Fitbit system components: trackers (one mounted on the base), the base (arrow
indicated), user laptop. The arrow pointing to the tracker shows the switch button,
allowing the user to display various fitness data.

In a second contribution, we propose FitLock, a lightweight extension that
uses efficient cryptographic tools to secure the Fitbit protocol. We show that
FitLock prevents the FitBite attacks. Our end-to-end implementation on both
BeagleBoard [4] and Xperia devices shows that the computation and communi-
cation overhead imposed by FitLock on Fitbit is only 2.4%. The project website
containing the source code of FitBite and FitLock is publicly available at [5].

The paper is organized as follows. Section 2 reverse engineers Fitbit and Sec-
tion 3 introduces FitBite, the suite of attack tools. Section 4 introduces FitLock,
our defense extension and proves its security. Section 5 describes our implemen-
tation results. Section 6 describes related work and Section 7 concludes.

1 Fitbit has suffered criticism due to its initial default access control settings: The
reported sensor information was made publicly available on Fitbit’s social network.

2 Reverse Engineering Fitbit

We reverse engineered the Fitbit communication protocol, including the message
communication format among the participating devices, and the structure and
data format of each memory bank. A tracker has both read banks, containing
data to be read by the base and write banks, containing data that can be written
by the base.

Fitbit uses service logs, files that store information concerning communica-
tions involving the base. On the Windows installation of the Fitbit software,
daily logs are stored in cleartext in files. Data retrieved from the tracker to
be uploaded to the social network is encoded in base64 format. We have ex-
ploited Fitbit’s lack of encryption in the messages sent between the base and
the tracker to implement a USB based filter driver that creates separate logs
of the data flowing to and from the base. The captured logs reveal that during
the upload session, the webserver reads data from 6 memory banks, writes on 2
write memory banks and clears data from 5 memory banks by sending requests
to the tracker through the base. The read bank #1 stores the daily user fitness
records while the write bank #0 stores 64 bytes concerning the Device Settings
and Profile Settings as specified on the user’s Fitbit account. The communica-
tion between the webserver and a tracker through a base is embedded in XML
blocks, that contain base64 encoded opcodes – commands for the tracker. All
opcodes are 7 bytes long and vary according to specific type of instructions (e.g.,
read, write, erase).

2.1 The Fitbit Communication Protocol

In the following, for brevity, we use the notation “HOME” to denote the full URL
http://client.fitbit.com. The data flow between the tracker, base and the
webserver during the data upload operation, is divided into 4 phases, beginning
at steps 2, 3, 5 and 7:

1. Upon receiving a beacon from the tracker, the base establishes a connection
with the tracker.

2. Phase 1: The base contacts the webserver at the HOME/device/tracker/

uploadData and sends basic client and platform information.
3. Phase 2: The webserver sends the tracker id and the opcode for retrieving

tracker information (TRQ-REQ).
4. The base contacts the specified tracker, retrieves its information TRQ-INFO

(serial number, firmware version, etc.) and sends it to the webserver at the
HOME/device/tracker/dumpData/lookupTracker.

5. Phase 3: Given the tracker’s serial number, the webserver retrieves the
associated tracker public id (TPI) and user public id (UPI) values. The
webserver sends to the base the TPI/UPI values along with the opcodes for
retrieving fitness data from the tracker (READ-TRQ).

6. The base forwards the TPI and UPI values and the opcodes to the tracker,
retrieves the fitness data from the tracker (TRQ-DATA) and sends it to the
webserver at the HOME/device/tracker/dumpData/dumpData.

7. Phase 4: The webserver sends to the base opcodes to WRITE updates pro-
vided by the user in her Fitbit social network account (device and profile
settings, e.g., body and personal information, time zone, etc). The base for-
wards the WRITE opcode and the updates to the tracker, who overwrites
the previous values on its write memory banks.

8. The webserver sends opcodes to ERASE the fitness data from the tracker.
The base forwards the ERASE request to the tracker, who then erases the
contents of the corresponding read memory banks.

9. The base forwards the response codes for the executed opcodes from the
tracker to the webserver at the address
HOME/device/tracker/dumpData/clearDataConfigTracker.

10. The webserver replies to the base with the opcode to CLOSE the tracker.
11. The base requests the tracker to SLEEP for 15 minutes, before sending its

next beacon.

3 FitBite: Attacking Fitbit

FitBite consists of two modules. The Tracker Module (TM) reads and writes the
tracker data. The Base Module (BM) retrieves/injects data from/to the tracker
and uploads it into the account of the tracker’s owner on the webserver. FitBite
implements the following attacks:
Tracker Private Data Capture (TPDC). The TMmodule is used to discover
any tracker device within a radius of 15 ft and capture the fitness information it
stores. This attack can be launched in public spaces(e.g., parks, sports venues).

Fig. 2. Outcome of TI attack on tracker:
167,116 steps recorded within 1 day.

Tracker Injection (TI). The TM
module is used to modify any of the
fitness data stored by nearby track-
ers. FitBite reads the selected data
from a specified memory bank and
modifies the target bytes. The TM
can simultaneously modify multiple
fitness records (memory banks).

Figure 3 shows an example of a
victim tracker, displaying an unrea-
sonable value for the daily number of
steps taken by its user.

User Account Injection (UAI). The BM module is used to inject data on the
Fitbit social network accounts of the owners of nearby trackers. It sends to the
webserver, fabricated data replies embedding the desired fitness data, encoded
in base64 format. The webserver does not authenticate the request message and
does not check for data consistency, thus accepts the data.

Figure 3 shows a snapshot of one account where we have successfully injected
number of steps taken by the “account owner”, while keeping the other values
intact. This shows that (i) FitBite can inject an unreasonable daily step count

Fig. 3. Snapshot of Fitbit user account data injection attack.

(12.58 million) into the account of any tracker owner located in its vicinity and
(ii) Fitbit does not verify the consistency of the data: the 12.58 million steps are
shown to correspond to 0.02 traveled miles.

Fig. 4. Earndit points and available gift cards

Free Badges and Financial Rewards. By successful injection of large values
in their social networking accounts, FitBite enables attackers to achieve special
milestones and acquire Fitbit provided “merit” badges, without doing the re-
quired work. Figure 3 shows that the injected value of 12.58 million steps, being
greater than 40,000, enables the account owner to acquire a “Top Daily Step”
badge. Fitbit users can link their social networking accounts to systems that re-
ward users for exercising, e.g., Earndit [6]. We have shown through experiments
that attackers can accumulate undeserved financial rewards. Figure 4 shows an
example where we have accumulated 200 Earndit points, that can be redeemed
to a $20 gift card.

Battery Depletion Attack. FitBite allows the attacker to continuously query
trackers in her vicinity and drain their batteries at a faster rate. Through ex-
periments, we have shown that when forcing trackers to upload data 4 times per

minute, FitBite drains tracker batteries 21 times faster than the regular upload
mode.

4 FitLock: Protecting Fitbit

FitLock considers an adversarial model where attackers can impersonate system
participants, and snoop, inject and jam existing communications. We assume
however that attackers do not have physical access to the victim trackers.

FitLock consists of a bind procedure (BindUserTracker), where the user as-
sociates a new tracker to her online social network account and an upload pro-
cedure (UploadData), where the tracker reports information upon demand from
the social network. Each tracker T has a unique serial number idT and a se-
cret symmetric encryption key skT , shared with the webserver. These values are
stored in a write-once-read-many (WORM) area of the tracker’s memory banks.
The tracker never reveals (e.g., displays or communicates) the secret key. The
webserver stores a database Map that associates a tracker id to tracker related
data, including symmetric key, user id and session id. Initially, Map only maps
tracker ids into corresponding symmetric encryption keys.

Fig. 5. The BindTrackerUser protocol between
the user, tracker and the (Fitbit) webserver

Let IdA denote the
unique user id of the account
that user A has on the Fit-
bit social network. In the fol-
lowing, we use the notation
F (P1(args1), .., Pn(argsn))
to denote a protocol F run-
ning be-
tween participants P1,..Pn,
each with its own input argu-
ments. For instance, the fol-
lowing BindTrackerUser pro-
tocol involves user A, with
her account id and a time in-
terval s as input arguments,

her tracker T, with its id and secret key as arguments, her base B with no
arguments and the (Fitbit) webserver WS, with its Map structure as input ar-
gument. The BindTrackerUser protocol allows user A to bind her new tracker
to her social network account (illustrated in Figure 5).

BindTrackerUser(A(IdA ,s),T(idT , skT),B(),WS(Map)). User A logs in
into her account on the Fitbit social network (step 1 in Figure 5). A presses
T’s switch button for s seconds (step 2). Upon this action, the tracker T reports
its identifier idT in cleartext to WS, through the user’s base (step 3). WS uses
the Map structure to retrieve the symmetric key associated with the idT , i.e.,
skT (step 4). It then generates a 6 digit long random value, N (step 5). WS

sends to T the request value

idT , EskT
(“WS′′, T ime,N),

where T ime is WS’s current time (step 6). WS keeps track of all requests sent
to trackers and pending responses, indexed under the tracker id and the nonce
value. WS associates an expiration time with each entry, and removes entries as
they expire without being answered.

Upon reception of this message, T uses its symmetric key, skT , to decrypt
it. It verifies the freshness (the T ime value) and authenticates WS through its
ability to have encrypted this message, containing the string “WS”, using the
key skT . If the verifications succeed, the tracker displays the 6 digit random
nonce N (step 7). User A reads and enters this nonce into a confirmation box in
her Fitbit social network account (step 9). Then, if WS finds any pending (not
expired) request matching the value entered by the user, WS associates IdA to
idT and skT in the Map structure (step 10). WS removes this request from the
list of pending requests.

The following procedure, UploadData, is used to secure the Fitbit communi-
cation protocol described in Section 2. It involves a tracker T (taking as argu-
ments its id idT , secret key skT , stored fitness data, expiration interval δt and
retry counter r), a base B (with no arguments) and the webserver WS (with its
Map structure and the same expiration intervals and counter as T).

All communication between T and WS is encrypted with their shared key
skT . Each communication session between WS and T has a monotonically in-
creasing session id Swst. T and WS do not accept messages with older session id
numbers.
UploadData(T(idT ,skT ,data,δt,r),B(),WS(Map,δt,r)). A new session starts
only after the tracker’s beacon is received by the base and the base sets up
a connection with the tracker (step 1). Within each session, the communica-
tion between WS and T starts with a request from WS followed by a response
from T. Each request contains a request type REQ ∈ {TRQ-REQ, READ-TRQ,
WRITE, ERASE, CLOSE} and a counter Cws encoding the number of times
this particular request has been re-transmitted. Within a session, T stores the
latest Cws received from WS for any request type, or -1 if no request has been
received yet. Thus, a request from WS to T has the format

idT , EskT
(REQ,Swst, Cws),

where Swst is the current session id and Cws is set to 0 for the first transmission
of the current REQ type. Upon receiving such a message, the base B uses idT to
route the packet to the correct tracker T in its vicinity. T uses its secret key to
decrypt the packet and authenticate WS: verify that the first field is a meaningful
request type, the second field contains the current session id and the value of
the third field exceeds its currently stored value for REQ. If either verification
fails, T drops the packet. Otherwise, T stores the received Cws value, associated
with the REQ type for the current session, and replies to this request with

idT , EskT
(RESP, Swst, CT),

where RESP ∈ {TRQ-INFO, TRQ-DATA, CLEAR} denotes T’s response type
and CT is its counter (initialized to 0).

WS waits a predefined interval δt to receive the reply RESP from T. If
it does not receive it in time, WS repeats the request, with an incremented
counter Cws. If WS’s re-transmission counter reaches a maximum value, r, and
no corresponding RESP is received within the δt interval, WS increments the
session id Swst. Similarly, if C’s re-transmission counter reaches the maximum
value r and the next request is not received from WS, T increments Swst. This
means that T and WS consider themselves to have been disconnected and their
next communication needs to start from the beginning with a new session id. If
T receives a REQ from WS that has a session id larger (by 1) than its current
session id, T drops the data associated with the current session, and begins a
new session with the incremented session id.

At the successful completion of a session, both T and WS increment the
session id Swst. WS stores this value in Map indexed under idT .

4.1 Analysis

We introduce now several properties of FitLock.

Claim. Without physical access to the tracker, an attacker cannot hijack the
tracker during the BindTrackerUser procedure.

Proof. (Sketch) A tracker hijack attack, takes place during a normal execution
of the BindTrackerUser procedure by a victim user for her tracker T. The
adversary attempts to bind the victim tracker T to another user account, po-
tentially controlled by the attacker. Let M denotes the Fitbit account owned by
the adversary. Without physical access to the tracker, the adversary cannot read
the 6 digit random nonce displayed on the tracker and upload it in M . How-
ever, the adversary is able to capture packets exchanged by WS and T during a
BindTrackerUser procedure. The adversary could then attempt launch a rush

attack. In a rush attack, the adversary decrypts a captured packet, recovers the
nonce N sent by WS to T, and uploads it in M , before the valid user. Rush
attacks are prevented by the semantic security of the encryption scheme of Fit-
Lock – the adversary cannot recover the nonce. ⊓⊔

FitLock prevents the TPDC attack through the use of semantically secure en-
cryption. The non-malleability of the encryption also prevents injection TI, UAI
and ensuing free badge and financial rewards attacks, generated from previously
captured (encrypted) messages. The use of session identifiers and re-transmission
counters prevents replay attacks.

Claim. FitLock prevents Battery Depletion attack.

Proof. (Sketch) FitLock’s use of semantically secure symmetric encryption to
protect communications, prevents attackers from obtaining a response from
trackers. The attacker cannot replay requests with old session ids or old counters

(for the current session id): Upon receiving invalid requests or requests with old
session ids or old counter values, the tracker drops them, thus does not consume
power to answer them. ⊓⊔

5 Evaluation

5.1 Experimental Setup

Fig. 6. Snapshot of testbed for FitLock, consisting of BeagleBoard and Xperia devices
used as Fitbit trackers.

We implemented FitLock in Android. We choose the following resource-
constrained hardware and system setup to compare FitLock and Fitbit. We
have tested the tracker side on two devices, (i) a Revision C4 of an OMAP
3530 DCCB72 720 MHz BeagleBoard system [4] and (ii) a Sony Ericsson Xperia
X10 mini smartphone (ARM 11 CPU@600 MHz, 128MB RAM). We used a Dell
laptop featuring a 2.4GHz Intel Core i3 processor and 4GB of RAM, for the
webserver (built on the Apache webserver 2.4). We also implemented a client-
server Bluetooth socket communication protocol between the tracker (Xperia
smartphone) and the base using PyBluez [7] python library.

For connectivity between the base and the webserver, the laptops use their
own 802.11b/g Wi-Fi interfaces. Figure 6 shows a snapshot of our testbed. For
encryption we experimented with RC4, AES and the Salsa20 [8] stream cipher,
selected in the final eSTREAM portfolio [9].

5.2 Results

In the following, all reported values are averages taken over at least 10 inde-
pendent protocol runs. A potential bottleneck of FitLock is in the encryption
of packets by the tracker. We compared then the performance of RC4, Salsa20
and AES, with a key size set to 128 bits, on the BeagleBoard and the Xperia

32 64 128 256 512 1024

Packet size (Bytes)

A
ve

ra
g
e
 E

n
cr

yp
tio

n
 t
im

e
 (

m
s)

 o
n
 X

p
e
ri

a

0
1

2
3

4
5

RC4
Salsa20
AES

(a)

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

Packet size (Bytes)

A
ve

ra
g
e
 D

e
c
ry

p
ti
o
n
 t
im

e
 (

m
s
)

o
n
 L

a
p
to

p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RC4
Salsa20
AES

(b)

Fig. 7. FitLock overhead. (a) Encryption time overhead on Xperia. (b) Decryption
time overhead on webserver (Dell laptop).

devices. The packet size ranged from 32 bytes to 1024 bytes. Figure 7(a) shows
the execution time of the three protocols on the Xperia smartphone. For small
packet sizes, Salsa20 performs the best. As the packet size increases, RC4 per-
forms slight better than Salsa20. Both RC4 and Salsa20 outperform AES for any
packet size. Even for a packet size of 1024 bytes, the average encryption times
for RC4, Salsa20 and AES are only 3.24ms, 4.62ms and 4.83ms respectively.

We further examined the packet decryption overhead on the webserver us-
ing the above mentioned protocols. Figure 7(b) shows the dependence of the
decryption time on the packet size. RC4 and Salsa20 perform better than AES.
Even for 1024 byte packets, the average decryption overheads for RC4, Salsa20
and AES are 0.69ms, 1.01ms and 1.31ms respectively.

Finally, we report the measured end-to-end performance of FitLock and com-
pare it against the performance of Fitbit. We have implemented and tested both
Fitbit and FitLock on our testbed. Figure 8 shows the results split into the times
of each of the 4 phases of the webserver-to-tracker communication protocol. We
have set the secret key size to 256 bits. The end-to-end FitLock overhead is
1518ms. The total time of Fitbit is 1481ms. Thus, FitLock adds an overhead of
37ms, accounting for 2.4.% of Fitbit’s time.

6 Related Work

Halperin et al. [10] were the first to demonstrate the practicality of security at-
tacks on pacemakers and implantable cardiac defibrillators (ICDs), by reverse
engineering an ICD’s communications protocol with an oscilloscope and a soft-
ware radio. They used RF power harvesting for authentications and key ex-
change to protect Implantable Medical Devices (IMD). Rasmussen et al. [11]
proposed proximity-based access control for IMDs, to verify the distance of the
communicating peer before initiating wireless communication, thereby limiting

Current Mode Encrypted Mode

0

200

400

600

1 2 3 4 1 2 3 4

Phases

A
ve

ra
g

e
 e

xe
c
u

ti
o

n
 t

im
e

 (
m

s
)

Tracker.on.Android Webserver.on.Laptop Communication.Overhead

Fig. 8. End-to-end delay, Fitbit and FitLock.

attackers to a certain physical range. Li et al. [12] demonstrated successful secu-
rity attacks on a commercially deployed glucose monitoring and insulin delivery
system and provided two defenses based on rolling-code cryptographic proto-
cols and body-coupled communication. They used a software radio board to
intercept radio communications within a frequency band and generate wireless
signals. While similar, our work does not require additional hardware to inter-
cept or protect communications, it applies to social sensor networks, and uses a
different methodology: we reversed engineered Fitbit’s communication protocol
using service logs captured through a USB based filter driver. Furthermore, our
defense mechanisms take advantage of the different system model and capabili-
ties present in trackers and Fitbit’s social sensor network.

Marti et al. [13] described the requirements and implementation of the se-
curity mechanisms for MobiHealth, a wireless mobile health care system. Mobi-
Health relies on Bluetooth and ZigBee link layer security for communication to
the sensors. Barnickel et al. [14] targeted security and privacy issues with Mobi-
Health for HealthNet, a health monitoring and recording system. They proposed
a security and privacy aware architecture, relying on data avoidance, data min-
imization, decentralized storage, and the use of cryptography. While similar in
goals, our approach does not require additional costly unique hardware (e.g.,
wearable sensor shirts and constant Bluetooth connection between smartphone
and the body sensor network).

Lim et al. [15] analyzed the security of a remote cardiac monitoring system
relying on a Body Area network (BAN). The defense mechanism proposed re-
lies on an asymmetric cryptosystem, making it unsuitable for Fitbit trackers.
Muraleedharan et al. [16] proposed two types of possible denial-of-service at-
tacks including Sybil and wormhole attacks in a health monitoring system using
wireless sensor networks. They proposed an energy-efficient cognitive routing al-
gorithm to address such attacks. Kulkarni and Öztürk [17] survey security and
privacy issues for IMDs.

7 Conclusion and Future Work

In this paper, we studied security and privacy issues of Fitbit, a popular fitness
tracking system. We have developed FitBite, a software module that relies on
reverse engineering of Fitbit’s data communication protocol, to launch both pas-
sive and active attacks on Fitbit. We have proposed FitLock, a Fitbit extension
that defends against FitBite. We have implemented FitLock and we have shown
that FitLock introduces a negligible end-to-end overhead on Fitibit (2.4%).

In future work, we will consider physical, mule attacks, where attackers at-
tach trackers to various moving objects (e.g., car wheel, fan). We will explore
correlation approaches, studying relations (or lack thereof) between pedometer
and other sensor readings (e.g., GPS, heart rate).

References

1. Fitbit. http://fitbit.com/.
2. Ant message protocol and usage. http://www.sparkfun.com/datasheets/

Wireless/Nordic/ANT-UserGuide.pdf.
3. Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ripeanu. The socialbot network:

when bots socialize for fame and money. In ACSAC ’11, 2011.
4. G. Coley. Beagleboard system reference manual. BeagleBoard.org, December 2009.
5. FitBite and FitLock: Attacks and defenses on Fitbit Tracker. http://users.cis.

fiu.edu/~mrahm004/fitlock.
6. Earndit: We reward you for exercising. http://earndit.com/.
7. Pybluez. http://code.google.com/p/pybluez/.
8. Daniel J. Bernstein. The salsa20 family of stream ciphers. In New Stream Cipher

Designs, pages 84–97. Springer-Verlag Berlin, Heidelberg, 2008.
9. eSTREAM: the ECRYPT stream cipher project. http://www.ecrypt.eu.org/

stream/.
10. D. Halperin, T. H. Benjamin, B. Ransford, S. Clark, B. Defend, W. Morgan, K. Fu,

T. Kohno, and W. Maisel. Pacemakers and implantable cardiac defibrillators:
Software radio attacks and zero-power defenses. In IEEE S & P, 2008.

11. K. B. Rasmussen, C. Castelluccia, T. S. Heydt-Benjamin, and S. Capkun.
Proximity-based access control for implantable medical devices. In ACM Con-

ference on Computer and Communications Security, pages 410–419, 2009.
12. Chunxiao Li, A. Raghunathan, and N.K. Jha. Hijacking an insulin pump: Security

attacks and defenses for a diabetes therapy system. In IEEE Healthcom, 2011.
13. R. Marti, J. Delgado, and X. Perramons. Security specification and implementation

for mobile e-health services. In IEEE CEC, 2004.
14. J. Barnickel, H. Karahan, and U. Meyer. Security and privacy for mobile electronic

health monitoring and recording systems. In WoWMoM, 2010.
15. S. Lim, T.H. Oh, Y. Choi, and T. Lakshman. Security issues on wireless body area

network for remote healthcare monitoring. In SUTC, 2010.
16. Rajani Muraleedharan and Lisa Ann Osadciw. Secure health monitoring network

against denial-of-service attacks using cognitive intelligence. In CNSR, 2008.
17. P. Kulkarni and Y. Öztürk. Requirements and design spaces of mobile medical

care. SIGMOBILE Mob. Comput. Commun. Rev., 2007.

