Predictive Caching for Video on Demand CDNs

Bogdan Carbunar Michael Pearce Venu Vasudevan, Michael Needham
Computing and Information Sciences Motorola Solutions Applied Research Center
Florida International University Schaumburg, IL Motorola Mobility
Miami, FL Email: michael.pearce@motorola.com Schaumburg, IL
Email: carbunar@gmail.com Email: {cvv012,cmn002@motorola.com

Abstract—Video on Demand (VoD) services provide a wide
range of content options and enable subscribers to selecgtrieve
and locally consume desired content. In this work we propose
caching solutions to improve the scalability of the content
distribution networks (CDNSs) of existing VoD architectures. We
first investigate metrics relevant to this caching framewok and
subsequently define goals that should be satisfied by an effcit
solution. We propose novel techniques for predicting futue values

/' scheduled

/ multicast miss/unicast

\

VHO - V1

ol . e[e

va4 ‘

of metrics of interest. We use our prediction mechanisms toefine Xwemwe
the cost imposed on the system (network and caches) by items
that are not cached. We use this cost to develop novel cachiagd

static placement strategies. We validate our solutions usg log . o .
data collected from Motorola equipment from several Comcas Fig- 1. System Architecture. Thick lines denote the ring topology
VoD deployments. links, connecting the VSO and the VHOs. Links &iedirectional.

. INTRODUCTION a penaltyvalue for each item: the cost of not storing the item
Video on Demand (MoD) systems allow users to select aior a future interval. In addition, we take advantage of the
view content on demand. The content is stored by the VogXisting streaming servers at all VHO and VSO sites and use
operator at various locations in the network and is transter the penalty values of items to drive not only the replacement
upon to users upon demand over a content delivery netwalgorithm (which items to evict from a cache) but also the
(CDN). In this paper we consider CDN architectures builtrovelecision of which items to transfer reliably and cache and
the cable television (CATV) transport network (see Figuyre lwhich to stream (and not cache).
In this architecture, the video service office (VSO) is therma 1, caching problem has been studied in a variety of

site while several video home offices (VHOs) are secondatytexts, e.g., Web caching, memory and distributed storag
sites that store the same content but serve smaller, disjofiye seminal work of Dahlin et al. [1] introduced the conceipt o
regions. Current VoD implementations (including Comcastyjaporative caching along with several caching algonish
Charter and Time Warner) require each VHO to store @, work differs in that clients can access other caches
the content present at the VSO. While enabling high contegli; cannot decide their membership. Caching for streaming
availability, this solution has significant scalabilitysi®s: 414 includes work on prefix caching [2], [3], segment-based
VHOs need larger disks, RAMs and flash. However, due {g,ching [4] and multicast cache [5] where the main concern
different regional consumption patterns part of the COnteR minimizing the start-up latency. Caching for content-dis
becomes irrelevartt o _tribution networks has also been addressed in a theoretical
In this work we relax the content duplication constraing,mework in recent work [6], [7]. Our work differs in tha)(i
and propose that each VHO site is managed independently st jgentifies the constraints that define the existingh&D
the local storage becomes a cache of the central librarg T\ providers including Comcast, Charter and TimeWarner
enables hardware scaling to be done based on local demapfihan proposes novel predictive caching solutions diid (

However, due to VHO level misses, this approach introduceg;gay validates the solutions on data collected from Motar
trade-off between the additional traffic imposed on the oetw equipment from existing VoD deployments.

links to fetch missed items and the hardware scaling cost. As i i
a first contribution, we identify several relevant metricela We have used Java and ns-2 implementations to evaluate

associated goals that need to be achieved in order to make Pr]'ﬂr algorithms Orc‘j Iolg traces from Motc|>rol_a VHO sErvers
solution functional. A second contribution consists ofidimg ©f Comeast VoD deployments. Our conclusions are that our

placement and caching algorithms that attempt to achieaðsomnons satisfy a_II our goals: they significantly redube_t
goals. Our solutions build on novel algorithms for predigti t‘?ta'_ neMork traffic (half the_ value of LRU), improve Its
distribution on the network links (one order of magnitude
IData from a Time Warner deployment in San Antonio shows tmdy o better than LRU) and reduce the cache overwrite value per
8000 items from a 40000 item library were requested duringdayBinterval. day to a fraction (10_20%) of the cache size.

Il. SYSTEM MODEL Cache(V) denote the set of items stored on site V at a given

We consider the content distribution networks of sever i“e- We now investigate the metrics relevant to the caching

: . k considered in our work.
Comcast, Charter and TimeWarner video on demand depl EﬁmeYVF’F i :) .)
ments. The Video Service Office (VSO) is the central da D?I_fm.'t'?r? 3.1 (Tr?f?r? M_etrlcs%) Flﬁ 'I_';)tal M'.SS 'I;jrafflc I
repository. The VSO processes each content item as it en) is the sum ot the 3|z.e ot all the | emsn missed on a
: L ; Os over atime interveDNT: TMT(AT) = >, Size(I),
the system, packages it and stores it in a lagaitent library MISS(V.AT) YV € V. The Total Link Tréff%c (LT is
The VSO also has a high-capacity streaming server that Cc%ﬁ (V. AT), €V ! ! :

: . : . e sum of the traffic imposed on all the links in the system:
stream items directly to users. The Video Home Office (VH LT(AT) = Y, Traf fic(Ls, AT), VL, € L.

is a smaller replica of the VSO, serving a geographical sub-_ >~] . . .
region of the area served by the VSO. Each VHO consis]thefm'tlon 3.2: (Congestion Metrics) The Bottleneck Link

of a storage component (the cache) and a smaller capaci %:'C (BIET) |sTtrr]1e ,f;‘?‘ff'c Impl?sedeonﬁFheMn’ligst_ u?rl:zetd :Jff"‘
streaming server that serves items stored in the cache ub% € sgs eTH | € t|n|mumt '3 i lia ic () is the traffic
user request. Each site V (VSO or VHO) has a unique ideffiourred on the feast congested fink. .

Given the above definitions, we now define the goals that

tifier, 1d(V). The VSO and the VHOs are connected througi‘}10uld be satisfied by an efficient solution

. .) S
a high speed fiber ring, . Goal 3.1: (Traffic) Reduce TMT. Reduce TLT-TMT.
Each VHO stores only a subset of the items stored at the : ,
: . oal 3.2: (Balance) Reduce BLT. Balance the traffic across

VSO. Whenever a miss occurs (a user requests an item H%?network links: reduce BLT-MLT
stored on the VHO cache), the VHO needs to fetch the item. ' '

The VHO can fetch the item from another VHO site or fror% ¢ (t?r?waelj\? s : gujggrs?éff?cjt:?Z)eig;:?g;tﬁ?rggggo\;vatizzdof
the VSO. The source site streams the item directly to the u y , let(Z, y

(from its streaming server) or reliably sends it to the resjing Tlransferred to the user up to tinfé and letc(, T') de_note
VHO who then caches and streams it to the user. the number of bytes of consumed by the user up to tirfe

. i > .
We have several data sets from VoD deployments in ijen, at an.y tme, we need_to ensure thet, T) > c(1,T)
China and Europe. We focus here on our largest data setG02l 3.4 (Cache Overwrite) Reduce the amount of data

collected from Motorola VHO equipment from a Comcadritten on the cache to a daily value that is a fraction of the

VoD deployment in Warren (Detroit, MI). The "Warren” datacache size.

has been collected over 18 full days from August 16, 2008 Our last goal focuses on one important limitation of cache

to September 2, 2008. The total number of items accessigrage technology: the finite number of program-erase) (P/E

was 12625 for a total of 4.6 million accesses. Each data S¥€!es Of the flash technology.

consists of two types o_f data. Tlwentent databaseontains _ IV. APPROACH

metadata of all content items stored.on the VS.O' Each ent,ry "Mrhe cache of each VHO site is organized into two lists (i)

the content database refers to one item and lists the itein’s | C
one containing items that are currently consumed vibeSet

size and consumpuqn rate. In all our !ogs therg are two typgrs]d (ii) one with items that are not consumed but have not yet
of content encoding: standard definition, requiring a biera

of 3.7Mbps and high definition, with a bit rate of 14.4Mbp been evicted — thstillCachedlist. When a request for an item

Thestream databaseontains information about requests froS] Is received by a VHO V, if I Cache(V), V streams the item

VoD system users. Each entry refers to one user re uestn%%tahe user via its streaming server. IlCache(V), V needs
y i y d 0 orward this request to other sites that may store I, who

contains a umgue_stream id, the name of the content consun}%gn serve this request. V has then the option of storing item
the consumption interval and the requesting IP address.

. R | locally. Our approach for making this decision is based on

o 8”:.0\';92({?;0?8% r?wr:at:'rl: (I)?bF;SI\E/’\INtGr)]((ja &f&?iﬁg'ezr'.ge::&enalties. That is, each VHO assigns a penalty value to each
v l:)' If : tW : Id ; " i d th % Id .item for which it has received a request. The penalty defines

NUMDET Of Tequesls received In a minute an € ban W'q "cost” of not storing the item in the cache. In the follogi

required to satisfy all requests. These metrics vary dung\ge briefly outline our approach

a day: high values are recorded around midnight, followed Predicting Penalty Values: We define the penalty of an

by a dgcrease to the _Iowest po!nt aF around 6qm and theﬂe?n to be higher for items of larger size, that are requested
further increase reaching new picks in the evening. Howevg

: . equently and are more difficult to fetch. Predicting the
this consumption pattern repeats every day and moreoser,

hibit Ki i it i tende enalty of an item depends on the ability to infer the future
ExNIDILS weekly consumption pattems (e_.g., iems 1endeo Jumber of requests likely to be received for the item and
requested least on Thu. and most on Fri. and Sat.).

. M ETRICS also the futu_re cost of fet_ching an item over a certgin Iin.k.

' In the following we describe our approach in making this
Let V = {W1,.,V,,} be the set of VHOs in the systemprediction using M as the generic metric (e.g., RPM). Foheac
and let £ be the set of inter-site links in the systemi. item stored in the system, each VHO site records observed
includes also the links adjacent to the VSO. The links akalues for M for 7 days, sampled once per minute (1440
full-duplex, thus bidirectional. Led/ I5S(V, AT) denote the values per item per day). We use the recorded history of
set of items missed oY during time intervalAT and let M to compute a preliminary prediction for future values of

M. For each item | and each minutE € AT, we use a for each item | is computed for each minute of the (next)
weighted average of values of M recorded during the sarday using the approach described in Section IV. We define
minute of each day of the previous week to buildiaitial RPM,.q t0 be RPMp.cq(I) = ?:Tg RP Mt (1,T),
prediction for the value of M for | at a (future) minute T:whereTy is the first andl} is the last minute of the epoch.
My (I,T) = 22:1 M(I,T—1440 x d) x wq. Each of the 7 Thus, RPM,,.q4(I) denotes the predicted number of requests
previous days is assigned a weight;, Wherezzz1 wg = 1. for item I during the next epoch.
The previous day and the same day one week before hav®uring each epoch, we record the observed values of
larger weight€ In Section V and VI we propose two differentRPM for each item 1. At each minutd,. < [T,,7)] we
approaches that use this initial prediction to devise modefine the reactive value of an itemRPM,cq.:(I,T.) to be
elaborate and efficient predictions. RPM,eqet(I,Te:) = ;“:TO RPM(I,T). RPMycqcet(I,T.)
Replacement and Streaming DecisionsOn each VHO denotes the total number of requests seen for | since the
cache, thestillCached items are candidates for eviction wherbeginning of the epoch. We ugePM,,,.q and RPM,¢q; tO
a miss occurs. LettillCached = {11, ..,1,} and letS(I;) be define the popularity of an item | at tinE., as the weighted
the size of item/;. When a miss occurs for an item | whoseverage ofRPM,,cq and RPM,cqci: Popularity(I,T.) =
size S(I) exceeds the available cache space, the penaltieRE M, cqci(I,T,) x B(T:) + RPMpyreq x (1 — B(Te) The
| and of all the items instillCached are computed. Let P(l) weight 3 is time dependent. While we have considered also a
be the penalty of | and®(1;) be the penalty of itend; from logarithmic time dependency, in our implementation we have
stillCached. Then, | is stored in the cache only if there existased a linear dependeng(T") = (T'—T1)/(T> — T1), which
a"replacement set”, a subskt= {I,,, .., I, } of stillCached performed slightly better in our experiments. Given a pgnal

such that value for each item, PBC uses Equation 1 to decide which
r items to stream, which to cache and which to evict. Miss item
> S(n,) = S traffic is scheduled as described in Section IV, using a hop-

j=l1 count metric for choosing the source peer.

- _ Static Placement Algorithm - SPA: We now propose a
csf X z; P(L;) < P) (1) PBC variant, where the value of the csf factor from Equation 1
j:

In case it exists, the replacement set is evicted. Otheywi&sSet to infinity. The caching algorithm becomes then acstati
item | is streamed directly to the user from another site thBacement algorithm (SPA): the cache membership does not
stores it. csf, the cache stability factor, defines how fhst tchange when misses occur. In the following we briefly describ
replacement algorithm reacts to new items. For large csiagal 10W SPA (i) chooses the next cache membership, (ii) schedule
the cache tends to be more static , since new items are béffig Placement of items and how it iii) handles misses. SPA
stored less frequently. Note that the replacement set rteed§ffectively pre-caches items at the beginning of each epioch
have the minimum penalty among all solutions to Equation $t0"€S the items that have the largest predicted comporient o
The 0-1 knapsack problem can be reduced to this problefiéir penalty (up to the space allowed by the cache). Once the
making this problem NP-hard. In the implementation we u&&che membership is decided, SPA schedules for placement
a greedy heuristic to compute a candidate replacement senly the items that are not already in the cache, as follows. T

ltem Retrieval: When a miss occurs at a VHO site forYSO computes the global penalty of each scheduled ftem

an item | we use a classical distributed hash table appro@hCGF (1) =>_;_, P(Vi,I), whereP(V;, I) is the penalty of
to discover which other sites store I: Each VHO (inc:Iudiné;On VHO V;. The VSO sorts all the scheduled items according

the VSO) is responsible for storing index information abodP the global penalty and uses a multicast transmissionrd se
a set of items in the system. The distribution of this ind em in this order. Upon receiving such a transmission, each

information is performed based on hash values of item idéHO uses Equation 1 to decide whether it wants to store the
Then, for any item I, gointer site — whose id is the closesttem. Since the static placement traffic occurs in paraliéhw

to the item's id — is responsible for maintaining informatio MiSS traffic, we set epochs to be one day long and run the
about which other sites are storing item . static placement algorithm at 6am - the time with the lowest

user activity (see Section Il). For the remainder of the époc
V. PREDICTION BASED CACHING - PBC missed items are streamed (using the approach described in

We now propose a prediction based caching (PBC) solutigigction 1V) from the closest peer sites storing them.

that instantiates the approach described in Section IV. We VI. NETWORK AWARE CACHING (NAC)

define the penalty of an ite)m to be proportional to the i)tem’s We now propose a caching algorithm that (i) attempts to
size and popularityP (I, AT) = S(I) x Popularity(I, AT). . L . .
We use the RPM metric introduced in Section Il to dete{b-e more reactive to changes in item popularity and that (i

mine an item’s popularity. PBC divides days into 4 epOChSakes into consideration the network topology by making the

. "7 penalty of a (missing) item dependent on the complexity of
each 6 hour long. At the beginning of each epotk Mii the fetching process. We call this solution Network Aware

2For instance, for a Sunday, the values of M on Saturday anbeoprevious CaChing (NAC)' Given an item | and a future interval’, |et.
Sunday are the most valuable. Reqs(V, I, AT) denote the number of requests to be received

for | during interval AT at VHO site V. LetFC(V,I,AT) To compute TransferT, we first define a new metric. For
denote the fetch cost of item | for site V. any link I, let FPM be the number of flows per minute
Definition 6.1: (Network Penalty) The network penalty ofthat traverse |. We use Equation 2 to compute future values
an item | at a site V during a future time interv&lT' is of FPM. Each site records FPM values for all adjacent
NP(I,V,AT) = S(I) x Reqs(V,I,AT) x FC(V,I,AT). links. Then, a token based approach is employed to collect
We now describe the prediction process for Reqs and F@elevant values (more details in the journal version). Give
Feedback Reactive Prediction:Using the notation pro- FPM, TransferT is computed iteratively: At tin#, compute
posed in Section IV, we devise a new prediction solutiote prediction"PM, (1,7, + 1) and use it to predict how
for a generic metric M, whose initial prediction for a futurenany bytes can be sent during minuig + 1 over link |
minute is defined as in Section IV. LéTy, 71] denote one (BPM, Bytes Per Minute), using the formulaPM.,.(I,T) =
epoch. Each epoch starts with a short warm-up period, defir€dp(l)/(FPM,(l,T)+1). Continue this process, computing
as the intervalTy, T,]. During the warm-up period, we useBPM,(I,T. +2),.., BPM,(I,T. + Ty), until the sum of all
Z?;TD M;ni: to define the predicted value for M. Thus, foBPM values,Z?:Tc BPM(l,T) exceeds or equals Size(l).
the first T, minutes, the predicted value of each item i§hen, setl'ransferT(I,1) = Ty.
constant. At any time, including during warm-up, we also
record the actual values M experimented by the system.
Following the warm-up period, at any tinie € [Ty, .|, we We have conducted our evaluation using a combination of
use the predicted/;,;; and values of M recorded from theJava and ns-2. We have compared the performance of PBC,
beginning of the epoch, to evaluate the quality of the ptétic SPA, NAC and LRU using log data collected from Motorola
so far. That is, for each item |, we define the accuracy efjuipment deployed in the Comcast VoD deployment de-
the prediction for metric M at timd’. to be Accy,(1,7,.) = scribed in Section 1. The system consists of 4 VHO sites and
S M(IL,T)) S, Minit(I,T). Acear(I,T.) is com- one VSO (see Figure 1), connected by a 1Gbps full-duplex
puted once per minute following the warm-up period. We scafier ring. We set csf to 10 for all PBC runs.
the initial predictionM;,;; for a future minute T, using the o \HO Level Measurements

accuracy Acc detected so far: At tinie, our prediction for e focus first on the performance exhibited by the 4 tested
the value of M at a future minute T, denotéd,(/,T), is algorithms at one VHO. Figure 2 shows our results for VHO
defined as Vi of Figure 1. Figure 2(a) shows that SPA consistently
My (I,T) = Minuy(I,T) x Acear(I,Ts) (2) exhibits the highest miss rate and on average LRU has the
lowest miss rate. Figure 2(b) shows that the cache overwrite

Acc is computed at tim&, whereas\/,, is the prediction
for M at a future timeT" > T.. Acc is reset at the beginningyalues of PBC, NAC and SPA are by far smaller than that

of each epoch. For NAC, we define the length of an epoch ﬁposed by LRU on the cache. NAC and PBC overwrite at

VIl. EVALUATION

b q dth i0d to be 30 minutes | ost 380 GB per day, whereas LRU overwrites up to 5.3 TB
€ one day and In€ warm-up period to be 30 minutes 1ong. ifl oo than the cache size). Figure 2(c) shows the per day

our experiments, these values have performed best. TMT. SPA generates the most traffic, almost 10 TB per day.

Predtic;t_ing TFU'E[%JI’G \I/alx;s of (Ij?e(zs: bWhenI a tn:jisfs NAC and PBC frequently reduce the TMT at half the values
occurs at timeT,, Regqs(I,AT) needs to be evaluate OTimposed by LRU or SPA.

each item | in the cache for the future intervAT =]
[T.,T. + 6], where § is a system parameter. We use th8- Traffic Load
RPM metric defined in Section Il to define Reqgs as the Figure 3(a) shows the total link traffic (TLT) per day
sum of the predicted values of RPM for the internval: imposed by each tested algorithm. For most days PBC and
Reqs(I,AT) = ;jﬁ RPM,(I,T) Note that the predicted NAC reduce the TLT to half of LRU or SPA. Figure 3(b)
value RPM,(I,T) is computed according to Equation 2shows the traffic imposed on the most congested link. The
defined above. traffic on the bottleneck link is significantly lower for PBC
Defining the Fetch Cost: FC defines the load on theand NAC when compared against LRU (between 1.9-4.6TB
network links when transferring an item | to a site V. Ador PBC and 7.1-10.8 TB for LRU). SPA achieves a maximum
detailed in Section IV, site V first discovers which othebottleneck link traffic of almost 20TB per day. Figure 3(c)
sites store item I. It then uses information about thoses sitshows the load balance achieved by the three algorithmis, wit
to define FC(V,I) to be the minimum of the cost of all a logarithmic y axis. PBC and NAC's balance is one order of
the paths from a site storing | to site V: PC(V;,V;) is magnitude better than that of LRU and SPA (hundreds of GBs
the cost of a path between sitds and V;, FC(V,I) = per day when compared to 10 TB of LRU and 20 TB per day
min {PC(V;,V,I)|VV; € V sit. I € Cache(V;)}. We imposed by SPA).
define the cost of a path for an item | to be the time to In the following experiment, performed using ns-2, we
transfer | over that path, which is the time to transfer th&tudy the effects of link congestion by measuring the number
item over the bottleneck link of the patlC(V;,V;,I) = of flows simultaneously occurring during the 10th day of
max {TransferT(l,I)|Vl € Path(V;,V;)}, where Trans- the Warren data set, as generated by PBC, NAC and LRU.
ferT(l,]) defines the time to transfer | over a link I. Figure 4(a) shows the evolution of the number of simultaseou

Miss rate (%)

35

30

25

20

15 -

10 -

|

8 10 12 14
Time (days)

(@)

16 18

Cache Overwrite (MB)

6e+06

5e+06

4e+06 -

3e+06

2e+06

1e+06 -

Neal § i8] i
12 14 16 18
Time (days)

TMT (MB)

1e+07 -S|

8e+06

6e+06 -

4e+06

2e+06

12 14 16 18
Time (days)

(©)

Fig. 2. LRU vs. SPA vs. PBC vs. NAC. (a) Miss rate. (b) Cache OverwBC, NAC and SPA overwrite the cache an order of magnitude

less than LRU. (c) TMT: PBC and NAC generate

TLT (MB)

6e+07 F,

5e+07

4e+07

3e+07

2e+07

1le+07 |

0

8 10 12 14

Time (days)

(@)

16 18

Bottleneck Link (MB)

2e+07
1.8e+07

1.6e+07 H
1.4e+07
1.2e+07
1le+07 |
8e+06

half the tr

affi.BU or SPA.

LRU
LSPA
PBC

6e+06 - |

4e+06 | |

2e+06

0

8 10

12 14 16 18
Time (days)

BLT - MLT (MB)

2e+07
1.8e+07

1.6e+07 H
1.4e+07
1.2e+07
1le+07 |
8e+06

1S
P

LRU

6e+06 - |

4e+06 | |
20406 -

0

12 14 16 18
Time (days)

(c)

Fig. 3. Load imposed on the network by PBC, NAC, SPA and LRU. (a) Pgrdd. (b) Bottleneck link: PBC and NAC have bottleneck

links of much

Total CBR Flows

600 T

500

400

300 -

200 -

100 -

PBC ——
NAC

[

Time (min)

(@)

b 200 400 600 800 1000 1200 1400 1600

Total FTP Flows

1000

100 ¢

ki o |

L O

i
0 200 400 600 800 1000 1200 1400 1600
Time (min)

NAC -
LR ——

(b)
Fig. 4. NS-2 Comparison for PBC, NAC and LRU: (a) Number of simultausestreams: PBC outperforms NAC. (b) Number of simultaseou
reliable transfers (FTP). (b) Number of underflows for LRURUL does not support the user satisfaction goal.

FTP Underflows

14 [LRU

12 r

10 -

less than half of those of LRU and SPA. (b) BatarRBC and NAC are one order of magnitude better than LRU ard SP

30

50 60 70 80

Time (s)

(©)

streams (CBR flows) imposed by PBC and NAC (1 minutigom Motorola equipment from existing VoD deployments we
granularity). LRU does not stream. PBC outperforms NAC ahow that our solutions satisfy the proposed goals.

the beginning of the day. Later in the day the two algorithms
exhibit similar performance, when both are able to make more
accurate predictions. Figure 4(b) shows the number of $amulll] Michael D. Dahlin, Randolph Y. Wang, Thomas E. Andersemd

neous FTP flows imposed by NAC and LRU (y axis shown in
logarithmic scale). NAC generates mostly streams, witly onl

OSDI, 1994.

REFERENCES

David A. Patterson. Cooperative caching: using remotenclieemory
to improve file system performance. Rroceedings of the 1st USENIX

up to 7 simultaneous FTP flows, an order of magnitude |lelk$ Subhabrata Sen, Jennifer Rexford, and Don Towsley. yPposfix caching

than LRU. The number of FTP flows imposed by LRU is Iargqg]

for multimedia streams. IfProceedings of IEEE INFOCOML999.
Bing Wang, Subhabrata Sen, Micah Adler, and Don Towsleytimal

at the beginning of the day. During that time, some of the proxy cache allocation for efficient streaming media distiion. IEEE

LRU flows do not perform at the required transmission rate, Trans. on Multimedia2004.
Figure 4(c) shows the number of underflowing FTP transfefd
(up to 14 for LRU): flows that cannot achieve a transfer ratg] Sridhar Ramesh, Injong Rhee, and Katherine Guo.
exceeding the item’s consumption rate.

VIIl. CONCLUSIONS
In this paper we identify the constraints that define the |NFocowm 2010.

Kun-Lung Wu, Philip S. Yu, and Joel L. Wolf. Segment-basgroxy
caching of multimedia streams. Proceedings of WWW2001.

Mudticaith

cache (mcache): An adaptive zero-delay video-on-demandcse In
Proceedings of IEEE Infoconpages 85-94, 2001.

[6] Sem C. Borst, Varun Gupta, and Anwar Walid.

Distributealcting

algorithms for content distribution networks. Proceedings of IEEE

CDNs of existing VoD providers. We define metrics and goal& M.M. Amble, P. Parag, S. Shakkottai, and L. Ying. Contaware caching

that should be satisfied by efficient solutions, then propose

new caching and placement algorithms. Using data collected

and traffic management in content distribution networksPtaceedings
of INFOCOM 2011.

