
Predictive Caching for Video on Demand CDNs
Bogdan Carbunar

Computing and Information Sciences
Florida International University

Miami, FL
Email: carbunar@gmail.com

Michael Pearce
Motorola Solutions

Schaumburg, IL
Email: michael.pearce@motorola.com

Venu Vasudevan, Michael Needham
Applied Research Center

Motorola Mobility
Schaumburg, IL

Email: {cvv012,cmn002}@motorola.com

Abstract—Video on Demand (VoD) services provide a wide
range of content options and enable subscribers to select, retrieve
and locally consume desired content. In this work we propose
caching solutions to improve the scalability of the content
distribution networks (CDNs) of existing VoD architectures. We
first investigate metrics relevant to this caching framework and
subsequently define goals that should be satisfied by an efficient
solution. We propose novel techniques for predicting future values
of metrics of interest. We use our prediction mechanisms to define
the cost imposed on the system (network and caches) by items
that are not cached. We use this cost to develop novel cachingand
static placement strategies. We validate our solutions using log
data collected from Motorola equipment from several Comcast
VoD deployments.

I. I NTRODUCTION

Video on Demand (VoD) systems allow users to select and
view content on demand. The content is stored by the VoD
operator at various locations in the network and is transferred
upon to users upon demand over a content delivery network
(CDN). In this paper we consider CDN architectures built over
the cable television (CATV) transport network (see Figure 1).
In this architecture, the video service office (VSO) is the main
site while several video home offices (VHOs) are secondary
sites that store the same content but serve smaller, disjoint
regions. Current VoD implementations (including Comcast,
Charter and Time Warner) require each VHO to store all
the content present at the VSO. While enabling high content
availability, this solution has significant scalability issues:
VHOs need larger disks, RAMs and flash. However, due to
different regional consumption patterns part of the content
becomes irrelevant1.

In this work we relax the content duplication constraint
and propose that each VHO site is managed independently –
the local storage becomes a cache of the central library. This
enables hardware scaling to be done based on local demand.
However, due to VHO level misses, this approach introduces a
trade-off between the additional traffic imposed on the network
links to fetch missed items and the hardware scaling cost. As
a first contribution, we identify several relevant metrics and
associated goals that need to be achieved in order to make this
solution functional. A second contribution consists of devising
placement and caching algorithms that attempt to achieve these
goals. Our solutions build on novel algorithms for predicting

1Data from a Time Warner deployment in San Antonio shows that only
8000 items from a 40000 item library were requested during a 3day interval.

STB STB STB

request/serve

miss/unicast
scheduled
multicast

V2 V4VHO − V1 V3

VSO

Fig. 1. System Architecture. Thick lines denote the ring topology
links, connecting the VSO and the VHOs. Links arebi-directional.

a penaltyvalue for each item: the cost of not storing the item
for a future interval. In addition, we take advantage of the
existing streaming servers at all VHO and VSO sites and use
the penalty values of items to drive not only the replacement
algorithm (which items to evict from a cache) but also the
decision of which items to transfer reliably and cache and
which to stream (and not cache).

The caching problem has been studied in a variety of
contexts, e.g., Web caching, memory and distributed storage.
The seminal work of Dahlin et al. [1] introduced the concept of
collaborative caching along with several caching algorithms.
Our work differs in that clients can access other caches
but cannot decide their membership. Caching for streaming
data includes work on prefix caching [2], [3], segment-based
caching [4] and multicast cache [5] where the main concern
is minimizing the start-up latency. Caching for content dis-
tribution networks has also been addressed in a theoretical
framework in recent work [6], [7]. Our work differs in that (i)
it first identifies the constraints that define the existing CDNs
of VoD providers including Comcast, Charter and TimeWarner,
(ii) then proposes novel predictive caching solutions and (iii)
finally validates the solutions on data collected from Motorola
equipment from existing VoD deployments.

We have used Java and ns-2 implementations to evaluate
our algorithms on log traces from Motorola VHO servers
of Comcast VoD deployments. Our conclusions are that our
solutions satisfy all our goals: they significantly reduce the
total network traffic (half the value of LRU), improve its
distribution on the network links (one order of magnitude
better than LRU) and reduce the cache overwrite value per
day to a fraction (10-20%) of the cache size.

II. SYSTEM MODEL

We consider the content distribution networks of several
Comcast, Charter and TimeWarner video on demand deploy-
ments. The Video Service Office (VSO) is the central data
repository. The VSO processes each content item as it enters
the system, packages it and stores it in a localcontent library.
The VSO also has a high-capacity streaming server that can
stream items directly to users. The Video Home Office (VHO)
is a smaller replica of the VSO, serving a geographical sub-
region of the area served by the VSO. Each VHO consists
of a storage component (the cache) and a smaller capacity
streaming server that serves items stored in the cache upon
user request. Each site V (VSO or VHO) has a unique iden-
tifier, Id(V). The VSO and the VHOs are connected through
a high speed fiber ring.

Each VHO stores only a subset of the items stored at the
VSO. Whenever a miss occurs (a user requests an item not
stored on the VHO cache), the VHO needs to fetch the item.
The VHO can fetch the item from another VHO site or from
the VSO. The source site streams the item directly to the user
(from its streaming server) or reliably sends it to the requesting
VHO who then caches and streams it to the user.

We have several data sets from VoD deployments in US,
China and Europe. We focus here on our largest data set,
collected from Motorola VHO equipment from a Comcast
VoD deployment in Warren (Detroit, MI). The ”Warren” data
has been collected over 18 full days from August 16, 2008
to September 2, 2008. The total number of items accessed
was 12625 for a total of 4.6 million accesses. Each data set
consists of two types of data. Thecontent databasecontains
metadata of all content items stored on the VSO. Each entry in
the content database refers to one item and lists the item’s id,
size and consumption rate. In all our logs there are two types
of content encoding: standard definition, requiring a bit rate
of 3.7Mbps and high definition, with a bit rate of 14.4Mbps.
Thestream databasecontains information about requests from
VoD system users. Each entry refers to one user request and
contains a unique stream id, the name of the content consumed,
the consumption interval and the requesting IP address.

Our work is based on the observed periodicities in the
evolution in time of two metrics: RPM, the (total and per item)
number of requests received in a minute and the bandwidth
required to satisfy all requests. These metrics vary during
a day: high values are recorded around midnight, followed
by a decrease to the lowest point at around 6am and then a
further increase reaching new picks in the evening. However,
this consumption pattern repeats every day and moreover, also
exhibits weekly consumption patterns (e.g., items tend to be
requested least on Thu. and most on Fri. and Sat.).

III. M ETRICS

Let V = {V1, .., Vn} be the set of VHOs in the system
and let L be the set of inter-site links in the system.L
includes also the links adjacent to the VSO. The links are
full-duplex, thus bidirectional. LetMISS(V,∆T) denote the
set of items missed onV during time interval∆T and let

Cache(V) denote the set of items stored on site V at a given
time. We now investigate the metrics relevant to the caching
framework considered in our work.

Definition 3.1: (Traffic Metrics) The Total Miss Traffic
(TMT) is the sum of the size of all the items missed on all
VHOs over a time interval∆T : TMT (∆T) =

∑n

i=1
Size(I),

I ∈ MISS(V,∆T), ∀V ∈ V . The Total Link Traffic (TLT) is
the sum of the traffic imposed on all the links in the system:
TLT (∆T) =

∑
i Traffic(Li,∆T), ∀Li ∈ L.

Definition 3.2: (Congestion Metrics) The Bottleneck Link
Traffic (BLT) is the traffic imposed on the most utilized link
in the system. The Minimum Link Traffic (MLT) is the traffic
incurred on the least congested link.

Given the above definitions, we now define the goals that
should be satisfied by an efficient solution.

Goal 3.1: (Traffic) Reduce TMT. Reduce TLT-TMT.
Goal 3.2: (Balance) Reduce BLT. Balance the traffic across

the network links: reduce BLT-MLT.
Goal 3.3: (User Satisfaction) For any itemI being watched

at timeT by a user, lett(I, T) denote the number of bytes of
I transferred to the user up to timeT and letc(I, T) denote
the number of bytes ofI consumed by the user up to timeT .
Then, at any timeT , we need to ensure thatt(I, T) ≥ c(I, T).

Goal 3.4: (Cache Overwrite) Reduce the amount of data
written on the cache to a daily value that is a fraction of the
cache size.

Our last goal focuses on one important limitation of cache
storage technology: the finite number of program-erase (P/E)
cycles of the flash technology.

IV. A PPROACH

The cache of each VHO site is organized into two lists (i)
one containing items that are currently consumed – theviewSet
and (ii) one with items that are not consumed but have not yet
been evicted – thestillCachedlist. When a request for an item
I is received by a VHO V, if I∈ Cache(V), V streams the item
to the user via its streaming server. If I/∈ Cache(V), V needs
to forward this request to other sites that may store I, who
then serve this request. V has then the option of storing item
I locally. Our approach for making this decision is based on
penalties. That is, each VHO assigns a penalty value to each
item for which it has received a request. The penalty defines
the ”cost” of not storing the item in the cache. In the following
we briefly outline our approach.

Predicting Penalty Values: We define the penalty of an
item to be higher for items of larger size, that are requested
frequently and are more difficult to fetch. Predicting the
penalty of an item depends on the ability to infer the future
number of requests likely to be received for the item and
also the future cost of fetching an item over a certain link.
In the following we describe our approach in making this
prediction using M as the generic metric (e.g., RPM). For each
item stored in the system, each VHO site records observed
values for M for 7 days, sampled once per minute (1440
values per item per day). We use the recorded history of
M to compute a preliminary prediction for future values of

M. For each item I and each minuteT ∈ ∆T , we use a
weighted average of values of M recorded during the same
minute of each day of the previous week to build aninitial
prediction for the value of M for I at a (future) minute T:
Minit(I, T) =

∑7

d=1
M(I, T −1440×d)×wd. Each of the 7

previous days is assigned a weight,wd, where
∑7

d=1
wd = 1.

The previous day and the same day one week before have
larger weights2 In Section V and VI we propose two different
approaches that use this initial prediction to devise more
elaborate and efficient predictions.

Replacement and Streaming Decisions:On each VHO
cache, thestillCached items are candidates for eviction when
a miss occurs. LetstillCached = {I1, .., In} and letS(Ii) be
the size of itemIi. When a miss occurs for an item I whose
size S(I) exceeds the available cache space, the penalties of
I and of all the items instillCached are computed. Let P(I)
be the penalty of I andP (Ii) be the penalty of itemIi from
stillCached. Then, I is stored in the cache only if there exists
a ”replacement set”, a subsetR = {Ii1 , .., Iir} of stillCached
such that

r∑

j=1

S(Iij) ≥ S(I)

csf ×
r∑

j=1

P (Iij) < P (I) (1)

In case it exists, the replacement set is evicted. Otherwise,
item I is streamed directly to the user from another site that
stores it. csf, the cache stability factor, defines how fast the
replacement algorithm reacts to new items. For large csf values
the cache tends to be more static , since new items are being
stored less frequently. Note that the replacement set needsto
have the minimum penalty among all solutions to Equation 1.
The 0-1 knapsack problem can be reduced to this problem,
making this problem NP-hard. In the implementation we use
a greedy heuristic to compute a candidate replacement set.

Item Retrieval: When a miss occurs at a VHO site for
an item I we use a classical distributed hash table approach
to discover which other sites store I: Each VHO (including
the VSO) is responsible for storing index information about
a set of items in the system. The distribution of this index
information is performed based on hash values of item ids.
Then, for any item I, apointer site – whose id is the closest
to the item’s id – is responsible for maintaining information
about which other sites are storing item I.

V. PREDICTION BASED CACHING - PBC

We now propose a prediction based caching (PBC) solution
that instantiates the approach described in Section IV. We
define the penalty of an item to be proportional to the item’s
size and popularity:P (I,∆T) = S(I)×Popularity(I,∆T).

We use the RPM metric introduced in Section II to deter-
mine an item’s popularity. PBC divides days into 4 epochs,
each 6 hour long. At the beginning of each epoch,RPMinit

2For instance, for a Sunday, the values of M on Saturday and on the previous
Sunday are the most valuable.

for each item I is computed for each minute of the (next)
day using the approach described in Section IV. We define
RPMpred to be RPMpred(I) =

∑T1

T=T0
RPMinit(I, T),

whereT0 is the first andT1 is the last minute of the epoch.
Thus,RPMpred(I) denotes the predicted number of requests
for item I during the next epoch.

During each epoch, we record the observed values of
RPM for each item I. At each minuteTc ∈ [T0, T1] we
define the reactive value of an item I,RPMreact(I, Tc) to be
RPMreact(I, Tc) =

∑Tc

T=T0
RPM(I, T). RPMreact(I, Tc)

denotes the total number of requests seen for I since the
beginning of the epoch. We useRPMpred andRPMreact to
define the popularity of an item I at timeTc, as the weighted
average ofRPMpred andRPMreact: Popularity(I, Tc) =
RPMreact(I, Tc) × β(Tc) + RPMpred × (1 − β(Tc) The
weightβ is time dependent. While we have considered also a
logarithmic time dependency, in our implementation we have
used a linear dependency,β(T) = (T −T1)/(T2−T1), which
performed slightly better in our experiments. Given a penalty
value for each item, PBC uses Equation 1 to decide which
items to stream, which to cache and which to evict. Miss item
traffic is scheduled as described in Section IV, using a hop-
count metric for choosing the source peer.

Static Placement Algorithm - SPA: We now propose a
PBC variant, where the value of the csf factor from Equation 1
is set to infinity. The caching algorithm becomes then a static
placement algorithm (SPA): the cache membership does not
change when misses occur. In the following we briefly describe
how SPA (i) chooses the next cache membership, (ii) schedules
the placement of items and how it (iii) handles misses. SPA
effectively pre-caches items at the beginning of each epoch: it
stores the items that have the largest predicted component of
their penalty (up to the space allowed by the cache). Once the
cache membership is decided, SPA schedules for placement
only the items that are not already in the cache, as follows. The
VSO computes the global penalty of each scheduled itemI to
beGP (I) =

∑n
i=1

P (Vi, I), whereP (Vi, I) is the penalty of
I on VHO Vi. The VSO sorts all the scheduled items according
to the global penalty and uses a multicast transmission to send
them in this order. Upon receiving such a transmission, each
VHO uses Equation 1 to decide whether it wants to store the
item. Since the static placement traffic occurs in parallel with
miss traffic, we set epochs to be one day long and run the
static placement algorithm at 6am - the time with the lowest
user activity (see Section II). For the remainder of the epoch,
missed items are streamed (using the approach described in
Section IV) from the closest peer sites storing them.

VI. N ETWORK AWARE CACHING (NAC)

We now propose a caching algorithm that (i) attempts to
be more reactive to changes in item popularity and that (ii)
takes into consideration the network topology by making the
penalty of a (missing) item dependent on the complexity of
the fetching process. We call this solution Network Aware
Caching (NAC). Given an item I and a future interval∆T , let
Reqs(V, I,∆T) denote the number of requests to be received

for I during interval∆T at VHO site V. LetFC(V, I,∆T)
denote the fetch cost of item I for site V.

Definition 6.1: (Network Penalty) The network penalty of
an item I at a site V during a future time interval∆T is
NP (I, V,∆T) = S(I)×Reqs(V, I,∆T)× FC(V, I,∆T).

We now describe the prediction process for Reqs and FC.
Feedback Reactive Prediction:Using the notation pro-

posed in Section IV, we devise a new prediction solution
for a generic metric M, whose initial prediction for a future
minute is defined as in Section IV. Let[T0, T1] denote one
epoch. Each epoch starts with a short warm-up period, defined
as the interval[T0, Tw]. During the warm-up period, we use∑Tw

T=T0
Minit to define the predicted value for M. Thus, for

the first Tw minutes, the predicted value of each item is
constant. At any time, including during warm-up, we also
record the actual values M experimented by the system.
Following the warm-up period, at any timeTc ∈ [T0, Tw], we
use the predictedMinit and values of M recorded from the
beginning of the epoch, to evaluate the quality of the prediction
so far. That is, for each item I, we define the accuracy of
the prediction for metric M at timeTc to beAccM (I, Tc) =∑Tc

T=T0
M(I, T)/

∑Tc

T=T0
Minit(I, T). AccM (I, Tc) is com-

puted once per minute following the warm-up period. We scale
the initial predictionMinit for a future minute T, using the
accuracy Acc detected so far: At timeTc, our prediction for
the value of M at a future minute T, denotedMx(I, T), is
defined as

Mx(I, T) = Minit(I, T)×AccM (I, Tc) (2)

Acc is computed at timeTc, whereasMx is the prediction
for M at a future timeT > Tc. Acc is reset at the beginning
of each epoch. For NAC, we define the length of an epoch to
be one day and the warm-up period to be 30 minutes long. In
our experiments, these values have performed best.

Predicting Future Values of Reqs: When a miss
occurs at timeTc, Reqs(I,∆T) needs to be evaluated for
each item I in the cache for the future interval∆T =
[Tc, Tc + δ], where δ is a system parameter. We use the
RPM metric defined in Section II to define Reqs as the
sum of the predicted values of RPM for the interval∆T :
Reqs(I,∆T) =

∑Tc+δ
T=Tc

RPMx(I, T) Note that the predicted
value RPMx(I, T) is computed according to Equation 2
defined above.

Defining the Fetch Cost: FC defines the load on the
network links when transferring an item I to a site V. As
detailed in Section IV, site V first discovers which other
sites store item I. It then uses information about those sites,
to defineFC(V, I) to be the minimum of the cost of all
the paths from a site storing I to site V: ifPC(Vi, Vj) is
the cost of a path between sitesVi and Vj , FC(V, I) =
min {PC(Vj , V, I)|∀Vj ∈ V s.t. I ∈ Cache(Vj)}. We
define the cost of a path for an item I to be the time to
transfer I over that path, which is the time to transfer the
item over the bottleneck link of the path:PC(Vi, Vj , I) =
max {TransferT (l, I)|∀l ∈ Path(Vi, Vj)}, where Trans-
ferT(l,I) defines the time to transfer I over a link l.

To compute TransferT, we first define a new metric. For
any link l, let FPM be the number of flows per minute
that traverse l. We use Equation 2 to compute future values
of FPM. Each site records FPM values for all adjacent
links. Then, a token based approach is employed to collect
relevant values (more details in the journal version). Given
FPM, TransferT is computed iteratively: At timeTc, compute
the predictionFPMx(l, Tc + 1) and use it to predict how
many bytes can be sent during minuteTc + 1 over link l
(BPM, Bytes Per Minute), using the formulaBPMx(l, T) =
Cap(l)/(FPMx(l, T)+1). Continue this process, computing
BPMx(I, Tc +2),.., BPMx(I, Tc +Tf), until the sum of all
BPM values,

∑Tf

T=Tc
BPM(l, T) exceeds or equals Size(I).

Then, setTransferT (I, l) = Tf .

VII. E VALUATION

We have conducted our evaluation using a combination of
Java and ns-2. We have compared the performance of PBC,
SPA, NAC and LRU using log data collected from Motorola
equipment deployed in the Comcast VoD deployment de-
scribed in Section II. The system consists of 4 VHO sites and
one VSO (see Figure 1), connected by a 1Gbps full-duplex
fiber ring. We set csf to 10 for all PBC runs.

A. VHO Level Measurements
We focus first on the performance exhibited by the 4 tested

algorithms at one VHO. Figure 2 shows our results for VHO
V1 of Figure 1. Figure 2(a) shows that SPA consistently
exhibits the highest miss rate and on average LRU has the
lowest miss rate. Figure 2(b) shows that the cache overwrite
values of PBC, NAC and SPA are by far smaller than that
imposed by LRU on the cache. NAC and PBC overwrite at
most 380 GB per day, whereas LRU overwrites up to 5.3 TB
(more than the cache size). Figure 2(c) shows the per day
TMT. SPA generates the most traffic, almost 10 TB per day.
NAC and PBC frequently reduce the TMT at half the values
imposed by LRU or SPA.

B. Traffic Load

Figure 3(a) shows the total link traffic (TLT) per day
imposed by each tested algorithm. For most days PBC and
NAC reduce the TLT to half of LRU or SPA. Figure 3(b)
shows the traffic imposed on the most congested link. The
traffic on the bottleneck link is significantly lower for PBC
and NAC when compared against LRU (between 1.9-4.6TB
for PBC and 7.1-10.8 TB for LRU). SPA achieves a maximum
bottleneck link traffic of almost 20TB per day. Figure 3(c)
shows the load balance achieved by the three algorithms, with
a logarithmic y axis. PBC and NAC’s balance is one order of
magnitude better than that of LRU and SPA (hundreds of GBs
per day when compared to 10 TB of LRU and 20 TB per day
imposed by SPA).

In the following experiment, performed using ns-2, we
study the effects of link congestion by measuring the number
of flows simultaneously occurring during the 10th day of
the Warren data set, as generated by PBC, NAC and LRU.
Figure 4(a) shows the evolution of the number of simultaneous

 0

 5

 10

 15

 20

 25

 30

 35

 8 10 12 14 16 18

M
is

s
ra

te
 (

%
)

Time (days)

LRU
SPA
PBC
NAC

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 8 10 12 14 16 18

C
ac

he
 O

ve
rw

rit
e

(M
B

)

Time (days)

LRU
SPA
PBC
NAC

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 8 10 12 14 16 18

T
M

T
 (

M
B

)

Time (days)

LRU
SPA
PBC
NAC

(a) (b) (c)
Fig. 2. LRU vs. SPA vs. PBC vs. NAC. (a) Miss rate. (b) Cache Overwrite: PBC, NAC and SPA overwrite the cache an order of magnitude
less than LRU. (c) TMT: PBC and NAC generate half the traffic ofLRU or SPA.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 8 10 12 14 16 18

T
LT

 (
M

B
)

Time (days)

LRU
SPA
PBC
NAC

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 8 10 12 14 16 18

B
ot

tle
ne

ck
 L

in
k

(M
B

)

Time (days)

LRU
SPA
PBC
NAC

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 8 10 12 14 16 18

B
LT

 -
 M

LT
 (

M
B

)

Time (days)

LRU
SPA
PBC
NAC

(a) (b) (c)
Fig. 3. Load imposed on the network by PBC, NAC, SPA and LRU. (a) Per day TLT. (b) Bottleneck link: PBC and NAC have bottleneck
links of much less than half of those of LRU and SPA. (b) Balance: PBC and NAC are one order of magnitude better than LRU and SPA.

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600

T
ot

al
 C

B
R

 F
lo

w
s

Time (min)

PBC
NAC

 1

 10

 100

 1000

 0 200 400 600 800 1000 1200 1400 1600

T
ot

al
 F

T
P

 F
lo

w
s

Time (min)

NAC
LRU

 0

 2

 4

 6

 8

 10

 12

 14

 20 30 40 50 60 70 80

F
T

P
 U

nd
er

flo
w

s

Time (s)

LRU

(a) (b) (c)
Fig. 4. NS-2 Comparison for PBC, NAC and LRU: (a) Number of simultaneous streams: PBC outperforms NAC. (b) Number of simultaneous
reliable transfers (FTP). (b) Number of underflows for LRU: LRU does not support the user satisfaction goal.

streams (CBR flows) imposed by PBC and NAC (1 minute
granularity). LRU does not stream. PBC outperforms NAC at
the beginning of the day. Later in the day the two algorithms
exhibit similar performance, when both are able to make more
accurate predictions. Figure 4(b) shows the number of simulta-
neous FTP flows imposed by NAC and LRU (y axis shown in
logarithmic scale). NAC generates mostly streams, with only
up to 7 simultaneous FTP flows, an order of magnitude less
than LRU. The number of FTP flows imposed by LRU is larger
at the beginning of the day. During that time, some of the
LRU flows do not perform at the required transmission rate.
Figure 4(c) shows the number of underflowing FTP transfers
(up to 14 for LRU): flows that cannot achieve a transfer rate
exceeding the item’s consumption rate.

VIII. C ONCLUSIONS

In this paper we identify the constraints that define the
CDNs of existing VoD providers. We define metrics and goals
that should be satisfied by efficient solutions, then propose
new caching and placement algorithms. Using data collected

from Motorola equipment from existing VoD deployments we
show that our solutions satisfy the proposed goals.

REFERENCES

[1] Michael D. Dahlin, Randolph Y. Wang, Thomas E. Anderson,and
David A. Patterson. Cooperative caching: using remote client memory
to improve file system performance. InProceedings of the 1st USENIX
OSDI, 1994.

[2] Subhabrata Sen, Jennifer Rexford, and Don Towsley. Proxy prefix caching
for multimedia streams. InProceedings of IEEE INFOCOM, 1999.

[3] Bing Wang, Subhabrata Sen, Micah Adler, and Don Towsley.Optimal
proxy cache allocation for efficient streaming media distribution. IEEE
Trans. on Multimedia, 2004.

[4] Kun-Lung Wu, Philip S. Yu, and Joel L. Wolf. Segment-based proxy
caching of multimedia streams. InProceedings of WWW, 2001.

[5] Sridhar Ramesh, Injong Rhee, and Katherine Guo. Multicast with
cache (mcache): An adaptive zero-delay video-on-demand service. In
Proceedings of IEEE Infocom, pages 85–94, 2001.

[6] Sem C. Borst, Varun Gupta, and Anwar Walid. Distributed caching
algorithms for content distribution networks. InProceedings of IEEE
INFOCOM, 2010.

[7] M.M. Amble, P. Parag, S. Shakkottai, and L. Ying. Contentaware caching
and traffic management in content distribution networks. InProceedings
of INFOCOM, 2011.

