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Abstract—One of the greatest technological improvements ILSVRC [4], COCO [5], SUN [6], and PASCAL VOC [7].
in recent years is the rapid progress using machine learning Another source of images is gathered from driving a car with
for processing visual data. Among all factors that contribute 5 yash-cam for creating KITTI [8] and the Caltech Pedestrian
to this development, _datasets with _Iabels_ plr_:ty crucial roles. D ol Pri K hine | - ft h
Several datasets are widely reused for investigating and analyzing atasets [9]. Prior work on machine learning often ¢ 09595,
different solutions in machine learning. Many systems, such as One dataset and demonstrates that the proposed solution is
autonomous vehicles, rely on components using machine learning better than the existing work for this particular dataset. The
for recognizing objects. This paper compares different visual most dif cult part of creating a dataset is not acquiring the
datasets and frameworks for machine learming. The comparison gata_ this can be automated easily. Instead, it is labeling the
is bot_h qualltatlve_ and quantitative and investigates object d Th f hat the d df o d
detection labels with respect to size, location, and contextual ata. .e very aCtt att .e atasets are used for ”a'”'”Q "_’m
information. This paper also presents a new approach creating €valuating machine learning models means that the existing
datasets using real-time, geo-tagged visual data, greatly improv- computer solutions are inadequate and the labels must be
ing the contextual information of the data. The data could created by human efforts. This laborious process signi cantly
be automatically labeled by cross-referencing information from  ¢|ows down the creation of a dataset and could also affect the
other sources (such as weather). . .
selection of the data. Some researchers suggest using computer
I. INTRODUCTION graphics to create labels [10], but graphics technologies do not
Creating machines that can solve complex problems halgvays generate "photo-realistic” images and videos.
been the dream for humans. Movies such 2891 Space To make labeling easier, some existing datasets use images
Odysseydepicted machines capable of understanding humanvideos in which the objects of interest stand out. In other
speech. Such goals were unattainable until recently. Machiwerds, many images in these datasets have few objects, each
learning can be applied to analyze data with underlyimgccupying many pixels in the images. COCO [5] and SUN [6]
patterns that are dif cult to express by mathematical rules. Tlage examples of a conscious movement away from this image
complexity of machine learning models often requires massigelection bias, but this appears to be an exception. There is
amounts of data. Among all successful stories of machiaeneed for labeling massive amounts of diverse data quickly
learning, the technologies for recognizing objects in imagesd accurately.
and videos are one of the most noticeable achievements. Manespite the importance of the datasets, a comparison
factors contribute to this; among them, large datasets plisy made only when a new dataset is introduced, and the
crucial roles. Visual datasets with labels are used to traemparison is often focused on only two to four other
and evaluate machine learning models and lead to succesdatasets [4][5][7]. There are exceptions to this. In Bolét
computer vision with novel architectures, such as AlexNet [1§. [11], they compard 3 datasets and2 methods. However,
Faster-RCNN [2], and FCIS [3]. to the authors' knowledge, there is not a comparison across
Many datasets are created by searching and downlodlte datasets used in their paper. On the contrary, this paper
ing images from the Internet (such as Flickr), for exampl@resents a qualitative and quantitative comparison of eight



datasets and introduces network camera data as a hew source
for image datasets. This paper focuses on the distribution of
object locations in the image and the ratio of the object size
to the image size. In this paper, only thgerson” class is
considered for two reasongl) “the ability to interact with
people is one of the most interesting and potentially useful
challenges”[11] and(2) limiting our scope to the people class
allows comparison between datasets with an arbitrary number
of classes.

Due to the challenges in creating labels, this paper presents @ (®)
a new method for creating datasets by using real-time gegog. 1. PASCAL VOC Example Images. The red boxes indicaei-
tagged visual data. This approach gives researchers the @fgn bounding-boxes[7] marked by two pairs of pixel coordinates
ibility to create new datasets that meet their speci ¢ need§, indicate an objects location within an image. Whéteeryperson

. . . should be marked, some instances of small people are not marked
Moreover, the time and location metadata can greatly improy, peop

_ ) ¢ 5 and some large ones are misgejl
the data's contextual information. For example, an image taken
at a traf ¢ intersection in the early morning of a holiday has
fewer vehicles than another image taken during rush hour. As
another example, an image taken in a national park sees trees
and sky, without any skyscrapers. This paper explains how to
construct a system that can create datasets by retrieving real-
time geo-tagged data from network cameras.

This paper is organized as follows. In Section 2, several
commonly used datasets are introduced. Section 3 explains
how to discover network cameras that can provide real-time
and geo-tagged data. Section 4 compares the datasets. In
Section 5, potential improvements of the datasets for futu
machine learning research are discussed. This paper is

(b)

. 2. ImageNet Example Images. Images are marked with
. ! ClS}S(i'mding-box labels. Notice how the labels are large and centered
cluded in Section 6. in the images.

Il. DATASET SUMMARY

. . . . . mented objects id1; 530images. Figure 1 gives two PASCAL
This section summarizes many different visual datase{g~ example images

including ImageNet Large Scale Visual Recognition Chal-
lenge (ImageNet or ILSVRC) [4], Common Object in ConB. ImageNet
text (COCO) [5], Scene UNderstanding (SUN) [6], Pattern o |aqeNet [4] competition started 2010 and cur-

Apalysis, .Statistical Modelling, and Computa.tional ITe""mingently continues to be one the most popular machine learning
Visual Object Classes (PASCAL VOC) [7], Institut National deE:ompetitions. Many successful classi cation and object de-

Recherche en Informatique et en A_utomatique Person Dat Rtion models have resulted from this competition, including
(INRIA) [12], the Caltech Pedestrian Dataset (Caltech) [9 rizhevsky's AlexNet [1]. For object detection, ImageNet

anq Karlsrl_Jhe Institutg of Tecr_mology anq Toyota TeChn%bnsists of465 567 images for training an®0; 121 images
logical I'nstltute at Chicago Object Detectmps (KITTI) [8].¢o, validation for 200 different classes including guacamole,
Appendix Table | lists the ID's of the example images selected, . brace, iPod, chime, etc. Two example images are shown

by this paper. All images below only visualize the people Cla?ﬁ Figure 2. To label the dataset, ImageNet utilized Amazon

labels. Mechanical Turk. ImageNet has been used as the data for other
competitions as well, such as the training data for the Low-
A. PASCAL VOC Power Image Recognition Challenge [14].

PASCAL VOC [7] started its rst challenge i2005for ob-
ject detection and classi cation of four classes. The motivatidn: SUN
was that fnethods are now achieving such good performanceThe SUN [6] dataset was started to provide researchers with
that they have effectively saturated on these datdsgi8]. a comprehensive collection of annotated images covering a
By 2008 PASCAL VOC introduced0 classes, and i2009 wide variety of scenes. It contaids479 object categories and
became a popular benchmark for object detection [720h2 313 884 instance segmentation labels1B1; 067 images. For
the last year of the competition, the PASCAL VOC trainingpeople alone, SUN ha; 202 instances of people i2; 062
and validation datasets consisted2¥ 450 detection objects images. Instance segmentations follow the contours of the
in 11; 530images with20 different classes. For segmentationpbjects of interest, and hence they create tighter containers
VOC's training and validation dataset consists&B29 seg- for object detection labels (as shown in Figure 3). However,



@ (b)

Fig. 5. KITTI Example Stereo Image Pai) is the left image and
(b) is the right image. For object detection, bounding-box labels only
exist for the left image and only for people.

() (b)

Fig. 3. SUN Example Images. Ilifa), the large label covering the
crowd is also a person label. This could be interpreted as a lai
label for the crowd of people, but is a different . Compar{ayand
(b) shows how the number of instances varies across images. ~ [
colors indicate a single instance's segmentation, which may cons
of two or more disconnected polygons. The colors also repeat.
should be apparent from the context if two labels of the same col
are distinct or meant to be shared.

(a) (b)

Fig. 6. Caltech Example Images. The Caltech Pedestrian dataset
contains bounding-box labels for “people” and person. “People”
labels are used when there are many people grouped together, like in
the top of(a), and on the left and right ifb).

There are4; 487 people labeled in7; 480 images. Figure 5
shows an example stereo image pair. KITTI was labeled by
the KITTI team with help from a set of hired annotators.

(@) (b)

Fig. 4. INRIA Example Images. In these images, there are mafy Caltech Pedestrian Dataset (Caltech)

people unlabeled. Despite the missing labels, INRIA continues to belntroduced in2012 The Caltech Pedestrian Dataset [9]

a popular dataset for machine learning and has contributed greatly to_ . .

the computer vision community. consists of approxmately ten hour; &m0 _400 taken at30
frames per second video from a vehicle driving through regular

urban trafc. The dataset provides bounding-box labels of
instance segmentation labels take more time to annotate tfgalestrians for every frame a person is visible in two formats:

bounding-boxes labels. the full and visible bounding-box label. Afull label marks a
tight bounding-box region around the entire person. If there
D. INRIA is occlusion, the hidden area is estimated. Tisble label

INRIA [12] People Dataset was created 8005 and is marks an label only around the visible portion of the person.
comprised of1; 237 bounding-box labels for people i614 The example images in Figure 6 have th#l and visible
positive images. A positive image means that people debels. This is different from PASCAL VOC's [7] handling of
labeled in the image. The dataset also inclutiexl 8 negative occluded images, where only the visible portion of an object
images containing no labels. It has been reported that INRi®\marked. Caltech contains a total 6, 621 bounding-box
contains missing labels [15]. There does not seem to bdahels in abouR50, 000 frames.
rational for the missing labels. In both images of Figure 4
there does not appear to be distinguishing features betweenCE'neCOCO
labeled people and the unlabeled people. Despite the missingntroduced by Microsoft ir2015 Microsoft Common Ob-
labels, the original INRIA dataset is still popular and has madect in Context (COCO) [5] is a dataset containing instance

laudable contributions to pedestrian detection [11]. segmentation 080 common objects in their natural context.
The term “common” refers to the objects that can“basily
E. KITTI recognizable by a four-year-old[5]. COCO's labels also

The KITTI [8] Vision Benchmark Suite began 2012and include captioning, and keypoints were adde@@16 Figure
contains a variety of labels for tracking, scene ow, odometry, shows examples where the objects are centered in the
etc. Since KITTI's images come from a video le, there is alsimages. The COCO dataset is comprise@:6fmillion labeled
a temporal relationship between images for object trackingstances irB82 000images. To create the large-scale dataset,
For object detection, KITTI provides stereo images, tempor@OCO was labeled with extensive use of Amazon Mechanical
frames, Velodyne point clouds, and the bounding-box labelBurk.



A. Camera Discovery Procedure

The complete explanation of network camera discovery for
CAM2 is in Dailey et al. [19], but a summary is provided here.
Network cameras can be de ned as cameras whose images
are accessible through the network. Some network cameras
may be available only through restricted accesses, but many
publically available cameras can be viewed by anyone. There
@) (b) are two classi cations of network cameras: IP (Internet Proto-
Fig. 7. COCO Example Images. COCO contains instance Segmelnco_l) cameras and non-IP cameras. IP cameras have individual
tions similar to SUN. In these images, the objects are centered in rﬁe addresse.s, generally host their own web servers, and are
images. accessible directly over the Internet. Notably, they respond to
Hypertext Transfer Protocol (HTTP) GET requests. Non-IP
cameras are not assigned individual IP addresses and hence
are not directly accessible over the Internet. The data is often
aggregated into le servers and accessible through websites
which often include data from more than one camera.

Millions of network cameras are deployed world- For Norn-IP di i bsit
wide [16] [17]. Data from network cameras are different from or Non-I~ camera discovery, aggregation websites are

other image sources such as search engines or public§ r.aped using SeleniL_Jm or BeautifuIS.oup4. Dye to the varie_ty
available repositories such as Flickr. The objects in thef interfaces to websites, each website requires a new script

images are generally smaller than those in other datasé?s.be wrl_tteq to scrz?\pe_the camera data. Th? camera data
d location information is commonly made available in three

The small size of objects in network data is because netw ) . )

cameras are usually mounted in high-locations on buildin [_%felretnt folrmz;tsd ‘.]St?]N I(-)|rT)I\(/I,\I/I_L les, Igaded Into atJ(?vaSbcr}tp t

Network data is often real-time. This is critical in somé PPi€L Or loadedin the Il page. ©n aggregated wepsites,
the location of the camera is sometimes exact with the given

applications. In Figure 8, images from t@16Houston Flood ) . .
show rescue workers, emergency vehicles, cars, and truEW't“de and latitude or more general like a street address.

stuck in the water from the ood. One application of real-time The process for IP camera discovery is more automated.
data is the detection of areas affected by natural disasters. THMS Process is outlined in Figure 9 and relies on issuing HTTP
section describes a project called the Continuous Analysis'8fluests and detecting the responses. IP cameras are often

Many Cameras (CAM2) [18], which acquires and processEQSted by an organization. Using data from Internet Assigned
real-time data from network cameras. Numbers Authority (IANA), all valid IP addresses for an

organization can be generated. Once a camera is discovered,
it is added to the network camera database. If the download is
successful, the camera’s location is estimated using the Google
Geolocation API.

1. NETWORK CAMERA DATA

For each IP address HTTP query
known camera brands and models

(@) (b) No Response J\200 Response from Camera

)

Attempt to download an
Not a Camera image from the image
path
tlmage can't be downloaded ) Image
L Downloaded

Network Estimate camera location

(c) (d) sgs using IP address lookup.
Fig. 8. Real-time geo-tagged data gives data context. This data is fr Database
the ood in Houston, Texas irf2016. A possible use of the CAM2

system is to alert local authorities when natural disasters occur to uie
location most effected by the event. Fig. 9. IP Camera Discovery.




B. System Integration and holiday events. This can be cross-referenced with known

The camera database is integrated into the CAM2 syste®Yents, like the weather, to create an automatic labeling
as seen in Figure 10. The CAM2 system provides users re@itform. For example, a camera can be annotated with *has-
time data analysis tools which are run using the CAM24rees”, “hasBuildings”, and/or *hasStreet”, each indicating
Cloud Computing. CAM2 Cloud Computing is done usin hat trees, buildings, or streets are visible in the camera view.
Amazon Web Services (AWS). Some of the current too hile classi cation tasks require a single ground-truth label,
provided by CAM2 are edge detection, motion detection, ak§ing images WiFh many Iabel; gi\(es the data more context.
color quantization. Users can also upload custom modules.fiHrthermore, while large classi cation datasets exist, such as
Figure 10, the contents inside the blue square comprise fi@ces2 [25] with more thadO million images and Tiny
CAM2 system. A user interfaces the CAM2 system througi@ges [26] containing0 million image, the CAM2 system
the web portal and is authenticated using information stor€8" retrieve more thag5 million images in a single day.
in the user database. When the user chooses the camdyigieover, the data from network cameras can provide long-
the camera database provides the run-time system with {REM observations. For example, Figure 11 shows a scene from
information to retrieve data from these cameras. The resoufc@&twork camera over multiple years.
manager determines the most cost-ef cient resource alloca-There are two known issues with an automatic labeling

tions for executing the analysis programs [20][21][22][23][24FYStem for the CAM2 system. The rst issue is that network
cameras may scan an area, like a pan-tilt-zoom (PTZ) camera,

or jump between different camera feeds. When the camera
changes viewpoint, there may be categories marked as present
for the camera which are not actually present in the current
viewpoint. The second issue is that the redundancy in data
pulled from the same camera (i.e., the background is the same)
reduces the amount of new information contained in the data.
However, the same camera's image can change dramatically
over time, as can be seen from the Houston Flood images
in Figure 8 and more subtly seen in the season changes in
Figure 11. Further research is required to investigate the impact
of these issues.

V. DATASET COMPARISON
Fig. 10. CAM2 Architecture. A. Real-time Geo-tagged Data

Network camera data offers both the geographic location
C. Creation of the CAM2 Sample Dataset and temporal relationships between frames. However, the

A small dataset has been created using the CAM2 syster;ﬁ'cA)‘Mz geographic location is the location of the IP address

compare network data to other datasets. This dataset con E é%t:;% tigecﬁ:\?eer:ai.nTr]tiri?arﬁJ ’attze gg;ugicgmogr;hs? é‘;‘:;“cgg_
of a modest640 images with3; 322 bounding-box labels of ging )

people. Even though CAM2 has demonstrated the ability &gins indicators of the true camera location, such as a well-
retrieve and analyz@7 million unique images ir24 hours [22], hown Ianglmark, while for other ngtwork cameras the ground-
truth locations are more challenging to nd. One method of

the size of the dataset is initially small since object detectio L ermining the true location of cameras is to cross-reference
labeling is laborious to annotate. Aside from the bounding- 9 . X
e network camera data with current events. Figure 12 shows

box, each label also contains the date, time, and camera b |\ ione of the network cameras which the CAM2 system
The camera ID can be used in conjunction with the came N access ’

database to retrieve more meta-data about the image suclf . . . .
e geographic location and the temporal relationship be-

latitude, longitude, resolution, indoor/outdoor, and a framtte— - toat ol t work data. Th
rate estimate. The data is taken fra1 different cameras WEEN IMages are features special o network data. ese

with an effort to capture the diverse range of network camelRIts are des!rable to give the data greater context. Wh"? one
quality. or the other is present in some datasets, the combination is

unavailable in all of them.
D. Automatic Labeling

The CAM2 system provides a solution to unlabeled, coP—' Quantitative Measures
tinuous, live-feed network data. CAM2 can leverage the largeThere are two quantitative measures to be compared be-
repository of cameras to create a large dataset of automaticaygeen the dataset¢a) what is the distribution of the dataset
labeled images for image classication. Network camerdabels and(b) what is the relative size of the dataset labels
capture the same area under many different conditions swtimpared to the entire image? The distribution of the labels
as daytime, nighttime, every season (shown in Figure 113, analyzed through the people-density maps in Figure 13,



(a) 10/26/2011 (b) 12/31/2011 (c) 06/01/2012 (d) 10/10/2015 (e) 12/30/2016

Fig. 11. The data from Grand Teton (Wyoming's Yellowstone) changes over the years. CAM2 data can also be used to cross-reference the
weather reports. Additionally, the variation of data from a single camera along with the weather and climate information can be a large

resource of data for machine learning applications.

from when the resolution was increased frd®0 100 to
500 500 Therefore, a higher resolution was not computed.

Figure 13 shows the people-density map for each dataset.
The minimum, mean, and maximum percents are marked on
the vertical color bar from bottom to top. The density plots can
be used to compare the concentration of labels across datasets.
The coloring indicates the density of labels in that region - red
indicates a high density of people labels and blue indicates a
low density. However, the absolute coloring for each density
plot should not be compared directly between the datasets. The
range of the color bar, or vertical axis, must be considered as
the maximum values of the color bars vary (the minimum is
always0%). For example, the maximum value of mé is
) o 43.03%, while the maximum value of maf) is only 8:52%.
Fig. 12.The cameras of CAM2 are distributed across the world. Thg, oo mpare the datasets' concentration intensities, one must
number of the map indicates the number of cameras in each location. . S .
consider that the deep red region's value in n{apwould
appear as a blue-white color in m#p). The variety of the
and the relative label size is analyzed through the plots &l0r bar ranges is required so the distribution of locations in
Figure 14. each plot can be seen.
In this paper, peop|e_density maps are de ned as a squarérhe color-mapping also visualizes the label location across
image that visualizes the distribution of a dataset's boundingjie datasets. In ve datasets from Figures(ay (b), (c), (d),
box or instance segmentation label locations. For each la@nd(h), the labels are centered. The sharp gradient of the color
the polygon's location relative to the image dimensions i§ Figure 13(b) indicates a high density of people focused
plotted onto the square grid. The color-mapping provides the the center of the dataset, with a much lower, more even
distribution of the label locations so that label locations can §@ncentration of images outside of the center. In Figure 13
compared across datasets. The color-mapping range provits the gradient from red to blue is much smoother with
a reference to compare the intensities of different colors. many white pixels in between. This means that the labels in
The process for creating a people-density map was cofrigure 13(a) are even more concentrated in the center of
pleted by using the bounding-box or instance segmentatith® image than in Figure 1@), since there are fewer blue
labels in each dataset. In order to standardize the results, epidgls and a much higher mean val&:33% versus7.75%.
pixel coordinate(x;y) of an image sizew |, for width A more evenly distributed density mask has a small color bar
and length, is represented as a percentage of the total im&gege, a smaller mean and the people-density map color is
width and length: X; ¥ . The percentage indicates the pixel'Predominantly the color of the mean value.
location on the xed, square grid. When completed for each PASCAL VOC has the most centering effect of the objects
pixel in a label, this rescales the original label onto the square the image, with a range d0:03% 43:03%] The larger
grid. The square grid begins with all zero values. A value oénge of PASCAL VOC means that more images are centered,
one is added to the area covered by the polygon. After all thad the smaller range of COCO implies the distribution is
labels are added, the square grid is divided by the total numipeore even. The Caltech Pedestrian dataset, Figurde},3
of labels added. In Figure 13, each image uses a resolutionrseéms to have a concentrated number of detections in two
500 500 The resolution determines the precision that thecations on the sides of the image. This is reasonable since
people-density map can capture. The precision determines @adtech is taken from a dash-cam. It is likely that there are
delity of the process to capture the label location. In this casejore people on either side of the car (on the sidewalks) than in
the gures provided use a precision %% in both thex and front of the car (on the road). The KITTI dataset, Figuref3
y directions. Notably, the people-density map hardly changedntains very few detections across the top. This is reasonable



(a) PASCAL VOC (b) INRIA (c) ImageNet (d) coco

(e) CALTECH ) KITTI (g) CAM2 (h) SUN

Fig. 13. The people-density maps show the location and concentration of people bounding-box labels or instance segmentations in an image
(better viewed in color). The images are each scaled fm6%6; dataset_max %]. The different ranges of the axes are required so that the
characteristics of each distribution are visible.

(a) voC (b) INRIA (c) ImageNet (d) coco

(e) CALTECH () KITTI (g) CAM2 (h) SUN

Fig. 14. The ratio of people detections to the rest of the image. Note the log scale on the vertical axis. The domain is grod#d into
sections. The rst group i$0%; 10%), the last group i§90%; 100%), and there exists a nal category for the complé&f&0% coverage.

since the data is collected from a camera mounted on the a zero-valued image. The number of pixels contained in the
car. With the reason similar to Caltech, there are likely fewéinary mask is divided by the total number of pixels in the
people labeled far out in the middle of the road. image. The percentage is assigned to one of theanges

The network camera data in CAM2, Figure (), seems going from[0%; 10%) by ten to the nal bin 0f100%
to have scatter concentrations of detections across the peoplep—\S seen in Figure 14, the distribution of the relative object

density map. The network camera data also has the lowﬁ.ﬁﬁos follows a similar trend for each dataset exogptand

mean pixel value 00:73 and the smallest range. This indicates .y pascAL VOC's and ImageNets distributions in Figure 14
that network camera data has a more even distribution of

. and (b), respectively, appear to be evenly distributed. The

label locations than the other seven datasets. even distribution implies that most labels in the two datasets

The size of a label relative to the entire image size can hepe large. Speci cally, over0% of labels accounts fot0% or
determine the dif culty of a label. If a dataset contains mangnore of the total image area. The Caltech dataset in Figure 14
large objects of interest, then the object detection task més) has the highest concentration of images in the rst region,
be easier than if the dataset contains many small objects.[0n10), with 96:5% of the dataset's labels. In Figure 14),
Figure 14, the plot represents the percent of labels withinttee CAM2 network data follows witl92:94% of the labels in
range of label to image size ratios. The plots are created in titee rst region. Overall, it appears that many datasets contain
steps. First, the union of all binary mask labels is superimposetny small objects in their images.



V. DATASET IMPROVEMENTS

The datasets mentioned in this paper, especially large-scale
datasets such as ILSVRC [4], COCO [5], and SUN [6],
are major contributors to the recent, signi cant progress in
computer vision. However, it is known that datasets such
as these include issues [4][27][28][29] in terms of image
selection bias and human labeling error.
There are two points worth mentioning about these potential @) (b)
dataset issueql) the image selection bias an@) labeling
quality. First, image selection bias appears in two wgya)
the resource of data arftib) the selection of images within the
resource. Exploringla), PASCAL VOC [7], COCO [5], and
ILSVRC [4], all collect images from Flickr, which introduces
sampling bias. The samples used for current machine learning
tasks are disproportionately sampled from a speci c type of
image, i.e., images that people take and upload to Flickr,
instead of having a representational sample from the true (© (d)
distribution of possible images. Additional studies are needed
to compare Flickr and network camera data.
Furthermore(1b), datasets tend to select a speci ¢ type of
image. In Khosla et al. [29], 300 randomly sampled images
from PASCAL VOC's [7] and ILSVRC's [4] classi cation
datasets were shown to be separable &8P and21% accu-
racy, respectively, againd® other datasets using a histogram
of gradients (HOG) detector followed by a linear support © 0
vector machine (SVM) [12]. In Tommasi et. al. [28], using
the convolutional layers of AlexNet [1] followed by #2- Fig. 15. The COCO (left) and ImageNet (right) datasets contain
way linear SVM, the accuracy improved to abdi% for missing people labels in the images. It seems that especially in
PASCAL [7] and maintained abou20% for ILSVRC [4]. crowds, more labels are missing.
Both of those accuracies are good. These two examples of

separation serve as an attempt to quantify the differengg, ning datasets for object detection, focusing exclusively on
between the two dataset image types. Further investigationyis “people” labels, and introduces a sample set of network
required to determine how signi cant these results are, butdt mera data. The labels from each dataset are examined.
provides a baseline understanding of a distinction between ﬁ?st, we examine the distribution of label density for object
datasets. _ _ detection datasets. We discover that many dataset labels are
~ Another issue(2), is that due to the large number of imagegentered in the image. Labels for network camera data appear
in both COCO [5] and ILSVRC [4], they utilize Amazony, pe signicantly less centered than other datasets. This
Mechanlcal Turk for labeling. This increases the_ chan(_:e _fB'é\per also investigates the size of the objects (in number
labeling error [30]. Some examples of a possible missing yivels) compared to total image size. We nd that while
labels are shown in Figure 15 for COCO (left) and ILSVR(ome gatasets such as PASCAL VOC and ImageNet contain
(r|.ghF). Overall,_|t is dif cult to measure tht_a true number Ofmany objects which take up more th&@% of the total image
missing labels in a dataset because marking the ground trdfhe " other datasets contain mostly objects which are smaller.
is laborious. Finally, directions for future improvement on dataset creation

Network camera data may provide a partial solution t0 boll}e proposed and network camera data is offered as a possible
problems. For(1), the solution is obvious: network camerayq tion.

data is a completely new repository for datasets. &)

network cameras could be cross-referenced with events (such ACKNOWLEDGMENTS

as weather) to automatically label the images for classi cation. The authors would like to thank Amazon for providing the
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Any opinions, ndings, and conclusions or recommendations

This paper describes and compares eight visual datasgi§ressed in this material are those of the authors and do not

and proposes a new method for creating a dataset using r?\%téessarily re ect the views of the sponsors.

work cameras. This paper focuses on seven popular machine
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APPENDIX

TABLE I. Sample Image Sources

Image Source Image ID

Figure 1 (a) | Pascal VOC| 003865

Figure 1 (b) | Pascal VOC| 003856

Figure 2 (a) ImageNet 1001

Figure 2 (b) | ImageNet 1008

Figure 3 (a) | SUN anairport  nterminal
nsun nacpxjhfbxfstfrtj

Figure 3 (b) | SUN anairfield
nsun nbgrkjzaxxucgirds

Figure 4 (a) INRIA person203

Figure 4 (b) | INRIA crop001056

Figure 5 (a) | KITTI 00015 (left)

Figure 5 (b) | KITTI 00015 (right)

Figure 6 (a) | Caltech set01 nv001l

Figure 6 (b) | Caltech set03 nv008

Figure 7 (a) | COCO 188592

Figure 7 (b) | COCO 197658

Figure 15 (a) | COCO 114907

Figure 15 (b) | ImageNet 1026

Figure 15 (c) | COCO 156071

Figure 15 (d) | ImageNet 1066

Figure 15 (e) | COCO 188465

Figure 15 (f) | ImageNet 1088




