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Abstract—Deep learning, particularly Convolutional Neu-
ral Networks (CNNs), has significantly improved visual data
processing. In recent years, video classification has attracted
significant attention in the multimedia and deep learning
community. It is one of the most challenging tasks since
both visual and temporal information should be processed
effectively. Existing techniques either disregard temporal in-
formation between video sequences or generate very complex
and computationally expensive models to integrate the spatio-
temporal data. In addition, most deep learning techniques
do not automatically consider the data imbalance problem.
This paper presents an effective deep learning framework
for imbalanced video classification by utilizing both spatial
and temporal information. This framework includes a spatio-
temporal synthetic oversampling to handle data with a skewed
distribution, a pre-trained CNN model for spatial sequence
feature extraction, followed by a residual bidirectional Long
Short Term Memory (LSTM) to capture temporal knowledge
in video datasets. Experimental results on two imbalanced
video datasets demonstrate the superiority of the proposed
framework compared to the state-of-the-art approaches.

Keywords-Deep learning; spatio-temporal learning; multi-
class imbalanced data; video classification; CNN; LSTM.

I. INTRODUCTION

Nowadays, multimedia big data analytics is highly
important with extensive applications including intelli-
gence surveillance, social network, healthcare, security, and
robotics [, [2]. It provides unprecedented opportunities
to many real-world problems and situations [3], [4]. Among
them, video classification is one of the most challenging
and cumbersome tasks in multimedia big data. The main
challenges in video classification are threefold: (1) There are
large variations between the frames throughout the whole
video (for example, the existence of various objects and
scenes in one video such as tree, building, human, and
water in a disaster event), (2) There are a large number of
frames needed to be processed for each video, (3) The video
data is multimodal and spatio-temporal in nature. Due to all
these challenges, video content analysis and classification
is a complex and big data problem requiring accurate and
efficient learning models.
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Many real-world problems are characterized as time se-
ries (e.g., human activity recognition, stock prediction, and
sentiment analysis), and it is critical to discover the temporal
patterns in a time series problem [3]. Accordingly, video data
consisting of sequences of image frames can be considered
as a time series problem in which both static and motion
information need to be extracted and analyzed [6], [7].
However, most existing video classification techniques either
ignore temporal information or utilize very complex motion
features [8], [9] to model the temporal features which are
not very efficient in practice.

One of the main challenges faced by the multimedia
community is the non-uniform distribution of real-world
datasets [10]. This problem is known as “data imbalance
problem”, in which some of the classes contain much fewer
samples than the others. Examples of the imbalanced data
problem include rare disease identification, fraud detection,
and natural disaster recognition. It has been widely shown in
the literature that techniques such as data resampling (over-
sampling and undersampling) can enhance the prediction
results of rare classes, especially for the binary classification
tasks (e.g., cancer detection). However, it is challenging to
employ such techniques on a multi-class imbalanced task
while maintaining the temporal information on the video.

With the advent of deep learning, new methodologies
have been proposed to address the problem of large-scale
video classification [11]. Specifically, Convolutional Neural
Networks (CNNs) [12] and Recurrent Neural Networks
(RNNG5) [13]] are employed for modeling static and temporal
information. Different from conventional machine learning
algorithms, deep neural networks map large-scale raw data
directly to the class outputs by automatically generating
a hierarchy of features and classification scores. In con-
trast to the complex handcrafted visual features (e.g., Ga-
bor, Histograms of Oriented Gradients (HOG), and Scale-
Invariant Feature Transform (SIFT)), deep learning provides
a general-purpose learning procedure resulting in discrimi-
native features and high-level data abstraction. Existing work
in video classification mostly trains two separate models for
spatial and temporal learning [14]. Thus, the relationship



between frame-based static information and sequence-based
temporal information may not be accurately detected.

Despite the great success of deep neural networks in
visual data classification, there remain challenges and rooms
for improvement. To address these challenges, this paper
presents a new deep learning framework that effectively
handles the multi-class data imbalance problem using a
spatio-temporal synthetic oversampling method. It also ex-
tracts static and temporal information from videos and
reduces the overall training process using transfer learning.
Specifically, a pre-trained CNN model is utilized to extract
static features from video sequences which are later given to
the proposed residual bidirectional LSTM model for spatio-
temporal feature analysis. Finally, these discriminative fea-
tures are directly fed to fully connected layers for the final
class generation.

The remainder of this paper is organized as follows.
Section [lI| provides a brief study of the related work. In
Section [[V] the proposed framework is described. Section [V]
provides the experimental results on a large video dataset.
Finally, the paper is summarized in Section [V]]

II. RELATED WORK

A. Imbalanced Data Classification

Imbalanced data classification techniques are mainly clas-
sified into data level and algorithmic approaches [15]. The
first group handles the imbalanced datasets by modifying
the data distribution to balance the classes in the training
set before applying the machine learning algorithms. The
techniques in this group either decrease the frequency of
the majority class (undersampling) or increase the frequency
of the minority class (oversampling) [16]. Although these
techniques can address the data imbalance problem, they
may discard potentially important information or increase
the likelihood of overfitting. More advanced techniques such
as Synthetic Minority Over-sampling Technique [17] are
proposed to avoid overfitting and information loss. The
solutions of the latter group are algorithmic techniques in
which the classifiers are designed to naturally handle the
imbalanced datasets [18], [19]. Ensemble techniques such
as bagging and boosting can improve the performance of
classification and overcome the overfitting problem [20].

Existing work on imbalanced data classification is mainly
limited to binary classification since multi-class imbalanced
data classification has more complicated relations between
its classes. An intuitive strategy to handle multi-class im-
balanced data is to apply decomposition methods to turn the
problem into a set of binary classification problems [21]].
However, this method needs careful combination strategies
to reconstruct the original multi-class dataset. Different from
the existing work, in this paper, a multi-class classification
model is proposed using the resampling techniques without
decomposing the problem into binary classification. Further-

more, resampling is done through both spatial and temporal
information in the video data.

B. Spatio-Temporal Video Analysis

Video classification is challenging due to its multimodality
and spatio-temporal nature. Traditional methods combined
several modality representations to enhance the classification
performance. Chen et al. [22] proposed a multimodal data
mining framework for semantic event detection from sports
videos. Despite the great capability of the framework, it still
needs human efforts for temporal analysis and also uses
handcrafted features. In computer vision, several techniques
have been proposed to detect motion and temporal informa-
tion from videos. Among them, optical flow [8] and iDT [9]
are able to generate discriminative motion features from the
data. However, using engineering techniques for temporal
analysis is a computationally expensive task.

Deep learning has been applied greatly in recent years to
overcome the challenges of traditional methods and generate
general-purpose models for feature analysis, either static
or temporal [23], [24], [25], [26]. Spatio-temporal deep
learning techniques can be divided into two groups: 1) Those
generating separate models for each modality and fusing the
information in the final layers [14], and 2) Those designing a
comprehensive model to handle spatio-temporal information
and their connections in one single model [27]. The 3D
convolutional neural networks (called C3D) [27] fall under
the second category that inherently applies both pooling and
convolutional layers in the 3D space. In that work, the third
dimension is time. This network requires very large-scale
datasets to converge and very powerful and parallel machines
including GPUs with high memory to train the deep 3D
networks.

LSTM was originally proposed in 1997 [28]] which is a
variant of RNNs. Deep LSTM networks have been widely
utilized in different applications such as NLP, speech pro-
cessing, and time-series that require long-term temporal
information. Specifically, it is used for video classification
tasks in recent few years [29], [30]. Deep residual net-
works (ResNet) [24] were originally proposed by Microsoft
Research (MSR) for an image competition task (ILSVRC
2015). This idea was later applied to many different appli-
cations and also video classification tasks [31].

All the aforementioned methods employ complex and
computationally intensive handcrafted features such as op-
tical flow [8] or iDT [9] for video classification and usually
fuse several models to capture the spatio-temporal informa-
tion. Moreover, these techniques usually ignore the imbal-
anced distribution of real-world data and are only evaluated
on very balanced datasets. However, in this paper, an ef-
fective and efficient deep learning framework that integrates
spatial and temporal features in a single model is proposed
which also handles the data with skewed distributions.



III. BACKGROUND
A. LSTM

LSTM networks have internal memory cells which are
able to learn the long-term dependencies of sequential
frames. In addition, they overcome exploding gradients in
the temporal domain (vanishing problem) by providing tem-
poral shortcut paths. Due to the simple input concatenation
and activation applied in RNNS, it can remember information
for a short time. Different from RNNs, LSTMs have a more
complex structure assisting them to remember information
for a longer period of time. As shown in Figure 1(a), when
a new information arrives, the input gate ¢;, forget gate
ft, output gate o,, and memory cell ¢; in the LSTM cell
handle the information overwriting by comparing it with
the inner memory. LSTM gates are designed to control the
forgetting, updating, and remembering processes and enable
gradients to smoothly flow through time. As a result, only
the information that is needed are selectively passed.

Let o be the sigmoid non-linearity which squashes the
inputs to a range between [0, 1], and tanh(z) be the hyper-
bolic tangent non-linearity which squashes its input x to a
range between [—1, 1]. The LSTM parameter updates at time
step t given inputs x;, h;, and ¢; are defined as follows [26]:

iv = o(Wilhi—1, 2] + bs);

fe = o(Wylhi—1, 2] + by);

¢ = frei—1 i tanh(Welhei—1, 2] + be);
o = o(Wolhi—1,2¢] +bo);

hy = optanh(c).

where W and by refer to the weight and bias of k£ =
{3, f,c,0}, respectively. In order to gradually learn the
connections of input 7;, forget f;, and output o, gates, they
are component-wise multiplied by the input, hidden output,
and memory cell.

B. Bidirectional LSTM

The original LSTMs have one direction and predict
the output based only on previous information. Hence,
some information may be lost in a one-directional net-
work. Similar to human trajectories, Bidirectional LSTMs
(BiLSTMs) are continuous and consider both former and
subsequent information. As a result, it can capture bidi-
rectional global temporal information in video sequences.
Figure 1(b) illustrates a BiLSTM in which the input set
is defined as « = {zg,x1, ..., +,2¢1+1} and the output set
as ¥ = {Yo0,Y1, -, Yt,Ys+1+ and the hidden layer as h =
{ho, h1, ..., Ay, hyy1}. In the hidden layers, there are forward
sequences — and backward sequences <—. The parameters
of BiLSTM at time ¢ can be defined as follows [32]:

h? = g(Up-zi+ Wh + by );
h* g(Uhel't + Wh< + bhe);
ye = g(Vamh™ + Vieh™ +by).
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Figure 1. The architectures of (a) the LSTM cell and (b) unfold
Bidirectional LSTM.

where ¢ is an activation function such as ReLu (g(a) =
Max(0,a)), U refers to the weight matrix from the input to
the hidden layers, W is the weight from the hidden to the
hidden layers, V' denotes the weight from the hidden to the
output layers, and by denotes the bias of s = {h*,h*,y}.

IV. PROPOSED FRAMEWORK

The proposed framework is shown in Figure 2 which
includes spatio-temporal synthetic oversampling, spatial,
temporal, and prediction components. First, the video over-
sampling is employed to overcome the skewed distribution
of the data, and then the static features of the video frames
are extracted using the pre-trained CNNs. Thereafter, video
sequences are generated and fed into the residual bidirec-
tional LSTMs. Finally, the video classes are generated using
the final fully connected layers.

A. Spatio-Temporal Synthetic Oversampling

Studies have shown that the use of sampling meth-
ods consisting the modification of the data distribution in
an imbalanced dataset can help improve the classification
performance. Thus, a new video oversampling method is
proposed which includes two main components: random
frame selection (temporal) and random augmentation (spa-
tial). Suppose the multi-class training video dataset V' in-
cludes N video samples and M classes (V = {v; i =
1,---,N;j = 1,--- M}, where v;; refers to the *"
video sample belonging to the class 7). The class set is
CL = {clj|j =1,--- , M} where cl; refers to the j'" class,
that includes a different number of video samples nv;. The
maximum number of samples in a class set is § and each
video includes frm; ; frames.

Algorithm [I] illustrates the steps of the proposed spatio-
temporal synthetic oversampling method which gets the
video dataset V, the class list CL, 6, and a (sequence
size) as the inputs and outputs the oversampled video
dataset V = {Oijfrlt = 1,--- ,N;j =1,--- . M; fr =
1,---, freq;}, where ; ; s, is the oversampled video re-
lated to the i*" video, j** class, and fr'" frequency.
The algorithm also generates the sequences of spatial
features Sequences = {Seq; |t = 1,--- ,N;j =
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Figure 2. The Proposed framework for imbalanced video classification.

1,---,M;fr=1,---, freq;} where Seq; ; s, is the fea-
ture sequence related to the oversampled video 9 j f,.. First,
the frequency of oversampling for each class cl; is calculated

as freq; «— n%j
other words, the lower the number of samples in each class
is, the higher the number of oversampling frequency will
be. For example, if the maximum number of samples in
all classes is 0 = 100 and the number of videos in the
class j is nv; = 20, then fregq; = 5. Therefore, this video
is oversampled five times. Next, for each video v;;, the
function GetF'rames() generates all the frames frm; ; in
the video v; ;. Since different videos have different numbers
of frames, we turn each video into a-frames sequences. So,
for each frequency (e.g., {1,---,5}), we either randomly
downsample the frames to a-frames using RandDown(.)
function or upsample it to a-frames using UpSample(.)
function. If the number of frames in a video is higher than
the specified sequence size («), RandDown(.) will return a
random rescaled list of frames by getting a number to skip
between iterations (skip = W) and then generating

, where [] is the ceiling function. In

Algorithm 1: The proposed spatio-temporal synthetic
oversampling algorithm for an imbalanced video dataset

Data: Original training video dataset
V=A{v li=1,--- ,N;j=1,---,M}, Class
list CL = {cl;|j =1,---, M}, Maximum
number of video samples §, and sequence size «
Result: Oversampled video dataset V = {0; ;. f,|i =
1,-- aN;j:L"' aM;fr:]-v"' 7fre(Jj}
and Sequences of spatial features
Sequences = {Seq; j grli =1,--- ,N;j =
17"' aM;.fT:L"' ,fTeq_j}
1V «— {}, Sequences «— {}
2 for each class cl; € CL do

3 freq; <— [%—‘

4 for each video v; ; € V do

5 frm; ; +— GetFrames(v; ;)

6 for fr =110 fregq; do

7 if SizeOf(frames; ;) > « then

8 frm, ; <— RandDown(frm; ;)

9 else

10 frm; ; «— UpSample(frm; ;)

n Seqi j,rr +— {}

1 bi e < {}

13 for each Img € frames; ; do

14 I'mg <— RandAug(Imyg)

15 @i,j,fr — @i,j,fr + Img

16 features «— SpatialFeatures(Img)
17 Seq; j, fr <— Seq; ;. r + features
18 V «— V + 177;7j,f7,

Sequences «— Sequences + Seq; j, fr

a random number for each skip. For example, if a = 5
and |frm, ;| = 25, then skip = 5 and a random number
between one to five is selected in each iteration to generate
the new rescaled frames.

The random frame selection process leads to a temporally
oversampled dataset which can generate synthetic video
samples from the original dataset. Although different frames
are selected from each video in every iteration, they are
spatially similar to each other, which may cause overfitting
during the training. This is one of the main disadvantages
of the oversampling techniques for imbalanced data. To
overcome this issue, we utilize augmentation techniques for
image samples. Essentially, we propose a random augmen-
tation method RandAug(.) which applies various image
transformation to each oversampled video using random
parameters. In other words, a random uniform distribution
is used to generate different parameters for image trans-
formation. Specifically, the image transformation function
includes random rotation, translation, shear, and brightness.
Finally, the new augmented image (/ ﬁzg) is added as the



frames of the new oversampled video ¥;; ¢ and static
features are generated for the corresponding image using
the pre-trained models (e.g., IncaptionV3). These frames
generated for each video are stitched together as a sequence
Seq; j,tr to be easily used in the next layers for video
temporal analysis. Using this technique, the deep features
are extracted once for each frame and may be used several
times through the training process. Therefore, there is no
need to continuously pass the original images through the
CNN every time the same frame is read. The spatio-temporal
synthetic oversampling algorithm returns these sequences to
be used as the input of the temporal deep learning model.

B. CNN-Residual Bidirectional LSTM

As shown in Figure 2, the proposed deep learning model
includes spatial, temporal, and prediction components. The
video input (original and oversampled ones) flows in the
spatial dimension (vertical direction) and temporal dimen-
sion (horizontal direction) and the corresponding classes
are detected in the last prediction layer. In the spatial
component, as explained in the previous section, deep CNN
features are extracted for every frame from every video
using transfer learning and converted into the sequences of
extracted features. Several research studies have shown the
effectiveness of deep features compared to the traditional
handcrafted features [25]. In addition, utilizing pre-trained
models can significantly expedite the whole training process
on the new dataset. Depending on the target dataset and its
similarity to the source dataset, the pre-trained CNNs can
be truncated in various layers.

In the temporal component, the CNN feature sequences
are fed into the proposed residual bidirectional LSTM as
the time series to preserve the continuous temporal infor-
mation. Residual connections can overcome the gradient
transmission by forwarding the information from the upper
layers directly through the network using an “addition” oper-
ator [24]. This simple connection can significantly improve
the training process since the lower information can transmit
to the upper layer directly through a highway. The residual
connection provides not only the temporal shortcut paths but
also an additional spatial shortcut path for efficient training
of deep LSTM networks. Therefore, it gives a flexibility
to the LSTM cells to deal with the vanishing or exploding
gradients. Different from original LSTM, residual LSTM
adds a shortcut path to the output layer h; instead of
accumulating a highway path on an internal memory cell c;.
The shortcut can be the output of any lower layers, though
the exact previous output of Bidirectional LSTM is used
in this paper. Then the network parameters are updated as
follows:

ho = O'(W()a? + bo);
I o(Wihi_1 + b)) + hi—q;
y = o(Wyhp_1+0by)+hp_1.

where | = {1,2,...,L — 1} and L is the total number of
residual layers. In this paper, we use two residual layers
(ie., L =2).

The proposed framework can access and discover more
information in advance due to its backward passes and
also can avoid overfitting and vanishing gradients due to
its residual connection. In this paper, a two-layer residual
bidirectional LSTM is designed (L = 2), followed by a batch
normalization which is connected to the last element from
its previous layer. In the final temporal layer, only the last
element of the output is selected and batch normalization is
applied because it normalizes the input across a mini-batch
and generates simpler feature representations in the hidden
layers. Therefore, it overcomes gradient vanishing and pre-
vents outliers at the test time. In addition, L2 regularization
is utilized to generalize the model and to reduce overfitting
to the training data. More specifically, each parameter of the
objective function is penalized by its squared magnitude as
follows:

1= A
BOV) = 5 3 (tn — ylea W)+ 5 7]

n=0

where E(W) is the objective function, ¢,, is the actual class
value of the n!" instance in the training batch, N is the total
number of instances, and y is the output based on input x,,
and weight 1. The last term is the L2 regularization term
including a penalty weight of .

Dropout is also directly added to each bidirectional LSTM
layer. Dropout is a regularization technique which randomly
ignores some neurons during the training, and so their
contribution to the activation is temporarily deactivated. As
a result, we can significantly prevent overfitting. Finally, the
prediction component includes two fully connected layers
and a dropout in between, which generates the final classes.

V. EXPERIMENTS
A. Experimental Setup

In this paper, the proposed framework is applied to two
video datasets to evaluate its performance, namely, the
disaster video dataset introduced in [33]] and public UCF101
action recognition dataset [5]. The disaster dataset was col-
lected during two significant hurricanes (Irma and Harvey)
and is naturally imbalanced. It includes seven classes (demo,
emergency response, flood/storm, human relief, damage,
victim, and speak) and the number of instances of each
class varies from 40 to 400. On the other hands, UCF101
with 101 action categories is selected, which is one of
the most challenging datasets due to its diversity in terms
of actions, views, background, camera motion, and so on.
However, different from the existing work on this dataset,
the training set is resampled to serve for imbalanced video
classification. To do so, a random number between 10 to the



maximum number of instances in each class is generated
and then those numbers of samples are randomly selected
from each class. This means that each class contains at least
10 samples but may not include all of its original samples
for training. The goal is to show how the proposed model
can enhance the multi-class classification on a large-scale
dataset with skewed distributions. The first train/test split of
this dataset suggested by the reference website is used in
this experiment.

In the preprocessing step, we first extract all the frames
form each video. Thereafter, we extract the features of every
video frame through the last pooling layer of InceptionV3,
resulting in a feature set with 2048 dimensions. These
extracted features are later grouped into sequences. For the
sake of simplicity and similar to the experiments in [34],
« is selected as 40. In other words, we turn each video
into a 40-frame sequence. For temporal analysis, a two-
layer Residual Bidirectional LSTM with 1024-wide followed
by a 1024 fully connected layer and 50% dropout is used.
This relatively shallow network outperforms other deep
stacked Residual Bidirectional LSTM models. We use Adam
stochastic optimization with an aggressively small learning
rate 0.000001 and L2 regularization with A = 0.0003.

The evaluation metrics used in this paper include Accu-
racy, F1, and Weighted F1 to consider both imbalanced data
and multi-class classification.

B. Results and Analysis

Tables [I] and [[] summarize the experimental evaluation
with the comparison against the state-of-the-art models on
the disaster dataset and imbalanced UCF101, respectively.
The comparison models include: (1) a model based on the
CNN features and a simple LSTM. Although this model uti-
lizes the temporal information using LSTM cells, it does not
include any oversampling to handle the data imbalance prob-
lem; (2) the same CNN-LSTM architecture as the previous
baseline, but in this model, the class weighting is added to
automatically assign higher weights to the minority classes
in the learning process; (3) the same CNN-LSTM architec-
ture which also includes the proposed video oversampling;
and (4) the same CNN-LSTM architecture which includes
both video oversampling and class weighting. Finally, the
last two rows show the results of the proposed CNN-
ResBiLSTM without and with class weighting, respectively.

As shown in Table [I} in the first group, no video over-
sampling is applied and it is assumed that deep learning can
automatically handle the imbalanced data. It can be seen that
both accuracy and F1 measures are significantly improved
with a simple class weighting. This shows when the data
samples of some of the classes are limited, it is necessary to
assign a higher weight to these classes so that the learning
algorithm will not bias toward the majority ones. In the
second group, similar experiments are conducted plus ap-
plying the proposed spatio-temporal synthetic oversampling.

It can be inferred from this set of results that the accuracy
is boosted using the video oversampling. More importantly,
the F1 measure is significantly improved, which shows the
importance of this sampling technique over the weighting
approaches. It is worth mentioning that the combination of
oversampling and class weighting can enhance the perfor-
mance results on this dataset since its highly imbalanced.
Finally, the proposed model (CNN-ResBiLSTM) together
with the proposed video oversampling and class weighting
further improves the results and reaches to 70% accuracy
and weighted F1. Compared to the original CNN-LSTM,
the proposed techniques can enhance the accuracy and F1
measure by more than 11% and 0.17, respectively.

Similar experiments are conducted on the UCF101 with
imbalanced distributions to further show the ability of the
proposed framework on a large dataset. The results are
shown in Table [[ll which includes three sets of results: CNN-
LSTM with no video oversampling, CNN-LSTM with video
oversampling, and the proposed model. Each set includes
the results with and without class weighting. Similar to the
disaster dataset, data oversampling can improve the perfor-
mance regarding both accuracy and F1 measures in a multi-
class classification task. More specifically, the accuracy and
F1 metric are improved by 1.5% and 0.3, respectively.
The results are further improved by the proposed CNN-
ResBiLSTM, which shows the importance of bidirectional
and residual connections in our learning model. Different
from the disaster dataset, the results are decreased when
video oversampling is combined with the class weighting
technique. Based on our observations, more overfitting hap-
pens for this dataset, which is a common disadvantage of
class weighting and oversampling techniques. It is also due
to the fact that the disaster dataset is much more imbalanced
than the UCF-101 and needs more balancing strategies.

To further illustrate the effectiveness of the proposed
residual bidirectional LSTM, we conduct several experi-
ments on the UCFI01 dataset as shown in Figure 3 (a-
b). The figure visualizes the loss and accuracy comparison
of each model during the training process. The comparison
models include: (1) a frame-based CNN and softmax for
generating final classes. This model called “Spatial CNN”
which only considers static features in single frames and
ignores the temporal information between the frame se-
quences. We fine-tune InceptionV3 by freezing the top layers
of the network and updating the weights in only the final
layers. This simple model surprisingly generates a promising
performance compared to the more complex models; (2) a
model based on the CNN features and a simple LSTM; (3) a
model by adding residual connections to the previous model;
(4) a model with bidirectional connections; and finally, our
proposed model (ResBiLSTM).

It can be inferred from the plots that the proposed method
can converge faster than the other benchmarks and generate
lower losses and higher accuracies in almost all the itera-



Table I
PERFORMANCE EVALUATION RESULTS ON DISASTER DATASET.

Weighted

Approach Acc F1 Fl

No video oversampling
CNN-LSTM 0.589 | 0.339 0.526
CNN-LSTM+ 0.663 | 0428 | 0.654
class weighting
With video oversampling
CNN-LSTM 0.671 | 0.456 0.662

CNN-LSVTM_+ 0.678 | 0477 0.688
class weighting

Proposed model
CNN-ResBiLSTM 0.681 | 0.493 0.678
CNN-ResBILSTM+ 1 709 | 0513 |  0.706
class weighting

Table II
PERFORMANCE EVALUATION RESULTS ON IMBALANCED UCF101.

Weighted

Approach Acc F1 F1

No video oversampling
CNN-LSTM 0.685 | 0.655 0.670
CNN-LSTM+ 0.680 | 0.660 | 0.670
class weighting
With video oversampling
CNN-LSTM 0.706 | 0.684 0.696

CNN-LSTM+ 0.690 | 0.669 | 0.679
class weighting

Proposed model
CNN-ResBiLSTM 0.723 | 0.702 0.717
CNN-ResBILSTM+ 1 705 | 0686 | 0.696
class weighting

tions. The LSTM model has the slowest convergence while
BiLSTM and ResLSTM can lessen this problem of LSTM.
Finally, the proposed framework can learn forward and
backward connections in each video sequence, leverage the
temporal shortcut paths to expedite the training convergence,
and reach to the higher performance faster.

VI. CONCLUSION

This paper presents a new spatio-temporal framework for
large-scale and imbalanced video classification using deep
learning. The framework introduces a new oversampling
technique which generates synthetic videos to handle im-
balanced data. Then, the spatial information is extracted
from the video sequences using the pre-trained CNNs.
Thereafter, these sequences are fed to the proposed two-
layer residual bidirectional LSTM, and finally the video
classes are predicted in the final fully connected layer. The
experimental results demonstrate the ability of the proposed
framework with respect to the prediction performance and
efficiency.
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