
Electronic Communications of the EASST
Volume X (2010)

Guest Editors: Peter J. Clarke, Martina Seidl
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the

6th Educators’ Symposium:

Software Modeling in Education at MODELS 2010

 (EduSymp 2010)

Implementation of the Concept-Driven Approach in an

Object-Oriented Analysis and Design Course

Ven Yu Sien

13 Pages

 ECEASST

2 / 13 Volume X (2010)

Implementation of the Concept-Driven Approach in an

Object-Oriented Analysis and Design Course

Ven Yu Sien

HELP University College, Malaysia

Abstract: As one of the most important tasks in object-oriented analysis and design (OOAD)

is the abstraction of the problem domain into specific concepts or objects, information

technology (IT) students need appropriate skills of abstraction in order to identify the essential

concepts and relationships within a problem domain. However students in higher education

generally find difficulty performing abstractions of real-world problems within the context of

OOAD.

Concept mapping is a popular tool used in education for facilitating learning, comprehension

and the development of knowledge structures. We have successfully adopted concept maps as

stepping-stones to assist students in constructing class and sequence diagrams. In this paper,

we present a framework for teaching object-oriented (OO) modelling using concept maps. This

framework – comprising four teaching modules – could be integrated into existing OOAD

courses at the undergraduate or postgraduate level, and OOAD workshops to help software

engineering educators resolve some of the difficulties they face in trying to teach OOAD. We

also report results of an evaluative study on the effectiveness of integrating concept mapping

techniques into an introductory OOAD course.

Keywords: abstraction, UML models, concept map, class diagram, sequence diagram

1 Introduction

Abstraction skills are especially important for solving complicated problems as they enable the

problem solver to think in terms of conceptual ideas rather than their details [1]. Abstraction

skills are also necessary for the construction of the various models, designs, and

implementations that are required for a software system. As models are a simplification of

reality that help us to understand and analyse large and complex systems, students must

therefore possess the necessary abstraction skills to produce them [2]. However, being able to

understand what details are important to the problem is a difficult skill that requires a great

deal of practice. Kramer [2] believes that the reason why ‘some software engineers and

computer scientists are able to produce clear, elegant designs and programs, while others

cannot, is attributable to their abstraction skills’.

2 Background Review

This section reviews the challenges faced by students in understanding OO concepts and

conceptualising real-world problems as abstractions.

Implementation of the Concept-Driven Approach in OOAD

EduSymp 2010 3 / 13

Most education institutions teach OOAD courses in the context of a software development life

cycle (SDLC) e.g., iterative and incremental or Rational Unified Process (RUP). While

development processes differ, they all share some common phases i.e., the requirements

specification, analysis, design and implementation phases. Each phase produces deliverables

that are required by other phases in the life cycle. During the OOAD phases, models are

produced to show the type of information processing that is required of the new system. A

model of an OO system is an abstract representation of the system. It represents the problem

domain and emphasises some characteristics of the real-world. Modelling a system, however,

requires the representation of different perspectives or views of the system and therefore there

are different types of diagrams for modelling each of these views.

Cianchetta [3] considers teaching the fundamental concept of identifying objects from the

problem domain to be one of the most difficult tasks that he encountered when training OO

developers. He found that even though object-oriented analysis (OOA) and object-oriented

design (OOD) can be easily defined as ‘the modeling of a specific problem domain and a

pragmatic solution for that domain’, the essential problem is ‘defining how one should go

about modeling a problem domain and its practical, efficient, and cost-effective solution’.

Students at higher education institutions in general experience considerable difficulty

understanding OO concepts and acquiring the necessary skills in OOAD. Svetinovic et al. [4]

investigated the different types of fundamental difficulty their students experienced when

performing OOA. The analysis of the results was based on the specification artifacts produced

as a result of the students’ OOA of a business system and observation of the students’

behavior. The most common errors committed by the students are:

• assignment of a large business activity to a single object while it should be fulfilled

through the collaboration with other objects;

• missing responsibilities that should be assigned to objects;

• missing objects that should participate in the overall responsibilities;

• under-specified analysis models – the students were unable to identify most of the

appropriate concepts; and

• a large number of software concepts were identified at inconsistent abstraction levels.

Bolloju and Leung [5] conducted a study to identify errors produced by novice systems

analysts in use case diagrams, use case descriptions, and class and sequence diagrams. The

errors that they found in class diagrams were:

• operations that had not been included in classes;

• misassigned operations;

• incorrect multiplicities;

• misassigned attributes; and

• incorrect usage of generalisation-specialisation hierarchies.

Some of the faults they found in sequence diagrams were:

• missing messages;

• missing message parameters;

• missing objects; and

 ECEASST

4 / 13 Volume X (2010)

• incorrect delegation of responsibilities.

3 Proposed Concept-Driven Approach

In order to resolve some of the issues discussed in Section 2, we presented a concept-driven

approach to introduce concept mapping as a tool to help students with OO modelling [6, 7].

Concept mapping is a technique for representing the structure of information visually. It was

developed by Joseph Novak [8] in 1972 at Cornell University and is commonly used for

visualising relationships between concepts. Concept maps are two-dimensional, hierarchical

diagrams that represent the structure of knowledge within a particular domain as nodes (or

concepts) and connecting links. A concept is ‘an idea or notion that we apply to the things, or

objects, in our awareness’[9]. Concepts are related to each other by a link, and each link has a

word or word-phrase describing the relationship between the concepts.

There are many inherent problems associated with modelling the problem domain with class

and sequence diagrams – these are discussed in detail in Section 2. We do not claim that it is

easy to model the problem domain by using concept maps. We do however consider that

concept maps have the following advantages over class diagrams:

• It is easier to distinguish between classes and attributes in concept maps by using

specifically defined labelled links e.g., ‘has’.

• It is easier to identify generalisation-specialisation hierarchies in concept maps by using

specifically defined labelled links e.g., ‘is-a’.

• Relationships between concepts that do not fall in the ‘is-a’ or ‘has’ categories are defined

by an appropriate transitive verb from the case study.

• Substantial guidelines to produce concept maps have been developed. These are defined in

[6, 7].

• Concept maps help clarify the meaning of a concept by means of propositions [10].

• It is relatively easy to teach concept maps. There are only two types of notations used in a

concept map – nodes and links [10].

We believe that a significant improvement in the way novices in OOAD analyse and design

their OO systems can be achieved by adopting the proposed concept mapping techniques.

Once novices have mastered these techniques, they will be able to effectively produce

abstractions of real-world problems represented by OOAD models.

3.1 Static and Dynamic Concept Maps

Within the context of OO modelling, we used concept maps as an initial abstraction of the

problem domain. A static concept map is a type of static structure diagram that describes the

structure of a system by illustrating the system’s concepts and the relationships between these

concepts. The concepts defined in the static concept map model classes (and attributes) in the

analysis class diagram. For example, a static concept map (see Fig. 1) is constructed by

identifying concepts and their relationships from an expanded use case (Table 1). We adapted

some processes from [11] for constructing static concept maps. These processes involve the

identification of candidate concepts and their relationships from expanded use cases. We

Implementation of the Concept-Driven Approach in OOAD

EduSymp 2010 5 / 13

included some construction constraints by defining only three types of relationships that

concepts can have with each other i.e., attribute, generalisation-specialisation and association.

If the type of relationship between two concepts does not fall into the first two relationship

categories, then it is considered to be an association.

The static concept map is built incrementally from the use cases – it is subsequently

transformed to a UML class diagram using the rules described in [6]. These rules were

constructed by examining the linking words between two concepts to determine whether:

• a concept should be converted to a class or an attribute; and

• a link should be converted to an association or generalisation-specialisation hierarchy.

Table 1. Expanded Use Case

Use Case 1 Add New Employee

Goal in Context An employee is correctly entered into the system.

Primary Actor

Secondary

Actors

HR Manager

Main Course

Description

Step Action

 1 The HR Manager enters the employee’s name, address and birth

date.

 2 A unique employee number is allocated by the system.

Alt. Course

Description

Step Branching Action

 1a The HR Manager enters the full-time employee’s name, address,

birth date and monthly salary.

 1b The HR Manager enters the part-time employee’s name, address,

birth date and hourly rate.

Figure 1. Static concept map converted to a class diagram

 ECEASST

6 / 13 Volume X (2010)

An OO system is populated with objects and these objects need to cooperate with each other

(by sending messages) in order to fulfil certain responsibilities. Students generally have

difficulty identifying messages to be sent in UML sequence diagrams. They do not know how

to fulfil the responsibilities of the use case by getting objects to pass messages to each other.

Students also have difficulty understanding that the interaction diagrams are dependent on the

analysis class diagram in terms of its classes, associations and multiplicities. The following

guidelines were adapted from Wirfs-Brock and Wilkerson’s [12] responsibility-driven design

to help students with these problems:

• For each responsibility identified from a use case, complete the following question: What

object is responsible for …..

• Is this object capable of fulfilling this responsibility by itself? Does it require information

from other object(s)? If it does, what sort of information does it require? Which object(s)

can provide it with the information required?

• What other object(s) need to know this result or knowledge?

A dynamic concept map provides a dynamic view of the system behaviour by showing the key

responsibilities that need to be fulfilled by specific concepts in order to fulfil a particular

scenario of a use case. The concepts defined in the dynamic concept map model objects in the

sequence diagram. For each use case, its key responsibilities are identified and added to the

static concept map so as to produce a dynamic concept map. A dynamic concept map is

constructed and subsequently transformed to a UML sequence diagram using the rules

described in [7].

Fig. 2 illustrates an example of how a dynamic concept map for creating a part-time employee

concept is transformed to a sequence diagram.

Figure 2. Dynamic concept map converted to a sequence diagram

The class and sequence diagrams are selected for our study because they represent the essential

static and behavioural aspects of a problem domain. The class diagram is fundamental to the

OO modelling process and provides a static description of system components and structures

in terms of classes and their relationships. The sequence diagram is selected because it is

Implementation of the Concept-Driven Approach in OOAD

EduSymp 2010 7 / 13

identified as the ‘major UML diagram that captures the detailed behaviour of objects in the

system’ [13] and it is one of the most widely used dynamic diagrams in UML [14].

One of the main motivations for developing this concept-driven approach is to assist students

produce more appropriate class and sequence diagrams. Our concept mapping techniques are

developed based on some of the design errors that are reported in Section 2:

• The processes for deriving appropriate concepts from use cases should help novices avoid

producing inappropriate classes, missing controller classes, and missing attributes.

• Labelled links between concepts should help prevent misassigned attributes and

inappropriate relationships.

• As the dynamic concept map is based on the static concept map, there should be fewer

inconsistent objects, missing objects, and missing controller objects defined in the

sequence diagrams.

• The processes involved in identifying responsibilities and the assignment of these

responsibilities to candidate concepts should help novices understand how objects can

interact with each other via messages to fulfil the responsibilities of a particular scenario

of a use case.

It must be emphasised that the concepts defined in the static concept map are transformed to

classes (and attributes) in the analysis class diagram, whilst the concepts defined in the

dynamic concept map are transformed to objects in the sequence diagram.

3.2 Integrating the Concept-Driven Approach into an Existing OOAD Course

Teaching OOAD is not easy. Educational institutions have developed/adopted various

approaches [15, 16] to help resolve the problems discussed in Section 2. We recommend

using a concept map as the initial domain model instead of a class diagram or object diagram,

and teaching students how to identify concepts and their relationships from textual use cases

describing the functionalities of the system.

The first module introduces a procedure for producing static concept maps from textual use

cases that describe the functional requirements of a system. The second module presents a set

of transformation rules for converting the static concept map to a corresponding class diagram.

The third module introduces a procedure for producing a dynamic concept map from a use

case. The fourth module presents a set of transformation rules for converting a dynamic

concept map to a corresponding sequence diagram. These modules can be used as a stand-

alone workshop or integrated into existing OOAD courses or workshops. At the end of each

module, the students are expected to work on hands-on exercises. The exercises are designed

to help students apply theory to practice, and subsequently assist them to improve their

abstraction skills. The students are expected to draw the models using pen/pencil and paper.

However, the lecturer of the course or facilitator of the workshop may prefer that the students

use software applications to draw the models.

With these modules, we aim to help students by providing them with:

• a good foundation for identifying essential concepts to represent the problem domain;

 ECEASST

8 / 13 Volume X (2010)

• techniques to help them produce appropriate abstractions of real-world problems to be

represented by UML diagrams;

• an understanding of OO notations and terminology including familiarity with a core subset

of UML notation; and

• an understanding of design patterns, and how they can be used to produce interaction

diagrams.

In a typical introductory OOAD course, many OO concepts and definitions are presented first

(e.g., objects, classes, inheritance, encapsulation, polymorphism, UML notation) followed by

the application of these notations in the various types of UML analysis and design models. Our

framework, however, consists of the following sequence of topics:

1. Requirements analysis and use cases.

2. Module 1: Static concept map (estimated duration: 1 hour 30 minutes)

Content: real-world problems conceptualised as abstractions; introduction to concept

maps; guidelines for producing concept maps to represent a problem domain within the

context of OOAD [6]; hands-on exercises to produce a static concept map representing the

problem domain from a case study.

3. Analysis class diagram (e.g., classes, attributes, associations, generalisation-specialisation

hierarchy, whole-part association, etc.) and UML notation for the OO approach.

4. Module 2: Static concept map ���� analysis class diagram (estimated duration: 1 hour 15

minutes)

Content: transformation rules for converting a static concept map to an analysis class

diagram [6]; hands-on exercises to produce a class diagram – students continue with the

case study that they worked on in Module 1.

5. Remaining topics in OOA (e.g., system sequence diagrams, contracts, etc).

6. Module 3: Dynamic concept map (estimated duration: 2 hours)

Content: multi-objects/containers in a concept map; naming convention for messages;

identification of responsibilities from the use case; assignment/delegation of

responsibilities to appropriate concepts using basic design patterns; guidelines for

producing dynamic concept maps [7]; hands-on exercises to produce dynamic concept

maps – students continue with the case study that they worked on in Module 1.

7. Module 4: Dynamic concept map ���� sequence diagram (estimated duration: 1 hour 45

minutes)

Content: transformation rules for converting a dynamic concept map to a sequence

diagram using the rules defined in [7]; hands-on exercises to produce sequence diagrams –

students continue with the case study that they worked on in Module 1.

8. Remaining topics in OOD (e.g., design class diagram, etc).

9. Remaining topics in OOAD (e.g., OOPL code examples showing domain classes and

relationships, OO development, etc).

The times allocated to the modules are based on our experience conducting concept mapping

workshops. There are many constraints to consider e.g., the time that the facilitator can afford

for these topics in his/her syllabus, the speed with which the students can complete the guided

sessions, the amount of help that the students require, etc.

Implementation of the Concept-Driven Approach in OOAD

EduSymp 2010 9 / 13

We incorporated these teaching modules in the workshops reported in [6, 7] to evaluate the

effectiveness of using concept maps to produce class and sequence diagrams. Since the

evaluation results provided strong evidence that the concept-driven approach can be used

successfully, we implemented the teaching modules in an introductory OOAD course in the

February 2009 semester at HELP University College, Malaysia.

4 Evaluation Study

A study was conducted to evaluate the pedagogical effectiveness of adopting concept maps as

a stepping stone to assist novices in developing class and sequence diagrams. In order to

investigate the effectiveness of integrating the concept mapping techniques in an introductory

OOAD course, we compared the results of two studies. The participants in Study 1 were not

exposed to concept mapping techniques while the participants in Study 2 were taught concept

mapping techniques as part of their OOAD course. While we are aware that we are comparing

results from two different sets of students, we can nonetheless use the outcome as a basis for

considering the implications of incorporating concept mapping techniques in an OOAD

course.

Study 1 consisted of fifty-one Year 2 IT undergraduate students and Study 2 consisted of

twenty-one Year 2 IT undergraduate students. All the participants were volunteers and were

not paid to take part in the study. Information captured on the background of the participants

and their experience with OOAD is summarised in Table 2. The OO experience reported for

these participants is based on the experience they gained from their university courses that

include OO concepts.

Table 2. Background information on participants from Studies 1 and 2

 Study 1 (N=51) Study 2 (N=21)

Average age (years) 22 22

Age range (years) 20-27 19-28

Gender

• male

• female

61%

39%

90%

10%

OO experience

• < 1 year

• 1- 2 years

• 3-5 years

• > 5 years

35%

49%

16%

0%

48%

52%

0%

0%

The participants from both studies were asked to work on a case study containing four

expanded use cases that describe the functional requirements of the system. The solution for

the case study consists of nine appropriate classes, two generalisation-specialisation

hierarchies and eight associations. We used rubrics to define the assessment criteria for

evaluating the appropriateness of the participants’ diagrams.

 ECEASST

10 / 13 Volume X (2010)

The participants in Study 1 were given a case study to work on after they had completed their

OOAD course at HELP University College, Malaysia. In the subsequent semester Modules 1,

2, 3 and 4 were integrated into the OOAD course. After completing Module 4, the participants

in Study 2 were given the same case study to work on.

The participants in Study 1 were given 1 hour to work on the case study as they were required

to produce a class and sequence diagram. The participants in Study 2, however were given 1

hour 30 minutes to work on the case study as they were required to produce a static concept

map, a class diagram, a dynamic concept map and a sequence diagram.

5 Results

We classified the class and sequence diagrams produced by our participants according to the

design categories proposed by Eckerdal et al. [17] The design categories, in order of

appropriateness are: Complete, Partial, First Step, Skumtomte
1
, Restatement and Nothing. The

class and sequence diagrams produced by the participants are classified according to the

categories proposed by Eckerdal et al. [17]. The descriptions of the categories, however have

been modified to make them more appropriate for our study e.g.,

• Class diagrams

� Complete designs: diagrams contain all of the expected classes, attributes and

associations. Generalisation-specialisation hierarchies and whole-part associations are

appropriately applied.

� Partial designs: diagrams are a good representation of the problem domain with most

of the expected classes, attributes and associations defined.

� First Step designs: diagrams are a good representation of a partial overview of the

problem domain with an appropriate number of expected classes. Some of the classes

may not be appropriately associated with each other and may contain some

misassigned attributes.

� Skumtomte: incomplete diagrams with missing classes, misassigned or irrelevant

attributes, and missing or inappropriately defined associations.

� Restatement: level of detail provided is insufficient. There are significant errors and

misunderstandings.

� Nothing: diagrams do not contain any logical content.

• Sequence diagrams

� Complete designs: diagrams contain appropriate sequence of messages passed to the

relevant objects to fulfil the responsibilities of the use case.

� Partial designs: diagrams include an appropriate number of correct objects fulfilling

some responsibilities of the use case.

� First Step designs: evidence of some understanding of the required delegation of

responsibilities among the objects.

1
 Skumtomte is a Swedish word referring to a pink-and-white marshmallow, shaped like a Santa Claus.

It looks as if it contains some matter but in reality it does not contain much substance.

Implementation of the Concept-Driven Approach in OOAD

EduSymp 2010 11 / 13

� Skumtomte: diagrams are incomplete but contain at least 1 appropriate interaction

between 2 appropriately defined objects. The majority of messages are inappropriate.

� Restatement: diagrams are incomplete but contain at least 2 appropriate objects. All

the messages are inappropriate.

� Nothing: diagrams contain significant errors and misunderstandings.

This method allows us to adopt a holistic approach [18] for evaluating the appropriateness of

the UML diagram. We are, however, aware that this may not be a reliable assessment as it

does not explicitly assess the appropriateness of individual components of the diagram.

A higher percentage of class and sequence diagrams produced in Study 2 are found to be in

better design categories than the diagrams produced in Study 1. There are 36% of class

diagrams produced in Study 1 that belong in the Restatement and Nothing categories –

participants in Study 2 did not produce any class diagrams belonging in these two categories.

There are no sequence diagrams produced in Study 1 that belong in the Complete category,

compared to 35% of sequence diagrams produced in Study 2 belonging in the Complete

category.

Table 3. Analysis of diagrams produced by participants

Group Diagram Complete Partial First Step Skumtomte Restatement Nothing

Study 1 Class 2% 10% 21% 31% 23% 13%

Study 2 Class 57% 14% 14% 14% 0 0

Study 1 Sequence 0% 3% 3% 10% 17% 67%

Study 2 Sequence 35% 6% 12% 6% 24% 18%

Some of the most common faults found in the models produced in Study 1 were similar to the

types discussed in Section 2. We find in this study (Study 2) that the number of faults has

significantly decreased especially in the following areas:

• class diagrams

� identification of expected classes representing the key concepts in the problem

domain;

� assignment of attributes to appropriate classes;

� identification of appropriate generalisation-specialisation hierarchies.

• sequence diagrams

� identification of appropriate objects participating in the scenario of the use case;

� identification of objects in the sequence diagram that correspond to classes defined in

the class diagram; and

� delegation/assignment of responsibilities to objects.

6 Threats to Validity

This section discusses some threats to validity that may affect this study.

Internal Validity. Internal validity refers to the extent to which we can correctly state that the

introduction of concept mapping techniques caused the participants to produce more

 ECEASST

12 / 13 Volume X (2010)

appropriate class and sequence diagrams. One of the threats to internal validity consists of the

expectations of a particular result by the researcher. In this context, the researcher was

responsible for marking the class and sequence diagrams produced by the two groups of

participants, and she is fully aware that the scores for the diagrams may bias the hypotheses.

To this end, the marking scheme was strictly adhered to. However, in order to eliminate this

threat, we should consider using independent assessors to mark the pre-test and post-test

diagrams. We have not 'employed' the services of independent assessors due to logistical

problems e.g., lack of funding and time constraints. Note: the case study, marking scheme and

a sample of the marked diagrams were moderated by independent assessors.

There may be other factors that contributed to the quality of class and sequence diagrams

produced by the participants of Study 2 e.g.,

• the students from Study 2 may be more intelligent than the students from Study 1;

• as the students from Study 2 are currently enrolled in the OOAD course, their knowledge

of OOAD concepts and experience in OO modelling is still fresh in their minds;

• the students in Study 2 have been given a good foundation on OOAD concepts;

• sufficient emphasis has been placed on the necessary topics that are being evaluated.

External Validity. The main threat to external validity is generalising our results as our sample

may not be representative of all IT undergraduate students.

7 Conclusion

It is evident from the results reported earlier in this section that the quality of class and

sequence diagrams improved in Study 2. We are, however, mindful that the results achieved

by the participants in Study 2 may not be attributed to concept mapping techniques (as

discussed in Section 6).

We believe that a significant improvement in the way novices in OOAD analyse and design

their OO systems can be achieved by adopting concept mapping techniques described in [6, 7].

Once novices have mastered these techniques, they will be able to effectively produce

abstractions of real-world problems represented by OOAD models. A significant strength of

this approach is that it slows students down so that they need to think things through more

thoroughly than they otherwise would. We have also set some design constraints e.g.,

including specifically defined linking words within the processes for building static concept

maps in order to help students stay at the required abstraction level. This is intended to support

and improve their skills of abstract thinking, and consequently improve their understanding of

OOAD.

References
1. Kramer J, Hazzan O. The Role of Abstraction in Software Engineering. Proceedings of

the 28th International Conference on Software Engineering; Shanghai, China: ACM, New

York, USA; 2006. p. 1017-8.

2. Kramer J. Is Abstraction the Key to Computing? Communications of the ACM.

2007;50(4).

Implementation of the Concept-Driven Approach in OOAD

EduSymp 2010 13 / 13

3. Cianchetta T. Teaching Object-Oriented Analysis and Design by "Cruisin' the Classifieds

for Business Objects". Proceedings of the 1995 Conference of the Centre for Advanced

Studies on Collaborative Research; Toronto, Ontario, Canada: IBM Press; 1995.

4. Svetinovic D, Berry DM, Godfrey MW. Increasing Quality of Conceptual Models: Is

Object-Oriented Analysis that Simple? Proceedings of the 2006 International Workshop

on Role of Abstraction in Software Engineering. Shanghai, China; 2006.

5. Bolloju N, Leung F. Assisting Novice Analysts in Developing Quality Conceptual Models

with UML. Communications of the ACM. July 2006;49(7):108-12.

6. Sien VY, Carrington D. A Concepts-First Approach to Object-Oriented Modelling.

Proceedings of the 3rd IASTED International Conf on Advances in Computer Science and

Technology; Phuket, Thailand; 2007.

7. Sien VY, Carrington D. Using Concept Maps to Produce Sequence Diagrams.

Proceedings of the IASTED International Conference on Software Engineering;

Innsbruck, Austria: ACTA Press; 2008.

8. Novak JD, Cañas AJ. The Origins of the Concept Mapping Tool and the Continuing

Evolution of the Tool. Information Visualization. 15 June 2006;5(3):175-84.

9. Martin J, Odell J. Object-Oriented Methods:A Foundation. Englewood Cliffs, New Jersey:

Prentice-Hall International Inc; 1995.

10. Novak JD, Cañas AJ. The Theory Underlying Concept Maps and How to Construct and

Use Them. Technical Report IHMC CmapTools 2006-01 Rev 01-2008. Pensacola,

Florida; 2008.

11. Naidu S, Blanchard P. Concept Mapping. 2003 [cited 1 August 2006]; Available from:

http://www.infodiv.unimelb.edu.au/telars/flds/documents/conceptmappingwbook.pdf#sear

ch=%22concept%20mapping%20naidu%22

12. Wirfs-Brock R, Wilkerson B. Object-Oriented Design: A Responsibility-Driven Approach.

Proceedings on Object-Oriented Programming Systems, Languages and Applications;

New Orleans, Louisiana, United States: ACM; 1989. p. 71-5.

13. George JF, Batra D, Valacich JS, Hoffer JA. Object-Oriented Systems Analysis and

Design. 2nd ed: Pearson Higher Education; 2007.

14. Dobing B, Parsons J. How UML is Used. Commun ACM. 2006;49(5):109-13.

15. Box R, Whitelaw M. Experiences when Migrating from Structured Analysis to Object-

Oriented Modelling. Proceedings of the Australasian Conference on Computing

Education; Melbourne, Australia: ACM International Conference Proceeding Series; 2000.

p. 12-8.

16. Beheshti R, Dado E. Simplified UML Techniques for System Development in an

Educational Setting. Proceedings of the 6th International Conference on Information

Technology Based Higher Education and Training; 2005. p. S2C/1- S2C/6.

17. Eckerdal A, McCartney R, Moström JE, Ratcliffe M, Zander C. Can Graduating Students

Design Software Systems? Proceedings of the 37th SIGCSE Technical Symposium on

Computer Science Education; Houston, Texas, USA: ACM; 2006.

18. Ferris DR, Hedgcock JS. Teaching ESL Composition: Purpose, Process and Practice. 2nd

ed: Lawrence Erlbaum; 2005.

