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Abstract:  
 

The rapid growth of networking technologies has drastically changed the way we communicate 
and enabled a wide range of communication applications. However, these applications have been 
conceived, designed, and developed separately with little or no connection to each other, 
resulting in a fragmented and incompatible set of technologies and products. Building new 
communication applications requires a lengthy and costly development cycle, which severely 
limits the pace of innovation. Current applications are also typically incapable of responding to 
changes in user communication needs as well as changing network infrastructure and device 
technology. In this article, we address these issues and present the Unified Communication 
Model (UCM), a new and user-centric approach for conceiving, generating, and delivering 
communication applications on-demand. We also introduce a prototype design and 
implementation of UCM and discuss future research directions toward realizing next generation 
communication applications.  
 
1. Introduction 

 

The convergence of data, voice, and multimedia communication over digital networks coupled 
with the continuous improvement in network capacity and reliability has enabled a wide range of 
communication applications1. Examples range from general-purpose communication 
applications such as a simple phone call, conference call, video conferencing, and instant 
messaging to more specialized applications such as disaster management and telemedicine. It is 
likely that the pace of innovation of new communication applications will accelerate further. 
However, the lengthy, costly, and inflexible development cycle for new applications hinders the 
realization of this vision. Current communication systems continue to be conceived, designed, 
and developed separately with little or no connection to each other. These applications are also 
typically incapable of accommodating changes in end-user communication needs, the dynamics 
of the underlying network, and new device and network technologies, without costly 
development cycle [Ker05]. 
  
The root cause to the above problems is that there is no common model, architecture, or 
                                                 
1 We use the term “communication application” to refer to communication systems or tools targeted for end-users, 
ranging from systems supporting voice calls to domain specific systems supporting telemedicine. 
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systematic method of design for developing communication applications that are reconfigurable 
and adaptive. The stovepipe development of current systems dictates that they cannot promptly 
respond to the varying and changing needs of their end-users or to the changing dynamics of the 
underlying network or devices. These issues force the end-users to accommodate the limitations 
of technology and move from one tool to another to get their job done, rather than to adapt the 
tools to suit the users’ needs. Figure 1 (a) illustrates the fragmented set of technologies and 
products that are built directly on top of low-level networking protocols and technologies as a 
result of the stovepipe development approach. 
 

 
(a) Current approach using stovepipe architecture. 

 

 
 

(b) Our new approach using a unified layered architecture.   
 

Figure 1: Architecture of communication applications: (a) current approach, (b) our new approach. 
 
In this paper, we present the Unified Communication Model (UCM) that addresses the above 
problems. As opposed to the stovepipe development, UCM introduces a common architecture 
across different communication applications, and a new method for conceiving, generating and 
delivering a wide range of communication services to end-users based on this architecture. 
Rather than developing communication applications from ground up, this new approach 
partitions the task of modeling user communication logic from the execution of such logic. A 
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similar practice of separating policy from mechanism has been popular in the operating systems 
community for several decades [LCC+75]. Further, UCM separates the control and coordination 
of user-level communication from the actual delivery of the communication by the underlying 
networks. Such separation of concerns results in a layered Unified Communication Architecture 
(UCA), which provides horizontal compartmentalization of communication tasks and system 
components that handle these tasks. Consequently, system components and communication 
protocols common to different applications can be identified, shared and called upon to serve 
different user communication needs without being hard coded into a stovepipe system. The 
resulting communication architecture is independent of the underlying networking infrastructure, 
the device technology and the applications as illustrated by Figure 1 (b). 
 
UCM supports modeling of the user communication logic with the user communication schema, 
which describes user communication needs on demand (hence is user-centric). Such a user 
communication schema2 is negotiated (among communicating parties) and transformed by an 
automated synthesis process into a communication control script, which in run-time controls and 
coordinates the user communication independent of the specific underlying network 
infrastructure and configuration. The automation of the synthesis process is achieved by reusing 
and composing available system components, which perform common communication tasks and 
can be accumulated and updated over time. The introduction of a Communication Virtual 
Machine (CVM) provides a uniform API, which abstracts the coordination of user-level 
communication from the actual delivery of the data by the underlying networks with varying 
protocols and configurations. Because of this separation of concerns, the behavior of user 
communication, dictated by the user communication schema, can be changed or reconfigured at 
run-time to accommodate the changing user communication needs. The concrete elements and 
process of UCM are discussed further in Section 3. 
 
We argue that UCM represents a promising approach for rapid development and deployment of 
communication applications in a way that accommodates the rapid advances of networking 
technologies and infrastructure as well as the varying and growing end-user communication 
needs. It addresses many of the critical issues raised at the beginning of this section regarding the 
current stovepipe development approach. Furthermore, the use of UCM raises a number of 
interesting research issues, which will be discussed in the ensuing sections of this paper. 
 
2. A Motivating Example 
 

Let us consider the following scenario: Eric is a general practitioner who is examining one of his 
patients. He observes an unusual symptom, so he decides to call and consult with Mary, who is a 
specialist. During their conversation, Mary calls John, who is a researcher working in a medical 
laboratory, and asks him to join the conversation. This turns the two-way call into a conference 

                                                 
2 As discussed in Section 3, common communication tasks can be packaged into predefined communication services 
without the user being aware of the model. 
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call. Eric then decides to share parts of his patient’s record with Mary and John and show them 
some related images. This turns the voice conference into a multimedia telemedicine application. 
Note that the sharing of the patient’s record must adhere to the health data exchange policies 
[DoH96]. 
 
Clearly, carrying out the above scenario is possible with today’s technology. Referring to Figure 
1 (a), Eric would first place a phone call to reach Mary. Next, assuming Mary’s phone has 
conferencing capability, she switches to a conference call to include John in a three-way 
conversation. Otherwise, they have to use a conferencing application such as Yahoo! Messenger. 
Eric would then use a separate custom developed system for sharing the patient’s record with 
Mary and John. In case either Mary or John does not have access to such a custom application, 
Eric may need to send the images via email or a file sharing application. In general, although 
such scenarios can be accommodated with today’s technology, the users would either have to 
jump between different tools (e.g., phone, email, file-sharing, messenger application), or to rely 
on custom-developed applications, which are typically expensive and rigidly designed. 
 
In the next section, we show how such communication needs can be satisfied on-demand and 
with ease under the UCM approach. 
 
3. Unified Communication Model (UCM) 
 

The Unified Communication Model is a novel approach for rapidly developing communication 
applications through specification and generation. In this section, we present a possible 
architecture for UCM that provides a separation of concerns in the development of 
communication applications. It is noteworthy that a different architecture may implement the 
UCM approach equally well. 
  
There are four major tasks that are required to be performed to serve the users’ communication 
needs:  

(1) Conceive and describe the users’ communication needs or requirements. In the case of a 
voice phone call, it is for the user to pick up the phone and dial a number. In the case of a 
multimedia conferencing, it is to specify who the participants of the conference are and 
what kind of media or data are allowed to be exchanged. In the case of the telemedicine 
application outlined in Section 2, it also includes the policy that governs who can access 
which part(s) of the patient’s medical record.  

(2) Transform the above user communication requirements into a sequence of commands or 
actions, which when executed will control and coordinate the flow of user 
communication as dictated by the requirements.  

(3) Provide a platform or environment in which the said sequence of commands can be 
executed to regulate the flow of communication. 

(4) Deliver the media or data among the communicating parties through a communication 
network or networks. 
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Today, these four major tasks are typically hard coded in a given communication system or 
application, which also predefines the way a user or users will use the system. Such a stovepipe 
approach of design is the root cause of the problems discussed in Section 1. 
 
At the heart of UCM is a conceptual layered architecture, the Unified Communication 
Architecture (UCA), which provides a clean separation and compartmentalization of these major 
concerns [BMR+98], as illustrated in Figure 2. UCA divides communication concerns into four 
major levels of abstraction, which contribute toward implementing the communication services. 
The four levels of abstraction correspond to the key components of UCA:  
 

(1) user communication interface, which allows users to declaratively specify their 
communication needs and requirements in the form of a user communication schema;  

(2) communication schema synthesizer, which provides the process and techniques to 
automatically transform and synthesize a user communication schema to an executable 
form called communication control script;  

(3) communication engine, which executes the communication control script to manage and 
coordinate the delivery of communication services to users, independent of the 
underlying network configuration; and  

(4) communication virtual machine (CVM), which provides a network-independent API to 
the communication engine and works with the underlying network protocols to deliver 
the communication services. 

 
User (Initiator) User (Participant) 

 
 

Figure 2: Scope of UCM and its layered architecture. 
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This layered division of responsibility is reminiscent of the OSI layered stack model for network 
communication [DZ95]. Each layer has a specific role in the stack and communicates logically 
with the peer-layer at a remote site during communication sessions. Each layer builds on the 
upper layers in the stack to finally realize the user-specified communication schema. Briefly, the 
user communication interface communicates visual changes to a schema instance to its peer 
layer; the communication schema synthesizer negotiates and communicates the schema with its 
peer layer; the communication engine communicates the actual communication logic defined in 
the schema instance with its peer; while the communication virtual machine handles session 
communication with its peer. We now explore the responsibilities of each layer in slightly more 
detail. A prototypical design of these layers, exposing a greater level of detail, is presented in 
Section 4. 
 
User Communication Interface. The user communication interface is responsible, first, for 
providing users with the ability to define their communication schema, which describes the role 
of communicating parties and the overall user communication logic (e.g., constraints, rules, and 
patterns). For this purpose, a communication schema modeling language is needed. Such a 
language should be simple and intuitive enough to support on-the-fly communication modeling 
without requiring knowledge of underlying networks and yet rich enough to describe a variety of 
communication logic. The language design poses many interesting research issues in its own 
right. We do not expect an end-user (e.g., Eric in the scenario) to create a complex user 
communication schema (e.g., the telemedicine schema), which is the job of domain experts or 
service providers. Second, the interface is responsible to check the validity and consistency of 
the communication schema as defined by the modeling language. Third, it must provide the user 
with a simple way of communicating and exchanging both media and data with other users (e.g., 
through a graphical user interface) as well as display the current status of the communication to 
the user. 
 
Communication Schema Synthesizer. The communication schema synthesizer performs 
several tasks. The first is schema negotiation among participants of the communication to ensure 
that all parties agree to a consistent schema. The schema negotiation process must be completed 
before the start of the actual communication. Second, the communication schema synthesizer 
automatically transforms the declarative user communication schema to an executable 
communication control script. This script represents the network-independent control logic for 
user-level communication sessions specified in the user communication schema and it defines 
and coordinates the delivery of services to users. It is critical that the communication schema 
synthesizer be fully automated and free of human intervention. To address the issue of 
automation, the communication schema synthesizer uses a repository containing pre-defined 
components for common as well as domain-specific communication. The communication 
schema synthesizer puts together the communication control script by appropriately combining 
pre-defined components (e.g., for communication session establishment) based on the user 
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communication schema. Consequently, the capability of a schema synthesizer can be built up 
incrementally as the “middleware” components are developed. Third, the communication schema 
synthesizer is responsible for deploying (and possibly re-deploying) the control script to the 
communication engine. The design of automated and efficient synthesis techniques and the 
middleware components represents another class of interesting research issues. 
 
Communication Engine. The communication engine is responsible, first, for executing the 
communication control script.  Based on the communication logic in the control script, the 
communication engine invokes the common services provided by the CVM layer (described 
next) to perform several tasks including: (1) session creation, (2) adding a participant to the 
session, (3) adding a media to the session, (4) transmitting media, and (5) adjusting media QOS.  
Second, the communication engine is responsible for updating the user communication schema 
as a result of changes made by other parties in a communication session or dynamic network 
conditions.  These changes are received in the form of callbacks from the CVM layer that may 
include: (1) session invitation, (2) receive media, (3) end media transmission, and (4) connection 
failed. Third, the communication engine is responsible for providing a safe state transition from a 
running communication control script to an updated control script that reflects either changed 
user communication needs or CVM callbacks. For example, when an end-user changes the 
communication schema, e.g. change a person-to-person call to a multi-way conference, in the 
middle of a session, the communication schema synthesizer will generate a new communication 
control script that reflects the user changes. Once the new communication control script is 
deployed to the communication engine, it should transfer the state of the old control script to the 
new one seamlessly and safely [Ven02]. 
 
Communication Virtual Machine (CVM). The CVM is responsible, first, for providing a 
unified high-level network-independent communication service (e.g., establish audio 
communication and then transfer a file to the session participants) to diverse communication 
applications. Second, the CVM is responsible for utilizing and coordinating the heterogeneous 
low-level networking functions (e.g., conduct signaling, encoding/decoding, and 
transmitting/receiving) provided by the underlying networks, systems, and libraries. Third, the 
CVM must exhibit a self-managing behavior that can respond to dynamics of the underlying 
device and network infrastructure. In essence, the CVM provides a uniform horizontal 
abstraction that separates and isolates the complexities of network-level communication control 
and media delivery from the complexity of user-oriented communication logic. Given the variety 
and complexity of current network infrastructure and configurations, the concept of CVM offers 
a novel approach to simplify application development and interoperation, and introduces many 
important research issues, e.g. self-management, dynamic configuration, definition of application 
independent communication API, software framework for hiding network heterogeneity, etc. 
 
Together, the above layers cooperate to fulfill the promise of UCM − that of generating 
communication applications that are reconfigurable, adaptive, and flexible based only on a high-
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level description of communication requirements.  A summary of the high-level responsibilities 
assigned to each of these layers is presented in Table 1.  
 

Table 1: A summary of the high-level tasks carried out at each layer of UCM. 
 

UCA Layers Tasks 
User 
Communication 
Interface 

1. Create/modify the user communication schema based on user input. 
2. Check the correctness of the user communication schema.  
3. Handle user requirements of communication at run-time. 

Communication 
Schema 
Synthesizer 

1. Ensure the consistency of user communication schema through schema negotiation.  
2. Perform schema synthesis to obtain the communication control script. 
3. Deploy the script to the communication engine. 

Communication  
Engine 

1.  Execute the communication control script. 
2.  Update the user communication schema based on changes made by other participants. 
3.  Perform a safe state transition from an older schema to an updated one. 

Communication 
Virtual 
Machine 

1. Provide a high-level communication API, which is independent of the platform. 
2. Utilize and coordinate the available, low-level network and hardware services.   
3. Provide self-management in response to dynamics of the underlying infrastructure. 

 
The UCM approach shares some common traits with the concept of model-driven software 
development [Bet04] which has found only limited success to date. In contrast to general-
purpose, model-driven development, automatic generation of communication services is feasible 
in UCM for two reasons. First, UCM is restricted to the scope of communication services and 
does not bear the complexity of generating general-purpose applications. The complexity of 
communication logic can be carefully regulated through the design of the schema modeling 
language. Second, UCM utilizes communication middleware components (e.g., those of ACE 
[SH02]) and server-side architectures (e.g. [BCP+04]) as building blocks to generate 
communication applications. Such existing components encapsulate procedures, patterns, and 
algorithms governing basic communication services (e.g., session establishment of person-to-
person voice call, transmission of an image file, and real-time video streaming), which are well 
defined and well understood. The role of UCM is limited only to the identification and 
composition of such components [MSK+04]. 
 
4. Prototypical Design and Implementation 
 

This section discusses a prototypical design and implementation of UCM, which closely follows 
UCA. In this prototype, we identify one component corresponding to each layer of the UCA. We 
adopted web services technologies as the interfacing mechanism between these components for 
two reasons: (1) using web services provides the flexibility of using different programming 
languages for implementing the four components; and (2) it allows easy elimination of some 
components for resource-restricted devices (e.g., PDAs) by following a client-server architecture, 
that is, we may decide to deploy only a subset of components to the device and deploy the rest on 
a remote server/proxy.  
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User Communication Interface Prototype Component. We define a user communication 
schema using three representations, collectively called communication schema modeling 
language, which map to or complement each other as explained below. These representations 
use the following languages respectively: (1) Graphical Language (GL), which is a high level 
iconic language for describing the elements and their composition in a user communication 
schema, (2) Modeling Language (ML), which is based on the Entity-Relationship model 
[Chen76] and formally describes the relationships and interactions between participating entities, 
and (3) Scripting Language (SL), which is an XML-based language used to describe flow 
patterns in user communication.   
 
The ML represents a superset of the information in the GL model. Additional information may 
include the devices that each party uses and their capabilities. The ML model uses entities and 
relationships. Entities are “static” components such as devices, persons, and data types. 
Relationships associate the entities in a communication session, such as “attached” and 
“connection”. The SL model may consist of pieces of code, written by a domain-expert 
developer, describing domain-specific (as opposed to generic) communication logic associated 
with communication components (the relationships of ML). These are then used by the 
communication schema synthesizer to generate the communication control script (also 
represented in SL). We chose BPEL [IBM03] as the SL since BPEL is widely accepted by the 
industry and is suitable for describing the user communication logic using its rich flow 
structures. The user communication interface was developed in Java.   
 
Figure 3 shows the three representations (models) for the simple conference call in the scenario 
described in Section 2. Mary loads the GL model from the schema repository for a conference 
call. For this, Mary first selects the Application Template – “Simple communication”, next clicks 
on the Application Object – “Connect”, and finally selects the two participants (Eric and John) 
from her Address Book.  The resources used in the connection are selected from the Media 
Library – “Audio” (shown as the headset), and the two JPG files (“Image1.jpg” and 
“Image2.jpg”), are dragged into the Connection Box by Eric.  
 
As mentioned before, the user communication interface is also responsible for checking the 
correctness of the schema. This process involves checking the syntax and semantics of the user 
communication schema as represented in the SL model. In our prototype, we provide the syntax 
check using an XML Schema defined for our SL language. However, we do not yet provide a 
semantic check. In case a schema validation fails, an error message is conveyed to the user 
pointing out the error in the SL model. In our prototype, we assume that the origin of all schemas 
that are synthesized by UCM is the user communication interface; therefore, there is no need to 
check the schema for correctness in the communication schema synthesizer.   
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Figure 3: Example of the three representation models (GL, ML, and SL) in our prototype. 
 
Communication Schema Synthesizer Prototype Component. The role of the communication 
schema synthesizer is to convert the user schema in SL representation to an executable 
communication control script (also in SL). To do so, we identify the following tasks to be 
performed by the communication schema synthesizer in sequence. First, it establishes a default 
communication session with the other participants for schema negotiation. Second, it performs 
schema negotiation to obtain the final schema in SL notation. This does not necessarily mean 
that the final schema for all the participants in a communication session are equivalent as each 
participant may have a different view of the schema (e.g., Eric may be consulting with another 
specialist at the same time and Mary may not be aware of such communication). Third, it splits 
the SL representation into the basic logic components, which are the relationships. For each 
relationship, the communication schema synthesizer retrieves the corresponding SL code from 
the communication schema repository and populates them with the parameters defined in the 
schema instance. It then populates the parameterized SL code pieces with additional device 
capability parameters. Finally, it glues the SL code pieces to obtain the communication control 
script.  
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Our prototype for the communication schema synthesizer does not yet perform all the tasks 
mentioned above. Currently, it takes the SL representation of the communication schema as 
input to synthesize the communication control script from pieces of BPEL [IBM03] code created 
using ActiveWebflow.   
 
Communication Engine Prototype Component. The main function of the communication 
engine is to execute the communication control script, which interacts with the communication 
schema synthesizer and the CVM.  For our prototype, since BPEL is selected as the SL, we 
selected the Active BPEL engine, which is a BPEL engine by Active Endpoints as our execution 
engine. The Active BPEL engine is where the synthesized BPEL processes representing the 
communication schema are deployed.  The deployed processes communicate with the CVM 
through a well-defined CVM interface. Note that safe state transition capability in 
communication engine is not yet available in this version of the prototype. 
 
Communication Virtual Machine (CVM) Prototype Component. We define the internal 
architecture of the CVM based on the concept of session. A session is a communication process 
that involves a number of participants, who can be added or removed dynamically. Each 
participant of a session can multicast various media to all the other participants. A prototypical 
CVM architecture is outlined in Figure 4, which consists of three major aspects: the Unified 
CVM API is an application-independent and network-independent interface to the upper layer, 
through which high-level communication tasks can be specified; the CVM Core translates a high-
level communication task into a series of operations that control and coordinate the underlying 
networking facilities; the Networking Interface to the Underlying IP Networks encapsulates and 
abstracts the heterogeneity of the network protocols and their interfaces. The CVM core is 
complex and further includes modules such as Session Management, Participant Management, 
Media Management, and QoS and Self-Management. The current prototype implementation 
utilizes the JAIN SIP and the JMF library, and supports SIP and RTP as underlying networking 
protocols.  
 
5. Future Directions 
 

UCM introduces a promising approach for rapidly conceiving, synthesizing and delivering 
communications services across different application domains on-demand. It is user-centric and 
dynamically configurable. It is network and device independent. These features make the model 
highly flexible and adaptive. The UCM approach also introduces a wide range of interesting and 
exciting new research issues, a subset of which are discussed in this paper. The results presented 
in this paper represent only an early study of the model and the approach it represents.  
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Figure 4: The internal architecture of CVM. 
 
To capture the full potential of UCM, several open research issues need to be addressed. In 
particular, the scope of automated synthesis, though promising, still requires extensive study. We 
were successful in automating the generation of simple communication applications. However, 
the synthesis of applications with more complex business logic needs further investigation. A 
more powerful synthesis mechanism depends on a well designed communication schema 
modeling language. The language samples presented in this paper represents only its initial form. 
In addition, we are using an off-the-shelf Active BPEL engine as the communication engine in 
our prototype which does not address safe transition of communication state. We plan to address 
these issues in the near future. 
 
To widen the scope of UCM, security mechanisms need to be incorporated that can provide 
privacy, authentication and/or access control for session initiation, authorization control in 
accessing resources, and data transfer encryption. Further, a set of quantitative measures is 
essential to monitor quality of service and to ensure the reliability of the overall system and each 
communication session. For instance, a strategy to mitigate the impact of the unreliable 
underlying network will involve a smart combination of real-time and offline communication. 
 
We believe that resolving these challenging issues will make UCM an effective approach for 
developing the next generation of communication applications. 
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