

A Unified Architectural Model for On-Demand User-Centric Communications

Yi Deng, S. Masoud Sadjadi, Peter Clarke, Chi Zhang,
Vagelis Hristidis, Raju Rangaswami, and Nagarajan Prabakar

Technical Report: FIU-SCIS-2005-09

School of Computing and Information Sciences
Florida International University

Abstract:

The rapid growth of networking technologies has drastically changed the way we communicate
and enabled a wide range of communication applications. However, these applications have been
conceived, designed, and developed separately with little or no connection to each other,
resulting in a fragmented and incompatible set of technologies and products. Building new
communication applications requires a lengthy and costly development cycle, which severely
limits the pace of innovation. Current applications are also typically incapable of responding to
changes in user communication needs as well as changing network infrastructure and device
technology. In this article, we address these issues and present the Unified Communication
Model (UCM), a new and user-centric approach for conceiving, generating, and delivering
communication applications on-demand. We also introduce a prototype design and
implementation of UCM and discuss future research directions toward realizing next generation
communication applications.

1. Introduction

The convergence of data, voice, and multimedia communication over digital networks coupled
with the continuous improvement in network capacity and reliability has enabled a wide range of
communication applications1. Examples range from general-purpose communication
applications such as a simple phone call, conference call, video conferencing, and instant
messaging to more specialized applications such as disaster management and telemedicine. It is
likely that the pace of innovation of new communication applications will accelerate further.
However, the lengthy, costly, and inflexible development cycle for new applications hinders the
realization of this vision. Current communication systems continue to be conceived, designed,
and developed separately with little or no connection to each other. These applications are also
typically incapable of accommodating changes in end-user communication needs, the dynamics
of the underlying network, and new device and network technologies, without costly
development cycle [Ker05].

The root cause to the above problems is that there is no common model, architecture, or

1 We use the term “communication application” to refer to communication systems or tools targeted for end-users,
ranging from systems supporting voice calls to domain specific systems supporting telemedicine.

 1

http://www.cis.fiu.edu/cgi-bin/portal/index.pl?id=2060

systematic method of design for developing communication applications that are reconfigurable
and adaptive. The stovepipe development of current systems dictates that they cannot promptly
respond to the varying and changing needs of their end-users or to the changing dynamics of the
underlying network or devices. These issues force the end-users to accommodate the limitations
of technology and move from one tool to another to get their job done, rather than to adapt the
tools to suit the users’ needs. Figure 1 (a) illustrates the fragmented set of technologies and
products that are built directly on top of low-level networking protocols and technologies as a
result of the stovepipe development approach.

(a) Current approach using stovepipe architecture.

(b) Our new approach using a unified layered architecture.

Figure 1: Architecture of communication applications: (a) current approach, (b) our new approach.

In this paper, we present the Unified Communication Model (UCM) that addresses the above
problems. As opposed to the stovepipe development, UCM introduces a common architecture
across different communication applications, and a new method for conceiving, generating and
delivering a wide range of communication services to end-users based on this architecture.
Rather than developing communication applications from ground up, this new approach
partitions the task of modeling user communication logic from the execution of such logic. A

IP Telepho ny

Services

PSTN Wireless
LAN InternetInternet2 Ad Hoc

Network
Cellular
Network

Enterprise
Network

H.323RTSP SCTP RTP/RTCP HTTP SIPSCP

Phone
Call e

Call App. Conferenc

Conferencing
Services

 Conferencing
Video

Video Conf.
Services

Instant
Messaging

Messaging
Services

Distance
Learning

Dist. Learning
Services

 Disaster
Management

Disaster Mg t. m
Services

Telemedicine
Application

Telemedicine
Services

Disaster
Management

Unified Communication Architecture (UCA)

PSTN Wireless
LAN InternetInternet2 Ad Hoc

Network
Cellular
Network

Enterprise
Network

H.323RTSP SCTP RTP/RTCP HTTP SIPSCP

Phone
Call Conference Video Instant Distance

Call App. Conferencing Messaging Learning
Telemedicine
Application

 2

similar practice of separating policy from mechanism has been popular in the operating systems
community for several decades [LCC+75]. Further, UCM separates the control and coordination
of user-level communication from the actual delivery of the communication by the underlying
networks. Such separation of concerns results in a layered Unified Communication Architecture
(UCA), which provides horizontal compartmentalization of communication tasks and system
components that handle these tasks. Consequently, system components and communication
protocols common to different applications can be identified, shared and called upon to serve
different user communication needs without being hard coded into a stovepipe system. The
resulting communication architecture is independent of the underlying networking infrastructure,
the device technology and the applications as illustrated by Figure 1 (b).

UCM supports modeling of the user communication logic with the user communication schema,
which describes user communication needs on demand (hence is user-centric). Such a user
communication schema2 is negotiated (among communicating parties) and transformed by an
automated synthesis process into a communication control script, which in run-time controls and
coordinates the user communication independent of the specific underlying network
infrastructure and configuration. The automation of the synthesis process is achieved by reusing
and composing available system components, which perform common communication tasks and
can be accumulated and updated over time. The introduction of a Communication Virtual
Machine (CVM) provides a uniform API, which abstracts the coordination of user-level
communication from the actual delivery of the data by the underlying networks with varying
protocols and configurations. Because of this separation of concerns, the behavior of user
communication, dictated by the user communication schema, can be changed or reconfigured at
run-time to accommodate the changing user communication needs. The concrete elements and
process of UCM are discussed further in Section 3.

We argue that UCM represents a promising approach for rapid development and deployment of
communication applications in a way that accommodates the rapid advances of networking
technologies and infrastructure as well as the varying and growing end-user communication
needs. It addresses many of the critical issues raised at the beginning of this section regarding the
current stovepipe development approach. Furthermore, the use of UCM raises a number of
interesting research issues, which will be discussed in the ensuing sections of this paper.

2. A Motivating Example

Let us consider the following scenario: Eric is a general practitioner who is examining one of his
patients. He observes an unusual symptom, so he decides to call and consult with Mary, who is a
specialist. During their conversation, Mary calls John, who is a researcher working in a medical
laboratory, and asks him to join the conversation. This turns the two-way call into a conference

2 As discussed in Section 3, common communication tasks can be packaged into predefined communication services
without the user being aware of the model.

 3

call. Eric then decides to share parts of his patient’s record with Mary and John and show them
some related images. This turns the voice conference into a multimedia telemedicine application.
Note that the sharing of the patient’s record must adhere to the health data exchange policies
[DoH96].

Clearly, carrying out the above scenario is possible with today’s technology. Referring to Figure
1 (a), Eric would first place a phone call to reach Mary. Next, assuming Mary’s phone has
conferencing capability, she switches to a conference call to include John in a three-way
conversation. Otherwise, they have to use a conferencing application such as Yahoo! Messenger.
Eric would then use a separate custom developed system for sharing the patient’s record with
Mary and John. In case either Mary or John does not have access to such a custom application,
Eric may need to send the images via email or a file sharing application. In general, although
such scenarios can be accommodated with today’s technology, the users would either have to
jump between different tools (e.g., phone, email, file-sharing, messenger application), or to rely
on custom-developed applications, which are typically expensive and rigidly designed.

In the next section, we show how such communication needs can be satisfied on-demand and
with ease under the UCM approach.

3. Unified Communication Model (UCM)

The Unified Communication Model is a novel approach for rapidly developing communication
applications through specification and generation. In this section, we present a possible
architecture for UCM that provides a separation of concerns in the development of
communication applications. It is noteworthy that a different architecture may implement the
UCM approach equally well.

There are four major tasks that are required to be performed to serve the users’ communication
needs:

(1) Conceive and describe the users’ communication needs or requirements. In the case of a
voice phone call, it is for the user to pick up the phone and dial a number. In the case of a
multimedia conferencing, it is to specify who the participants of the conference are and
what kind of media or data are allowed to be exchanged. In the case of the telemedicine
application outlined in Section 2, it also includes the policy that governs who can access
which part(s) of the patient’s medical record.

(2) Transform the above user communication requirements into a sequence of commands or
actions, which when executed will control and coordinate the flow of user
communication as dictated by the requirements.

(3) Provide a platform or environment in which the said sequence of commands can be
executed to regulate the flow of communication.

(4) Deliver the media or data among the communicating parties through a communication
network or networks.

 4

Today, these four major tasks are typically hard coded in a given communication system or
application, which also predefines the way a user or users will use the system. Such a stovepipe
approach of design is the root cause of the problems discussed in Section 1.

At the heart of UCM is a conceptual layered architecture, the Unified Communication
Architecture (UCA), which provides a clean separation and compartmentalization of these major
concerns [BMR+98], as illustrated in Figure 2. UCA divides communication concerns into four
major levels of abstraction, which contribute toward implementing the communication services.
The four levels of abstraction correspond to the key components of UCA:

(1) user communication interface, which allows users to declaratively specify their
communication needs and requirements in the form of a user communication schema;

(2) communication schema synthesizer, which provides the process and techniques to
automatically transform and synthesize a user communication schema to an executable
form called communication control script;

(3) communication engine, which executes the communication control script to manage and
coordinate the delivery of communication services to users, independent of the
underlying network configuration; and

(4) communication virtual machine (CVM), which provides a network-independent API to
the communication engine and works with the underlying network protocols to deliver
the communication services.

User (Initiator) User (Participant)

Figure 2: Scope of UCM and its layered architecture.

UCA UCA
Visual Communication

Comm. Schema Synthesizer

User Communication Interface

Communication Engine

Communication Virtual Machine

Communication Network Communication Network

Schema Communication

Logic Communication

Session Communication

User Communication Interface

Comm. Schema Synthesizer

Communication Engine

Communication Virtual Machine

Legend
control and data flow virtual communication

 5

This layered division of responsibility is reminiscent of the OSI layered stack model for network
communication [DZ95]. Each layer has a specific role in the stack and communicates logically
with the peer-layer at a remote site during communication sessions. Each layer builds on the
upper layers in the stack to finally realize the user-specified communication schema. Briefly, the
user communication interface communicates visual changes to a schema instance to its peer
layer; the communication schema synthesizer negotiates and communicates the schema with its
peer layer; the communication engine communicates the actual communication logic defined in
the schema instance with its peer; while the communication virtual machine handles session
communication with its peer. We now explore the responsibilities of each layer in slightly more
detail. A prototypical design of these layers, exposing a greater level of detail, is presented in
Section 4.

User Communication Interface. The user communication interface is responsible, first, for
providing users with the ability to define their communication schema, which describes the role
of communicating parties and the overall user communication logic (e.g., constraints, rules, and
patterns). For this purpose, a communication schema modeling language is needed. Such a
language should be simple and intuitive enough to support on-the-fly communication modeling
without requiring knowledge of underlying networks and yet rich enough to describe a variety of
communication logic. The language design poses many interesting research issues in its own
right. We do not expect an end-user (e.g., Eric in the scenario) to create a complex user
communication schema (e.g., the telemedicine schema), which is the job of domain experts or
service providers. Second, the interface is responsible to check the validity and consistency of
the communication schema as defined by the modeling language. Third, it must provide the user
with a simple way of communicating and exchanging both media and data with other users (e.g.,
through a graphical user interface) as well as display the current status of the communication to
the user.

Communication Schema Synthesizer. The communication schema synthesizer performs
several tasks. The first is schema negotiation among participants of the communication to ensure
that all parties agree to a consistent schema. The schema negotiation process must be completed
before the start of the actual communication. Second, the communication schema synthesizer
automatically transforms the declarative user communication schema to an executable
communication control script. This script represents the network-independent control logic for
user-level communication sessions specified in the user communication schema and it defines
and coordinates the delivery of services to users. It is critical that the communication schema
synthesizer be fully automated and free of human intervention. To address the issue of
automation, the communication schema synthesizer uses a repository containing pre-defined
components for common as well as domain-specific communication. The communication
schema synthesizer puts together the communication control script by appropriately combining
pre-defined components (e.g., for communication session establishment) based on the user

 6

communication schema. Consequently, the capability of a schema synthesizer can be built up
incrementally as the “middleware” components are developed. Third, the communication schema
synthesizer is responsible for deploying (and possibly re-deploying) the control script to the
communication engine. The design of automated and efficient synthesis techniques and the
middleware components represents another class of interesting research issues.

Communication Engine. The communication engine is responsible, first, for executing the
communication control script. Based on the communication logic in the control script, the
communication engine invokes the common services provided by the CVM layer (described
next) to perform several tasks including: (1) session creation, (2) adding a participant to the
session, (3) adding a media to the session, (4) transmitting media, and (5) adjusting media QOS.
Second, the communication engine is responsible for updating the user communication schema
as a result of changes made by other parties in a communication session or dynamic network
conditions. These changes are received in the form of callbacks from the CVM layer that may
include: (1) session invitation, (2) receive media, (3) end media transmission, and (4) connection
failed. Third, the communication engine is responsible for providing a safe state transition from a
running communication control script to an updated control script that reflects either changed
user communication needs or CVM callbacks. For example, when an end-user changes the
communication schema, e.g. change a person-to-person call to a multi-way conference, in the
middle of a session, the communication schema synthesizer will generate a new communication
control script that reflects the user changes. Once the new communication control script is
deployed to the communication engine, it should transfer the state of the old control script to the
new one seamlessly and safely [Ven02].

Communication Virtual Machine (CVM). The CVM is responsible, first, for providing a
unified high-level network-independent communication service (e.g., establish audio
communication and then transfer a file to the session participants) to diverse communication
applications. Second, the CVM is responsible for utilizing and coordinating the heterogeneous
low-level networking functions (e.g., conduct signaling, encoding/decoding, and
transmitting/receiving) provided by the underlying networks, systems, and libraries. Third, the
CVM must exhibit a self-managing behavior that can respond to dynamics of the underlying
device and network infrastructure. In essence, the CVM provides a uniform horizontal
abstraction that separates and isolates the complexities of network-level communication control
and media delivery from the complexity of user-oriented communication logic. Given the variety
and complexity of current network infrastructure and configurations, the concept of CVM offers
a novel approach to simplify application development and interoperation, and introduces many
important research issues, e.g. self-management, dynamic configuration, definition of application
independent communication API, software framework for hiding network heterogeneity, etc.

Together, the above layers cooperate to fulfill the promise of UCM − that of generating
communication applications that are reconfigurable, adaptive, and flexible based only on a high-

 7

level description of communication requirements. A summary of the high-level responsibilities
assigned to each of these layers is presented in Table 1.

Table 1: A summary of the high-level tasks carried out at each layer of UCM.

UCA Layers Tasks
User
Communication
Interface

1. Create/modify the user communication schema based on user input.
2. Check the correctness of the user communication schema.
3. Handle user requirements of communication at run-time.

Communication
Schema
Synthesizer

1. Ensure the consistency of user communication schema through schema negotiation.
2. Perform schema synthesis to obtain the communication control script.
3. Deploy the script to the communication engine.

Communication
Engine

1. Execute the communication control script.
2. Update the user communication schema based on changes made by other participants.
3. Perform a safe state transition from an older schema to an updated one.

Communication
Virtual
Machine

1. Provide a high-level communication API, which is independent of the platform.
2. Utilize and coordinate the available, low-level network and hardware services.
3. Provide self-management in response to dynamics of the underlying infrastructure.

The UCM approach shares some common traits with the concept of model-driven software
development [Bet04] which has found only limited success to date. In contrast to general-
purpose, model-driven development, automatic generation of communication services is feasible
in UCM for two reasons. First, UCM is restricted to the scope of communication services and
does not bear the complexity of generating general-purpose applications. The complexity of
communication logic can be carefully regulated through the design of the schema modeling
language. Second, UCM utilizes communication middleware components (e.g., those of ACE
[SH02]) and server-side architectures (e.g. [BCP+04]) as building blocks to generate
communication applications. Such existing components encapsulate procedures, patterns, and
algorithms governing basic communication services (e.g., session establishment of person-to-
person voice call, transmission of an image file, and real-time video streaming), which are well
defined and well understood. The role of UCM is limited only to the identification and
composition of such components [MSK+04].

4. Prototypical Design and Implementation

This section discusses a prototypical design and implementation of UCM, which closely follows
UCA. In this prototype, we identify one component corresponding to each layer of the UCA. We
adopted web services technologies as the interfacing mechanism between these components for
two reasons: (1) using web services provides the flexibility of using different programming
languages for implementing the four components; and (2) it allows easy elimination of some
components for resource-restricted devices (e.g., PDAs) by following a client-server architecture,
that is, we may decide to deploy only a subset of components to the device and deploy the rest on
a remote server/proxy.

 8

User Communication Interface Prototype Component. We define a user communication
schema using three representations, collectively called communication schema modeling
language, which map to or complement each other as explained below. These representations
use the following languages respectively: (1) Graphical Language (GL), which is a high level
iconic language for describing the elements and their composition in a user communication
schema, (2) Modeling Language (ML), which is based on the Entity-Relationship model
[Chen76] and formally describes the relationships and interactions between participating entities,
and (3) Scripting Language (SL), which is an XML-based language used to describe flow
patterns in user communication.

The ML represents a superset of the information in the GL model. Additional information may
include the devices that each party uses and their capabilities. The ML model uses entities and
relationships. Entities are “static” components such as devices, persons, and data types.
Relationships associate the entities in a communication session, such as “attached” and
“connection”. The SL model may consist of pieces of code, written by a domain-expert
developer, describing domain-specific (as opposed to generic) communication logic associated
with communication components (the relationships of ML). These are then used by the
communication schema synthesizer to generate the communication control script (also
represented in SL). We chose BPEL [IBM03] as the SL since BPEL is widely accepted by the
industry and is suitable for describing the user communication logic using its rich flow
structures. The user communication interface was developed in Java.

Figure 3 shows the three representations (models) for the simple conference call in the scenario
described in Section 2. Mary loads the GL model from the schema repository for a conference
call. For this, Mary first selects the Application Template – “Simple communication”, next clicks
on the Application Object – “Connect”, and finally selects the two participants (Eric and John)
from her Address Book. The resources used in the connection are selected from the Media
Library – “Audio” (shown as the headset), and the two JPG files (“Image1.jpg” and
“Image2.jpg”), are dragged into the Connection Box by Eric.

As mentioned before, the user communication interface is also responsible for checking the
correctness of the schema. This process involves checking the syntax and semantics of the user
communication schema as represented in the SL model. In our prototype, we provide the syntax
check using an XML Schema defined for our SL language. However, we do not yet provide a
semantic check. In case a schema validation fails, an error message is conveyed to the user
pointing out the error in the SL model. In our prototype, we assume that the origin of all schemas
that are synthesized by UCM is the user communication interface; therefore, there is no need to
check the schema for correctness in the communication schema synthesizer.

 9

Figure 3: Example of the three representation models (GL, ML, and SL) in our prototype.

Communication Schema Synthesizer Prototype Component. The role of the communication
schema synthesizer is to convert the user schema in SL representation to an executable
communication control script (also in SL). To do so, we identify the following tasks to be
performed by the communication schema synthesizer in sequence. First, it establishes a default
communication session with the other participants for schema negotiation. Second, it performs
schema negotiation to obtain the final schema in SL notation. This does not necessarily mean
that the final schema for all the participants in a communication session are equivalent as each
participant may have a different view of the schema (e.g., Eric may be consulting with another
specialist at the same time and Mary may not be aware of such communication). Third, it splits
the SL representation into the basic logic components, which are the relationships. For each
relationship, the communication schema synthesizer retrieves the corresponding SL code from
the communication schema repository and populates them with the parameters defined in the
schema instance. It then populates the parameterized SL code pieces with additional device
capability parameters. Finally, it glues the SL code pieces to obtain the communication control
script.

 10

Our prototype for the communication schema synthesizer does not yet perform all the tasks
mentioned above. Currently, it takes the SL representation of the communication schema as
input to synthesize the communication control script from pieces of BPEL [IBM03] code created
using ActiveWebflow.

Communication Engine Prototype Component. The main function of the communication
engine is to execute the communication control script, which interacts with the communication
schema synthesizer and the CVM. For our prototype, since BPEL is selected as the SL, we
selected the Active BPEL engine, which is a BPEL engine by Active Endpoints as our execution
engine. The Active BPEL engine is where the synthesized BPEL processes representing the
communication schema are deployed. The deployed processes communicate with the CVM
through a well-defined CVM interface. Note that safe state transition capability in
communication engine is not yet available in this version of the prototype.

Communication Virtual Machine (CVM) Prototype Component. We define the internal
architecture of the CVM based on the concept of session. A session is a communication process
that involves a number of participants, who can be added or removed dynamically. Each
participant of a session can multicast various media to all the other participants. A prototypical
CVM architecture is outlined in Figure 4, which consists of three major aspects: the Unified
CVM API is an application-independent and network-independent interface to the upper layer,
through which high-level communication tasks can be specified; the CVM Core translates a high-
level communication task into a series of operations that control and coordinate the underlying
networking facilities; the Networking Interface to the Underlying IP Networks encapsulates and
abstracts the heterogeneity of the network protocols and their interfaces. The CVM core is
complex and further includes modules such as Session Management, Participant Management,
Media Management, and QoS and Self-Management. The current prototype implementation
utilizes the JAIN SIP and the JMF library, and supports SIP and RTP as underlying networking
protocols.

5. Future Directions

UCM introduces a promising approach for rapidly conceiving, synthesizing and delivering
communications services across different application domains on-demand. It is user-centric and
dynamically configurable. It is network and device independent. These features make the model
highly flexible and adaptive. The UCM approach also introduces a wide range of interesting and
exciting new research issues, a subset of which are discussed in this paper. The results presented
in this paper represent only an early study of the model and the approach it represents.

 11

Figure 4: The internal architecture of CVM.

To capture the full potential of UCM, several open research issues need to be addressed. In
particular, the scope of automated synthesis, though promising, still requires extensive study. We
were successful in automating the generation of simple communication applications. However,
the synthesis of applications with more complex business logic needs further investigation. A
more powerful synthesis mechanism depends on a well designed communication schema
modeling language. The language samples presented in this paper represents only its initial form.
In addition, we are using an off-the-shelf Active BPEL engine as the communication engine in
our prototype which does not address safe transition of communication state. We plan to address
these issues in the near future.

To widen the scope of UCM, security mechanisms need to be incorporated that can provide
privacy, authentication and/or access control for session initiation, authorization control in
accessing resources, and data transfer encryption. Further, a set of quantitative measures is
essential to monitor quality of service and to ensure the reliability of the overall system and each
communication session. For instance, a strategy to mitigate the impact of the unreliable
underlying network will involve a smart combination of real-time and offline communication.

We believe that resolving these challenging issues will make UCM an effective approach for
developing the next generation of communication applications.

Signaling Protocols
(e.g. SIP)

Real-Time Protocols
(e.g. RTP)

Best Effort Prot cols o
(e.g. SCP)

TCP /UDP Sockets

Advanced
Features

Party
Management

CVM
Management

Session Management

QoS & Self-
Management

Media Processing & Transmission

Media
Management

CVM
CVM Unified Application Programming Interface

Networking Interface to the Underlying IP Networks

 12

Acknowledgements

This work was supported in part by the National Science Foundation under grant HRD-0317692.
We thank Eduardo Monteiro, Onyeka Ezenwoye, Weixiang Sun, and Yingbo Wang for their
participation in discussions and their contributions in the implementation of the UCM prototype.

References
 [BCP+04] Gregory W. Bond, Eric Cheung, K. Hal Purdy, Pamela Zave, and J. Christopher

Ramming, “An open architecture for next-generation telecommunication services”,
ACM Transactions on Internet Technology IV(1) pp:83-123, February 2004.

 [Bet04] Jorn Bettin, “Model-driven software development: An emerging paradigm for
 industrialised software asset development”, Technical report, SoftMetaWare, June
 2004.

[BMR+98] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal, “Pattern-Oriented Software Architecture: A System of Patterns”, Wiley, 1998.

[Che76] P. P. Chen, “The entity-relationship model: Toward a unified view of data”, ACM
Trans. Database Syst. 1, 1, 9–36, 1976.

[DoH96] Department of Health. Health Insurance Portability and Accountability Act
 (HIPPA) http://dchealth.dc.gov/hipaa/hipaaoverview.shtm (June 2005).

[DZ95] John D. Day and Hubert Zimmermann, “The OSI Reference Model”, Conformance
testing methodologies and architectures for OSI protocols, IEEE Computer Society
Press pp:38-44, 1995.

 [Ker05] David Krebs. “The Mobile Software Stack for Voice, Data , and Converged
Handheld Devices”, Mobile and Wireless Practice Venture Development
Corporation, April 2005.

[LCC+75] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf, “Policy/Mechanism
Separation in Hydra”, In Proceedings of the 5th ACM Symposium on Operating
Systems Principles (SOSP ’75), pages 132–140, University of Texas at Austin,
November 1975.

[MSK+04] Philip K. McKinley, Masoud Sadjadi, Eric P. Kasten, and Betty H. C. Cheng.
“Composing adaptive software”, IEEE Computer, pages 56-64, July 2004.

 [RSA78] R. L. Rivest, A. Shamir, L. Adleman, “A Method for Obtaining Digital Signatures
and Public-key Cryptosystems”, Communications of the ACM, 1978.

[SH02] Douglas C. Schmidt and Stephen D. Huston. “C++ Network Programming: Mastering
Complexity Using ACE and Patterns”, Addison-Wesley Longman, 2002.

 [Ven02] N. Venkatasubramanian, "Safe ‘Composability’ of Middleware Services", Comm.
ACM, June 2002, pp. 49-52.

 13

