
Self-Configuring User-Centric Communication Services

Andrew A. Allen, Sean Leslie, Yali Wu, Peter J. Clarke
School of Computing and Information Sciences

Florida International University
Miami, FL 33199, USA

email: {aalle004, slesl001, ywu001, clarkep}@cis.fiu.edu

Ricardo Tirado
Dept. of Computer Engineering

University of Puerto Rico
Mayaguez, P.R. 00681-9000
email: rtn23821@uprm.edu

Abstract

The functionality of communication applications, such
as instant messaging, has dramatically improved due to
market competition. The quest for the competitive edge has
resulted in the development of open platform APIs that al-
low communication applications to become building blocks,
or communication frameworks for more elaborate commu-
nication applications. The services available through these
different communication frameworks can however be quite
dissimilar, as revealed from a survey of some of these frame-
works.

In this paper we propose an architecture that utilizes
multiple communication frameworks and the autonomic
computing capability of self-configuration of these frame-
works. This architecture extends Network Communication
Broker (NCB) which is the layer of the Communication Vir-
tual Machine (CVM) that interacts with the underlying com-
munication networks. We provide a detailed design of the
proposed architecture and show how a communication sce-
nario can be realized using a prototype of the NCB.

1 Introduction

Designing and implementing collaborative multimedia
applications used to be a formidable challenge. Collabora-
tive multimedia application pioneers had little choice but to
custom-build most of the technology needed for their dis-
tributed multimedia applications [13]. Major strides have
been made over the last decade to improve the methodolo-
gies for the development of these applications, as well as
the availability of multimedia toolkits to support such de-
velopment.

The spectacular growth in popularity of the Web [1] has
also been marked with the increased utilization of mul-
timedia communication applications such as Skype [16],
Googletalk [5] and Windows Live Messenger [12], with
high user volumes leading to a rapid evolution in their func-

tions and quality. Many of these companies have in recent
years made their APIs available to allow third parties to ex-
tend and enhance their communication services, which es-
sentially become building blocks or communication frame-
works for more elaborate communication applications.

Deng et al. [3] proposed a new approach that sup-
ports the rapid conception, construction and realization of
new user-centric communication applications by exploit-
ing model-driven development. These are applications that
provide services to the user, offer operating simplicity, and
mask the complexity of the underlying technology [10].
The lowest layer of the CVM is the Network Communica-
tion Broker (NCB) [18] and it is responsible for encapsulat-
ing the networking complexity and heterogeneity of basic
multimedia and multi-party communication.

In this paper we survey several communication frame-
works to identify the services they provide. These commu-
nication frameworks include: NCB [18], Skype [16], Java
MSN Messenger Library (JML) [7] and GoogleTalk [5].
The results showed that no one communication framework
surveyed provides a complete package of communication
functions and features. For collaborative technologies like
CVM which utilizes the convergence of various multime-
dia communications that include voice, video and data, the
limitations of the individual communication frameworks are
too significant to be ignored. However, if the function that
the individual communication framework brings is valued,
it warrants inclusion. To this end we extend the NCB layer
of the CVM to include the use of multiple communication
frameworks using the paradigm of self-management in au-
tonomic computing.

The major contributions of this paper are as follows:

1. Applying a novel approach to self-configuring media
services with multiple communication frameworks.

2. Providing a detailed design for the self-configuration
by extending the NCB architecture.

3. Showing the feasibility of the extended NCB by de-
veloping a prototype and realizing a communication
scenario.

Third International Conference on Systems

978-0-7695-3105-2/08 $25.00 © 2008 IEEE
DOI 10.1109/ICONS.2008.23

265

Third International Conference on Systems

978-0-7695-3105-2/08 $25.00 © 2008 IEEE
DOI 10.1109/ICONS.2008.23

253

In the next section we present background on self-config-
uration and CVM. In Section 3 we motivate this research
and Section 4 describes self-configuration of the NCB. Sec-
tion 5 describes the communication scenario realized using
the prototype. The related work and concluding remarks are
presented in Sections 6 and 7, respectively.

2 Background

In this section we provide an overview of self-
configuration in Autonomic Computing and introduce the
Communication Virtual Machine (CVM).

2.1 Self-Configuration

Autonomic Computing (AC) is a computing environ-
ment with the ability to manage itself and dynamically adapt
to change in accordance with business policies and objec-
tives [6]. AC, proposed by IBM, addresses the problems as-
sociated with the increasing complexity of computing sys-
tems, and the evolving nature of software. AC systems are
characterized by intelligent closed loops of control that are
typically implemented as the monitor, analyze, plan, and
execute (MAPE) functions of autonomic managers.

The essence of autonomic computing systems is self-
management [9] and it is derived from a combination of
four broad capabilities: self-configuring, self-healing, self-
optimizing, and self-protecting. In this paper our focus
will be on self-configuring. Self-Configuration provides
the means whereby a system can dynamically adapt to its
changing environment. Such changes could include inser-
tion or removal of components. Dynamic adaptation helps
ensure continuous strength and productivity of the IT infras-
tructure, resulting in business growth and flexibility [6].

2.2 Communication Virtual Machine

Deng et al. [3] developed the notion of the Communi-
cation Virtual Machine (CVM) which enables the realiza-
tion of models defined using a Communication Modeling
Language (CML). CVM has a layered architecture and lies
between the communication network and the user (or ap-
plication). Figure 1 shows the layered architecture of the
CVM. The key components of the CVM are:

1. User Communication Interface (UCI), provides a mod-
eling environment for users to specify their communi-
cation requirements using a Communication Modeling
Language (CML). CML can be used to describe a user
communication schema or schema instance, analogous
to an object-oriented class and object;

2. Synthesis Engine (SE), contains a set of algorithms re-
sponsible for (1) automatically synthesizing the user

Figure 1. Layered architecture of the CVM.

schema instance to an executable communication con-
trol script, and (2) negotiating the schema instances
with other participants in the communication;

3. User-centric Communication Middleware (UCM), ex-
ecutes the communication control script and coordi-
nates the delivery of communication services to users,
independent of the underlying network configuration;

4. Network Communication Broker (NCB), provides a
network independent API to the UCM that masks the
heterogeneity and complexities of the underlying net-
work for the realization of the communication ser-
vices.

3 Motivation

Instant messaging (IM) applications were originally de-
vised as a way for users to hold real-time conversations
on-line, however they have been expanded to include file-
sharing, game play, streaming audio and video, and sending
text messages to cell phones. To foster further growth, many
companies have provided API’s to facilitate third party add-
ons and extensions of their product’s communication frame-
work. For applications such as CVM with limited man-
power to dedicate to the maintenance and enhancement of
its NCB, such communication frameworks can be consid-
ered for the underlying network support of NCB. To this
end we surveyed three communication frameworks:

1. GoogleTalk [5], is XMPP compliant with source
code provided and supported by Google. It allows
any XMPP compliant client to communicate with its
servers.

2. Java MSN Messenger Library (JML) [7], supports Mi-
crosoft Notification Protocol (MSNP) versions 8 to
12. This is a Java based open source communication
framework that provides connection to the MSN Mes-
senger network. Its library is currently used in at least
three communication applications.

266254

Criteria JML NCB Skype Smack/
GoogleTalk

Core Features
Chat (one-to-one) 1 1 1 1
Chat (group) 1 1 1 1
Contact list 1 1 1 1
Audio (one-to-one) 0 1 1 1
Audio (conference) 0 1 1 0
Video (one-to-one) 0 1 1 0
Video (conference) 0 1 0 0
File Transfer 1 1 1 1
Additional
Features
Scrolling marque text 0 0 0 1
Emoticons 1 0 1 0
Online status 1 0 1 1
Avatar images 1 1 1 1
Voicemail 0 0 1 0

Table 1. Survey of frameworks.

3. Skype [16], peer-to-peer Internet telephony network
that offers free and paid communication services
through proprietary client application. An API is pro-
vided to developers but it must use the proprietary
client to access the network.

Table 1 shows the available features for each of the com-
munication frameworks including the NCB. A “1” indicates
that feature is present and “0” the feature is absent. Our
investigations covered the core features and the additional
features listed in Table 1.

The most significant finding from Table 1 was that no
single framework provided all the services required by
many communication scenarios. Although NCB has a “1”
for all the core features (third column) these features are re-
stricted based on certain constraints, including the presence
of some firewalls. In addition, we also found dissimilar ser-
vice levels as well as tiered structures for service availabil-
ity. For example, Skype’s audio connections are free be-
tween PCs but involve a charge for calls to cell phones or
land line phones. The limitations of the individual com-
munication frameworks could be addressed by extending
the framework with custom implementations of the missing
functionalities, however issues of maintainability of such
custom implementations would arise.

To obtain the best set of services for the CVM from the
available communication frameworks motivated us to in-
tegrate multiple communication frameworks within NCB.
This new multi-protocol NCB will provide all the function-
alities required by CVM while providing an extensible in-
frastructure for new communication frameworks. Since the
NCB abstracts the network layer from CVM, CVM is un-
aware of which framework is providing the requested media
service. As such self-configuring media services as needed,
based on constraints for that media service, was also in-
cluded in the design. This novel approach provides an ex-
tensible yet independent platform for the realization of com-
munication applications.

NCBNative GoogleTalkSkype JMML

Monitor
Agent

Execution
Agent

Test
Knowledge

Communication
Services Manager

Knowledge

Analysis
Agent

 Sensor Effector

Policy

NCBBridge

 Sensor Effector

Capabilities

Planning
Agent

NCB Manager

NCB/UCM API

Network Interface to the Underlying Networks

NCB

Communication Network

Figure 2. Autonomic design view of the NCB

4 Self-Configuring NCB

In this section we present a high-level autonomic design
view of the NCB focusing on the components used during
self-configuration. Figure 2 shows the autonomic design
view of the NCB highlighting the Communication Services
Manager (CSM) and the NCB bridge. The other compo-
nents shown in Figure 2, using dashed lines, illustrate how
the NCB interacts with the UCM and underlying communi-
cation networks [3]. The structure of the policy used to self-
configure the communication frameworks and a detailed de-
sign of the CSM is also presented. We have used the design
presented in this section to construct a prototype of the NCB
for the CVM.

4.1 High-Level Autonomic Design View

The Communication Services Manager (CSM) self-
configures the communication services needed by NCB for
the realization of a communication model. The CSM is
an autonomic manager and as such carries out the MAPE
functions. The manageability endpoints are the supporting
communication frameworks implemented with a common
interface that includes standard sensor/effector interfaces
as shown at the bottom of Figure 2. In the current proto-
type these communication frameworks include: GoogleTalk

267255

[5], Java MSN Messenger Library (JML), Skype [16] and a
modified version of the original NCB [3] referred to as the
NCBNative. The CSM also has sensor/effector interfaces to
provide the NCB Manager with the ability to monitor and
manage the CSM.

The NCB Manager provides policies that govern the be-
havior of the CSM and request communication services
from the CSM. Policies are added to the knowledge via the
planning agent which set the polices active or inactive based
on the information passed within the policy. Active policies
direct the decisions of the CSM in the manipulations of the
underlying communication frameworks. The monitor agent
does an inventory collection of the available communication
frameworks for NCB. The monitor agent collects this infor-
mation as the communication frameworks register with the
agent on start up and also polls the communication frame-
works at specified intervals for state updates such as re-
moved frameworks, enabled or disabled services or reduced
service levels on existing frameworks. These state updates
provide feedback that can be measured against the dictates
of the polices. New frameworks can be integrated dynami-
cally by registering with the agent through the framework’s
Bridge interface.

The analysis agent characterizes the inventory, which
serves to inform the upper layers of the CVM of the capabil-
ities or the types of media services that are available overall
and assist in the selection of requisite services. When a re-
quest for media services is received, this request will state
the service required, the participants for the service or op-
tionally could state constraints for QoS. An analysis will be
performed by the analysis agent on the request against the
active policies in the knowledge manager to select a candi-
date communication framework that is able to provide the
service requested. Additionally if a state update received
through the monitor agent indicates that the current me-
dia service level has changed, a re-analysis is initiated. A
change request is generated if there is a need to change the
existing communication framework or to initiate communi-
cation with a framework.

After the analysis agent creates a change request it is
passed to the planning agent for processing. The planning
agent creates a list of necessary commands to effect the uti-
lization of the candidate communication framework. The
planning agent will evaluate the actions required for pro-
viding the service, such actions could be to destroy the cur-
rent conference connection and create a new connection if
the addition of participants requires a new connection, then
create a change plan for execution. The change plan is ex-
ecuted by the execution agent and ends with the handing
off of the candidate communication framework to the NCB
Manager for the realization of the communication.

4.2 Specifying Communication Policies

A policy is a set of considerations designed to guide deci-
sions on courses of action, as such policies are rules that de-
fine the choices in the behavior of a system [11]. By apply-
ing AC self-configuring techniques we seek to decouple that
choice in the behavior of the system from the actual imple-
mentation. Separating the policy from the implementation
of a system permits the policy to be modified in order to dy-
namically change the strategy for managing the system and
hence modify the behavior of a system without changing its
underlying implementation [17]. This separation facilitates
the addition of new communication frameworks that will be
governed by the existing policies, as well as the introduction
or modification of policies as business requirements change.
There are four common elements identified when studying
the various policy standards [8]:

• Scope: what is or is not the subject of the policy
• Condition: when a policy is to be applied
• Business value: express the relative priority of a policy

and allows a system to make economic trade-offs
• Decision: describes the observable behavior or desired

outcome of a policy

The XML schema for the communication service policy
consist of the following components:

• Scope the subject of the policy, in our design it de-
fines the management operation to be performed on the
specified communication component. The XML repre-
sentation of the scope, as shown in Figure 3, consist of
two parts: (1) service - the applicable communication
component, and (2) operation - the intended manage-
ment action.
• Condition represents the trigger for the consideration

of the policy represented in two parts: (1) medium - the
carrier of the intended information to be communicate,
and (2) operation - the action to be performed on the
proposed medium.
• Business value prioritizes conflicting polices and is

represented by: (1) businessGroup - the associated
grouping for the specific policy, and (2) value - a nu-
meric value that represents the policy’s priority in the
group.
• Decision defines the policy’s desired outcome and ex-

pected behavior of the communication. This is rep-
resented as (1) mediumAttribute - the property of the
medium that is to be focused on, (2) connectID - op-
tionally specify a connection to be targeted, and (3)
either maxVal and/or minVal - a set of parameters that
state the acceptable range for the specified attribute.

Figure 3 shows an example of a communication service
policy using the XML schema previously described.

Policy:

268256

Figure 3. Communication service policy.

• Scope: selection of Communication Object
• Condition: request for video
• Business value: general group with priority 96
• Decision: select communication framework whose

medium supports at least the connection’s users count

In Figure 3 the service is a Communication Object, an
instance of a communication framework class that will be
provided to NCB to realize a requested communication ser-
vice. The management operation we wish to perform is that
of selecting an instance of a Communication Object. The
condition that will cause this policy to be used is the ac-
tion of requesting a medium of type video. The business
value has priority 96 in the general group. The decision that
satisfy this policy is that the attribute “numberOfUsers”,
which provides the numeric value for the number of users
supported on that medium for a particular communication
framework, not be less than the number of users currently
in the specified connection.

4.3 Detailed Design

The detailed design for the self-configuring component
of NCB is presented in this subsection focusing on both the
static and dynamic views. Figure 4 shows the structure of
the CSM and the NCB bridge including the classes repre-
senting the APIs for the communication frameworks. The
main classes in Figure 4 are:

• CommServiceManager - is the controller class re-
sponsible for coordinating the self-configuration activ-
ities. The sensor interface consist of: getCapabli-

ties - returns a list of all media types avail-
able with the enabled communication frameworks,
and getCommunicationObject - returns an in-
stance of a communication framework that imple-
ments the NCBBridge. The effector interface con-
sist of: applyPolicy - adds and activates policies
that direct the configuration decisions of the CSM, and

+getCommunicationObject()
+loginAll()
+logoutAll()
+getCapabilities()
+applyPolicy(in policy : String)

CommServiceManager

+getCapability()
+login()
+logout()
+restartService()
+isLoggedIn()
+isConnected()

<<interface>>
NCBBridge

+getCapability()
+login()
+logout()
+restartService()
+isLoggedIn()
+isConnected()

JMMLAdapter

+getCapability()
+login()
+logout()
+restartService()
+isLoggedIn()
+isConnected()

SkypeAdapter

+getCapability()
+login()
+logout()
+restartService()
+isLoggedIn()
+isConnected()

NCBNativeAdapter

+getCapability()
+login()
+logout()
+restartService()
+isLoggedIn()
+isConnected()

GoogleTalkAdapter

JMML
Skype NCBNativeGoogleTalk

1

*

1

1 1

1

1

1

1
1

1 1

CommObject

Figure 4. CSM and NCB bridge class diagram.

loginAll, logoutAll - enables the NCB to login to
and logout from all underlying communication frame-
works.
• CommObject - contains a single instance of a commu-

nication framework object wrapped in an adapter. We
do not show the specifics of the CommObject class.
• NCBBridge - defines the methods for the sensor/effec-

tor interfaces used by the adapters, see Figure 2. The
sensor interface consist of: getCapability - pro-
vides a list of all media types available for the com-
munication framework, isLoggedIn - checks if the
NCB is currently logged in to a specific communi-
cation framework, and isConnected - checks if the
NCB is currently connected to a specific communica-
tion framework. The effector interface for the manage-
ability endpoints are: login, logout and restart-

Service. The latter method, restartService

restarts the existing communication service.
• Adapter classes (JMMLAdapter, GoogleTalk-

Adpater, SkypeAdapter, and NCBNative-

Adpater) - implementations of the NCBBridge
interface that wraps their respective underlying API’s
providing manageablity and service to CSM.

• API classes (JMML, GoogleTalk, Skype, and
NCBNative) - provides the actual APIs for the differ-
ent communication frameworks. The specifics of these
APIs are not shown in the Figure 4.

Figure 5 shows the state machine representing the dy-
namic behavior for the CSM. Execution starts with the
invocation of the loginAll method that puts the CSM
in the READY state. This causes initial transitions to
UPDATED KNOWLEDGE state, as policies are loaded via

269257

READY

UPDATED_POLICIES

UPDATED_KNOWLEDGE

CANDIDATE_READY

CHANGE_PLAN_CREATED

CANDIDATE_SELECTED

AVAILABLE_FRAMEWORKS

loginAll
logoutAll

requestComObject

select_candidate [Policies satisfied]

create_plan [if new com object required]

execute_plan

candidate_handed_off

update_policy

update_policy_completed

update_comms_framework

knowledge_update_completed

Figure 5. CSM State Machine.

UPDATED POLICIES and the knowledge is updated with the
inventoried communication frameworks. The knowledge
will continue to be updated as policies are added and mod-
ified and changes occur within the communication frame-
works. The getCapablities method uses this knowledge
to return a list of available services with elements derived
from any of the supporting communication frameworks.
This supplied list of services defines the user’s communi-
cation space by listing all the available forms of communi-
cation at that instance of time.

The getCommunicationObject generates a
requestComObject and transitions to AVAILABLE-

FRAMEWORKS after getting the list of inventoried commu-
nication frameworks. A candidate is then selected from the
list that does not violate the active policies of the CSM and
transitions to the state CANDIDATE SELECTED, see Figure
5. A change plan is generated and the state transitioned to
CHANGE PLAN CREATED, if the candidate communication
framework is already being used then the plan is empty.
The plan is executed to effect the directives of the change
plan moving to the CANDIDATE READY state and the NCB
uses the returned communication framework to realize the
communication model that was invoked by CVM.

5 Communication Scenario

In this section we present a communication scenario that
details how our prototype realizes a communication service
using the self-configuring NCB.
Scenario: There is a collaborative conference call to four
members of a project group that includes Peter, Yingbo, Yali
and Andrew. The four-way conference utilizes PC-to-PC
voice and chat features. After some discussion the group
need to bring another person into the conference, this party
will communicate with the group via a fixed line phone.
Realization of Communication: A model is designed for
a four way audio conference and is transformed to a series

of platform specific requests by the UCM, the layer of the
CVM responsible for that process. We assume that Yingbo,
Yali and Andrew are all in Peter’s contact list for each com-
munication provider. The NCB receives this series of re-
quest for the realization of a four way communication as
follows, with Peter as the initiator:

• createSession(sessID)

• addParty(sessID, "Yingbo, Yali, Andrew")

• sendMedia(sessID, "audio")

NCB calls getCommunicationObject with the me-
dia type parameter set to “audio” and the partylist,
”Yingbo,Yali, Andrew”, from addParty. Note the partylist
contains the user ids for the users by the communication
service providers. There are four supporting communi-
cation frameworks used in the prototype which include:
Skype, supporting five users for audio; NCBNative, sup-
porting unlimited users for audio; JML, no audio support;
and GoogleTalk, supporting two users for audio. The high
level policies specified are:

1. Choose a communication framework that provides
conferencing on the required medium supporting at
least the party size.

2. If adding another party exceeds the support of an exist-
ing session, choose a new communication framework.

3. If a call is billable, use NCBNative support
4. Choose Skype if it is one of the candidate frameworks.

With these policies active in the CSM, the following occurs:

• From the inventory collected and categorized, Skype
and NCBNative are candidates that satisfied policy 1.
• Policy 2 is not violated by the two candidates.
• Policy 3 is not violated by the two candidates
• Policy 4 is satisfied by Skype.

Skype is chosen as the preferred communication framework
and the communication started between the participants.

When the communication model changes to a five way
audio conference with the addition of the fixed line call,
NCB is sent a series of request to effect the change. CSM
through its inventory will know that Skype bills for fixed
line calls, so a new communication framework is needed to
realize the five way audio communication.

• From the inventory collected and categorized, Skype
and NCBNative are candidates that satisfied policy 1.
• Policy 2 is not violated by the two candidates.
• Policy 3 is satisfied by NCBNative only.
• Policy 4 is not violated by this sole candidate.

NCBNative can support five way, the remote users are in-
formed of the change in framework and the Skype session
is discarded with a new session created on NCBNative with
the five participants. The communication is resumed with
the group continuing their discussions.

270258

6 Related Work

Nicol et al. [13] developed a prototype distributed multi-
media application using ready-made component technology
[13], the methodology however does not address multiple
communication providers. There are products such as Tril-
lian [2], Qnext [14], and Eclipse Communication Frame-
work (ECF) [4] that provide platforms to support multiple
communication providers, while aggregating the accounts
of the providers into one interface. Products like Trillian
and Qnext while offering ways of adding new providers to
their platforms, are proprietary and closed source with no
way to reuse their communication components for building
more extensive communication applications.

ECF provides a set of high-level abstractions,which fa-
cilitates the reuse of high-level communication components
and provides a cross-protocol API [4] that utilizes plug-ins
from various communication providers. ECF however does
not provide the self-configuration of the plug-ins from the
various communication providers therefore lacking the flex-
ibility for choosing the best communication framework on-
the-fly. It is also worth mentioning that the CVM uses a
model-driven approach to creating communication applica-
tions.

Rangaswami et al. [15] developed a methodology for
the automatic generation of communication control scripts
from a declarative user communication schema, this script
then uses the support provided by UCM and NCB. Our
work further extends the support that is available for the
methodology. Zhang et al. [18] architecture for the NCB
includes a self-management module, it is however limited
to QoS monitoring and control.

7 Concluding Remarks

In this paper we leverage the open platform APIs pro-
vided by three communication application providers to im-
prove the ability of the Communication Virtual Machine
(CVM) to provide a more comprehensive set of com-
munication services. In order to realize these services
we applied the concept of self-configuration to the Net-
work Communication Broker (NCB), the layer of the CVM
that interacts with the underlying communication networks.
We presented a design of the NCB that highlights self-
configuration and describe a communication scenario that
uses the prototype of the NCB. Our future work involves
extending the autonomic feature of the NCB to include
self-healing and self-optimization using the concept of self-
testing to guarantee the goodness of the feedback’s decision
before reconfiguration. Additionally we will be evaluating
the efficacy of the design with respect to performance and
configuration effort.

Acknowledgments
This work was supported by the National Science Founda-
tion under grants IIS-0552555 and HRD-0317692.

References

[1] T. Berners-Lee. Www: Past, present, and future. Computer,
pages 69–77, 1996.

[2] Cerulean Studios. Trillian software, Sept. 2007. http:
//www.ceruleanstudios.com.

[3] Y. Deng, S. M. Sadjadi, P. J. Clarke, C. Zhang, V. Hristidis,
R. Rangaswami, and N. Prabakar. A communication virtual
machine. In COMPSAC 06, pages 521–531. IEEE Computer
Society, 2006.

[4] ECF. Eclipse communication framework project, September
2007. http://www.eclipse.org/ecf/.

[5] Google. Googletalk, Sept. 2007. http://www.google.
com/talk/.

[6] IBM Autonomic Computing Architecture Team. An archi-
tectural blueprint for autonomic computing. Technical re-
port, IBM, Hawthorne, NY, June 2006.

[7] JML. Java msn messenger library, Sept. 2007. http://
sourceforge.net/projects/java-jml.

[8] D. Kaminsky. An introduction to policy for autonomic com-
puting. IBM Autonomic Computing, Mar. 2005. http:
//www.ibm.com/developerworks/autonomic/
library/ac-policy.html(September2007).

[9] J. Kephart and D. Chess. The vision of autonomic comput-
ing. Computer, 36(1):41–52, Jan. 2003.

[10] P. Lasserre and D. Kan. User-centric interactions beyond
communications. Alcatel Telecommunications Review,
2005. http://alcaesd-f.nl.francenet.fr/
docs/1/S0503-UCBB_interactions-EN.pdf
(March 2007).

[11] M. J. Masullo and S. B. Calo. Policy management: An archi-
tecture and approach. In IEEE First International Workshop
on Systems Management, pages 13–26, April 1993.

[12] Microsoft Corp. Windows live messenger, Sept. 2007.
http://get.live.com/messenger/overview.

[13] J. R. Nicol, Y. S. Gutfreund, J. Paschetto, K. S. Rush, and
C. Martin. How the internet helps build collaborative multi-
media applications. In Communications of the ACM, pages
Vol. 42, No.1,79–85, Jan. 1999.

[14] Qnext Corporation. Qnext, Sept. 2007. http://www.
qnext.com/.

[15] R. Rangaswami, S. Sadjadi, N. Prabakar, and Y. Deng. Auto-
matic generation of user-centric multimedia communication
services. In IPCCC 2007, pages 324–331. IEEE, 2007.

[16] Skype Limited. Skype developer zone, Feb. 2007. https:
//developer.skype.com/.

[17] M. Sloman. Policy driven management for distributed sys-
tems. Journal of Network and Systems Management, 2:333–
360, 1994.

[18] C. Zhang, M. Sadjadi, W. Sun, R. Rangaswami, and
Y. Deng. A user-centric network communication broker
for multimedia collaborative computing. In 2nd IEEE/ACM
CollaborateCom, Nov. 2007.

271259

