
An Integrated Self-Testing Framework for
Autonomic Computing Systems

Tariq M. King, Alain E. Ramirez, Rodolfo Cruz, and Peter J. Clarke
School of Computing and Information Sciences, Florida International University, Miami, USA

Email: {tking003, aeste010, rcruz002, clarkep}@cis.fiu.edu

Abstract— As the technologies of autonomic computing be-
come more prevalent, it is essential to develop methodolo-
gies for testing their dynamic self-management operations.
Self-management features in autonomic systems induce
structural and behavioral changes to the system during
its execution, which need to be validated to avoid costly
system failures. The high level of automation in autonomic
systems also means that human errors such as incorrect
goal specification could yield potentially disastrous effects
on the components being managed; further emphasizing
the need for runtime testing. In this paper we propose a
self-testing framework for autonomic computing systems
to dynamically validate change requests. Our framework
extends the current architecture of autonomic systems to
include self-testing as an implicit characteristic, regardless
of the self-management features being implemented. We
validate our framework by creating a prototype of an
autonomic system that incorporates the ability to self-test.

Index Terms— autonomic computing, testing, validation.

I. INTRODUCTION

Continuous technological advances have led to an
unprecedented growth in the size and complexity of
computing systems within the last two decades [1]. The
human and economic implications of this growth are
compounded by the need for large-scale system integra-
tion, in order to facilitate collaboration among multiple
business enterprises. Managing complex, large-scale, in-
terconnected computing systems requires a team of highly
skilled IT professionals to provide ongoing technical sup-
port services. Therefore, as technology-driven businesses
continue to expand, they incur increasingly high costs
to maintain their computing infrastructure. In addition,
some computing infrastructures are now so complex that it
has become almost impossible to manage them manually.
Major industrial players such as IBM have therefore
recognized the need to shift the burden of support tasks
such as configuration, maintenance and fault management
from people to technology [2].

Autonomic computing is a movement towards self-
management computing technology that aims to reduce
the difficulties faced by administrators when managing
complex systems. The paradigm emphasizes computing
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systems that automatically configure, optimize, heal, and
protect themselves [3], [4], in accordance with adminis-
trator objectives. IBM has successfully attracted members
from both the IT industry and the academic community
to the area of autonomic computing through various
manifestos, research papers, and technical reports [1]–[5].
The initiative continues to stimulate great interest in the
scientific community, and has led to the development of
numerous projects based on autonomic computing [6].

Although research is advancing in many areas of auto-
nomic computing, there is a lack of development in the
area of testing autonomic systems at runtime. Runtime
testing is necessary in autonomic systems because self-
management features induce structural and behavioral
changes to the system during its execution. Furthermore,
the high level of automation in autonomic systems means
that incorrect goal specification could yield potentially
disastrous, and even irreversible effects on the compo-
nents being managed. This research seeks to address two
fundamental questions associated with runtime changes in
autonomic computing systems. These questions are: (1)
After a change, how can we be sure that new errors have
not been introduced into previously tested components?
and (2) If a change introduces a new component, how
can we be sure that the component will actually behave
as intended?

In this paper we propose a self-testing framework for
autonomic computing systems that dynamically validates
change requests through regression testing, and the ex-
ecution of additional tests which exercise the behavior
of newly added components. Our framework integrates
testing into the current workflow of autonomic managers
through communications to new autonomic managers
designed for testing. We apply concepts of autonomic
managers, knowledge sources, and manual management
facilities [3] to testing activities for autonomic systems.
Our testing methodology is based on two general vali-
dation strategies – safe adaptation with validation, and
replication with validation.

We extend the previous work by King et. al [7] to
provide a more comprehensive self-testing framework
with additional components that enhance test coordination
and facilitate manual test management. We describe the
duties of these new components and present examples of
their use within the integrated framework. In addition, we
provide descriptions of the interactions between these new
components and the existing framework components, and
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discuss the role played by the human administrator when
managing the testing process. We also present an extended
implementation of a prototype developed to show the
feasibility of our testing methodology.

This paper is organized as follows: the next section
describes the autonomic computing paradigm and related
software testing approaches. Section III presents the archi-
tectural model of the self-testing framework, and outlines
the steps of our testing methodology. Section IV discusses
the component interactions of the test managers of the
framework. Section V presents the implementation details
of the prototype. Section VI presents the related work, and
in Section VII we give concluding remarks.

II. AUTONOMIC COMPUTING AND TESTING

In this section we provide a brief overview of the auto-
nomic computing paradigm, and describe IBM’s architec-
tural blueprint for building autonomic systems. We also
summarize the main approaches to software testing, and
outline the major steps and challenges of test automation.
Techniques to support runtime testing of evolving and
adaptive systems are also discussed in this section.

A. Overview of Autonomic Computing

Autonomic computing (AC) is IBM’s proposed solution
to the problems associated with the increasing complexity
of computing systems, and the evolving nature of soft-
ware. The AC initiative was launched in October 2001
and portrayed a vision of computing systems [4] that
manage themselves according to high-level objectives.
The paradigm seeks to alleviate the burden of integrating
and managing highly complex systems through increased
automation and goal specification.

The term autonomic is derived from the human au-
tonomic nervous system, which regulates vital bodily
functions such as homeostasis without the need for con-
scious human involvement [1]. AC extends this biological
concept to computing systems by embedding additional
infrastructure within the system to carry out low-level
decisions and tasks, while administrators specify overall
system behavior as high-level policies. The core capabil-
ities that support self-management in autonomic comput-
ing systems [4], [6] include:

Self-configuration. Automatically configuring or re-
configuring existing system components, and seamlessly
integrating new components.

Self-optimization. Automatically tuning resources and
balancing workloads to improve operational efficiency.

Self-healing. Proactively discovering, diagnosing and re-
pairing problems resulting from failures in hardware or
software.

Self-protection. Proactively safeguarding the system
against malicious attacks, and preventing damage from
uncorrected cascading failures.

Manual Manager

Orchestrating AMs

Touchpoint AMs

Touchpoints

Managed Resources

Kn
ow

le
dg

e 
So

ur
ce

s

Figure 1. Layered architecture of Autonomic Computing.

In order to accomplish the aforementioned self-
management tasks, autonomic systems must be able to
observe their own structure and behavior (introspection);
adapt or modify their own structure and behavior (in-
tercession) [8]; and be aware of their environmental
and operational contexts. Self-awareness is therefore an
inherent characteristic of AC systems regardless of the
specific autonomic capabilities being implemented.

B. Architecture for Autonomic Computing

The architectural blueprint for AC [3] defines a com-
mon layered approach for developing self-managing sys-
tems as shown in Figure 1. The horizontal layers include
managed resources, touchpoints, touchpoint autonomic
managers, orchestrating autonomic managers, and a man-
ual manager. A vertical layer of knowledge sources (top-
left of Figure 1) spans the top three horizontal layers to
facilitate the exchange, retrieval, and archival of manage-
ment information among these layers.

The managed resource layer consists of the hardware or
software entities for which self-management services are
being provided. Directly above the managed resources are
manageability interfaces called touchpoints. The touch-
points implement the sensor and effector behaviors [3],
[4] necessary to automate low-level management tasks.
Sensors provide introspection mechanisms for gathering
details on the current structure or behavior of managed re-
sources, while effectors provide intercession mechanisms
to facilitate structural or behavioral modifications.

A higher level of management is provided by auto-
nomic managers (AMs). There are two categories of AMs,
namely Touchpoint AMs and Orchestrating AMs [3].
Touchpoint AMs work directly with managed resources
through their touchpoint interfaces. Orchestrating AMs
manage pools of resources or optimize the Touchpoint
AMs for individual resources. The topmost layer is an
implementation of a management console, called the
manual manager, which facilitates the human adminis-
trator activity. The vertical layer of knowledge sources
implements registries or repositories that can be used
to extend the capabilities of AMs, and may be directly
accessed via the manual manager.

Autonomic systems are characterized by intelligent
closed loops of control, in which sensed changes to man-
aged resources result in the invocation of the appropriate
set of actions required to maintain some desired system
state. In autonomic systems, these closed control loops are
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Figure 2. MAPE structure of autonomic managers.

typically implemented as the monitor, analyze, plan, and
execute (MAPE) functions of AMs as shown in Figure 2.
The monitor collects state information from the managed
resource and correlates them into symptoms for analysis.
If analysis determines that a change is needed, a change
request is generated and a change plan is then formulated
for execution on the managed resource. AMs contain
a knowledge component which allows access to data
shared by the MAPE functions. This built-in knowledge
component generally contains information relating to self-
management policies, and interacts with the knowledge
sources shown in Figure 1 to provide an extensible self-
management framework. For example, as shown in Figure
2, extensibility in autonomic systems can be achieved by
loading a new policy from a knowledge source into the
built-in knowledge of the AM to update its capabilities.

C. Software Testing Approaches

The two main categories of software testing
are specification-based and program-based testing.
Specification-based testing is based soley on the
definition of what the program under test is supposed
to do and employs no internal information about the
structure of the program [9]. The specification drives
the testing process by providing a means of checking
the correctness of output (test oracles); selecting test
data; and measuring test adequacy. On the other hand,
program-based testing defines testing requirements
strictly in terms of whether or not the program under
test has been thoroughly exercised [9]. This category
of testing is usually associated with some form of
test adequacy criteria that is based on coverage of
particular elements of the program, e.g., all statements,
all branches, or all paths [10].

Understanding the differences between specification-
based and program-based testing allows the software
tester to select appropriate testing techniques under given
circumstances. Although both approaches are considered
to be equally important, the tester must be able to identify
what kind of testing is required so that valuable time and

resurces are not wasted performing too much or too little
testing on different aspects of the software.

The notion of test data adequacy is central to any testing
methodology because it can be viewed as a measurement
of test quality, and as a guideline for the generation of
test cases. If P is a set of programs, and S is a set of
specifications, and T is a set of test cases, we can formally
define a test data adequacy criterion C as follows [10]:

Measurements. C : P × S × T → [0, 1]. C(p, s, t) maps
to a real number representing the degree of test adequacy;
and the greater the value, the more adequate the testing.

Generators. C : P × S → 2T . C(p, s) maps to a power
set containing all test cases that satisfy the criterion, and
hence any element of this set is adequate for testing.

Test data adequacy criteria can also be viewed as a
stopping rule that determines whether or not enough
testing has been done [10]. However, as a stopping rule,
a test data adequacy criterion C is a special case of
measurements with the range {0, 1}, i.e., false or true.

The effectiveness of a test set with respect to its
ability to reveal faults can be assessed using a technique
known as mutation testing [9], [10]. Mutation testing
involves generating a set of programs or specifications,
called mutants, that differ from the original program or
specification in some way. The test set is then executed
using the mutants and the results are compared with those
produced from using the original program or specification.
For each mutant, if the test results differ from the original
results on at least one test case, the mutant is said to have
been killed; otherwise the mutant is still alive [10]. A
mutation score can then be used to measure test adequacy
by calculating the ratio of the number of dead mutants
over the total number of mutants that are not equivalent
to the original program or specification.

D. Test Automation

Test automation calls for careful planning during the
software development process, and is impossible without
tool support. Automating the testing process involves
designing test cases; creating test scripts; and setting up
a test harness for automatically executing tests, logging
results, and evaluating test logs [11]. If the post-test
evaluation passes then the test harness should automat-
ically terminate, otherwise additional test cases should
be selected and fed through the harness with the aim of
improving the testing effort. There are several categories
of tools that support test automation. These include test
design tools, dynamic analysis tools, GUI test drivers,
capture/playback mechanisms, and test evaluation tools
[11].

Most testing tool vendors boast that cost savings and
reduction in defects are some of the benefits to be
gained from using their products [12]. However, test
automation still presents several challenges to the test
engineers. For example, the capture/playback method of
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automation which is prevalent in many vendor packages
does not adequately address the needs of complex, multi-
environment systems [12]; thereby leaving test engineers
to manually implement supporting programs to achieve
the desired level of automation. In addition, some testing
tools only support a specific granularity of testing such
as unit, integration, or system testing. Successful test au-
tomation therefore requires the selection of an appropriate
combination of testing tools, and a skilled test automation
team to develop support programs and perform traditional
testing tasks.

E. Testing Evolving and Adaptive Systems

As previously mentioned in Section II-A, autonomic
computing addresses the software complexity and evo-
lution problems through the use of a highly adaptive
self-management infrastructure. Software evolution is in-
evitable due to the emergence of new requirements,
changes in the operating environment, and the need to
fix newly discovered errors. As a result, software sys-
tems typically require perfective, adaptive, or corrective
maintenance [13] after initial deployment. Regression
testing determines whether modifications to software due
to maintenance have introduced new errors into previously
tested code [9]. This may involve re-running the entire
test suite (retest-all), or selecting a subset of the initial
test suite for execution (selective regression testing) [14].
Techniques for regression test selection include dataflow,
random, safe and test minimization [14].

Testing dynamically adaptive systems is extremely
challenging because both the structure and behavior of
the system may change during its execution. Existing test
cases may no longer be applicable due to changes in
program structure, thereby requiring the generation of new
test cases. Modern programming languages such as Java
and C# support introspection of the structure of an object
at runtime, and hence provide mechanisms for extracting
useful information for dynamic test case generation.

A disciplined approach to adaptation can also be used
to support runtime testing of adaptive systems. Safe adap-
tation ensures that the integrity of system components is
maintained during adaptation [8]. The safe adaptation pro-
cess is comprised of the three phases: analysis, detection
and setup, and realization. During analysis, developers
prepare a data structure for holding information such as
component configurations, dependency relationships, and
adaptive actions. The detection and setup phase occurs at
runtime and involves generating safe adaption paths for
performing adaptive actions on system components. The
actual adaptation is then performed during the realization
phase in the following steps:

Step 1. Move the system into a partial operation mode
in which some functionalities of the component(s) to be
adapted are disabled.

Step 2. Hold the system in a safe state while adaptive
actions are performed.

Step 3. Resume the system’s partial operation once all
adaptive actions are complete.

Step 4. Perform a local-post action to return the system
to a fully-operational running state.

The safe adaptation process will not violate any depen-
dency relationships or interrupt critical communication
between components, even in the presence of failures
[8]. If a failure occurs at any point before Step 3, the
adaptation manager can retry the failed actions or rollback
to the source configuration. Rollbacks are not allowed
after any system process has been resumed. Therefore,
safe adaptation is atomic in the sense that either no side
effects are produced before a rollback or the adaptation
process runs to completion.

III. AUTONOMIC SELF-TESTING FRAMEWORK

The adaptive and evolving nature of AC systems re-
quires that testing be an integral part of these systems.
We affirm that, similar to the inherent self-awareness
characteristic of AC systems discussed in Section II-A,
self-testing is an implicit characteristic of autonomic sys-
tems regardless of the specific self-management features
being implemented. Self-testing in autonomic systems
is necessary for dynamically: (1) performing regression
testing after changes have been implemented to ensure
that new errors have not been introduced into previously
tested components; and (2) validating the actual behavior
of newly added or adapted components prior to their use
in the system.

We propose an integrated self-testing framework for
autonomic computing systems to perform the aforemen-
tioned tasks, thereby addressing the research questions
posed in Section I. Our self-testing framework augments
the dynamic high-level test model for autonomic com-
puting systems in [7] with components that enhance test
coordination, and provide detailed descriptions of their in-
teractions. In order to be consistent with the grand vision
of autonomic computing, our self-testing framework fully
automates testing activities wherever possible, and seeks
to minimize the administrator’s effort in those testing
activities which require manual intervention.

As shown in Figure 3, our approach incorporates testing
activities into autonomic computing systems by providing
validation services to autonomic managers (AMs) and the
manual manager implementation via test interfaces. The
lefthand portion of Figure 3 shows an autonomic com-
puting system and the righthand portion shows the self-
testing framework. The self-testing framework consists of
test managers, test knowledge sources and auxiliary test
services that collaborate to provide validation services for
the autonomic system.

Our testing methodology is based on two general strate-
gies – safe adaptation with validation and replication with
validation, which differ with respect to system overhead
cost and feasibility of use. Depending on the strategy
used, the autonomic system may be required to maintain

40 JOURNAL OF COMPUTERS, VOL. 2, NO. 9, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER



Orchestrating Autonomic Manager

Touchpoint Autonomic Manager

2. 
Change Request 

Detected

3a. 
Use Selected
Validation Strategy

3b. Setup Validation

1. 
Ready for Self‐

Management

4. 
Implement 
Change

7. 
Log Test 
Results

3c. 
Load Validation 
Policy

8. 
Result of Post‐

Test Evaluation

9. Validation Response

Autonomic Computing System Self‐Testing Framework

Orchestrating Test Manager

Touchpoint Test Manager

5. Ready for Self‐Test

6. Execute Test Cases

Manual Manager (Console) Test Know
ledge Sources

Kn
ow

le
dg

e 
So

ur
ce

s

Auxiliary Test Services

Managed
Resource

Copy of Managed
Resource

Figure 3. High-level architectural model for an integrated self-testing framework for autonomic computing systems.

copies of managed resources for testing purposes as illus-
trated by the dashed box (bottom-left of Figure 3). The
self-testing framework also assumes that the autonomic
system provides mechanisms for implementing change
requests on the copy of the managed resource; transferring
the contents of the copy to the actual managed resource
after validation; and performing safe adaptation [15].

In this section we present the proposed autonomic self-
testing framework and describe its major components.
Subsections III-B and III-C provide the detailed steps
of our testing methodology, in the context of the two
validation strategies, through descriptions of the workflow
of Figure 3. We also provide the rationale and guidelines
for applying each validation strategy, and discuss how
we plan to address some of the key challenges of testing
autonomic systems at runtime.

A. Test Managers

Test managers (TMs) extend the concept of auto-
nomic managers to testing activities. Like autonomic
managers, TMs may also be Orchestrating or Touchpoint.
Orchestrating TMs coordinate high-level testing activities
and manage Touchpoint TMs, while Touchpoint TMs
perform low-level testing tasks on managed resources.
During system execution, Orchestrating AMs will notify
Orchestrating TMs that some change request requires
validation. Orchestrating TMs will then coordinate the
testing activities necessary to validate that change request
using the managed resource or a copy. TMs will be
responsible for:

Test coordination. Directing the end-to-end validation
process by interfacing with AMs; checking for new val-
idation policies in test knowledge sources; coordinating
the tasks of Touchpoint TMs; and invoking auxiliary test
services.

Test planning and execution. Scheduling and performing
regression testing and, if necessary, executing newly gen-

erated test cases to validate change requests for managed
resources.

Test suite management. Generating new test cases dy-
namically, and discarding test cases that may no longer
be applicable due to changes in system structure.

Pre- and post-test setup. Setting up the test environment,
and preparing a test log to be used during the post-test
evaluation.

Post-test evaluation. Analyzing and evaluating test re-
sults and test coverage provided in the test log against
the high-level validation policy.

Storage of test artifacts. Maintaining a repository to
store test cases, test logs, test histories, and validation
policies.

To perform the aforementioned duties, TMs will con-
tain components that are consistent with the MAPE
structure [3] of autonomic managers. A test monitor will
be responsible for polling the managed resource, and/or
various components within the self-testing framework, to
collect any information relevant to the testing process. A
test analyzer will then determine whether or not some
testing-related activity needs to be performed such as set-
ting up the test environment, generating new test cases, or
conducting a post-test evaluation. A test planner will then
generate a plan for the testing activity, and a test executer
component will perform the required testing tasks. A test
knowledge component will serve as a central repository
for test artifacts, and coordinate the interactions between
the aforementioned components. Detailed descriptions of
the component interactions within Orchestrating TMs and
Touchpoint TMs are provided in Subsections IV-A and
IV-B, respectively.

B. Safe Adaptation with Validation

The safe adaptation with validation strategy validates
changes resulting from self-management as part of a
safe adaptation process [8], and occurs directly on the
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managed resource during system execution. The steps of
this approach as corresponds to the workflow of Figure 3,
starting from its bottom lefthand portion, are as follows:

1. Ready for self-management. A Touchpoint AM gath-
ers information from a managed resource and correlates
it into a symptom that warrants self-management.

2. Change request detected. A change request is gener-
ated by the Touchpoint AM and this event is detected via
the sensor of an Orchestrating AM.

3. Safe adaptation with validation. The Orchestrating
AM initiates safe adapation of the managed resource
(3a) and concurrently requests that an Orchestrating TM
set up validation (3b). An appropriate validation policy
(3c) is then loaded into the test knowledge component
of a Touchpoint TM.

4. Implement change plan on managed resource. The
Touchpoint AM proceeds with safe adaptation until the
managed resource is fully-adapted (i.e., up to Step 2 of the
safe adaptation process outlined in Subsection II-E) but
keeps the resource blocked until validation is performed.

5. Ready for self-test. The Touchpoint TM detects that
the resource is in a fully-adapted safe state, and is
therefore ready to be tested.

6. Execute test cases. After analysis and planning, the
Touchpoint TM executes test cases on the resource.

7. Log test results. The test results and test coverage
are coalesced into a log file, which is analyzed by the
Touchpoint TM with respect to the validation policy.

8. Result of post-test evaluation. Message indicating
whether validation passed or failed, or if there was
inadequate test coverage, is sent to the Orchestrating TM.

9. Validation response. Orchestrating AM is notified as
to whether it should accept or reject the change request.
If the change request is accepted, the Touchpoint AM
implements the change on the actual managed resource;
otherwise the change request is discarded.

The safe adaptation with validation strategy should be
used if it is too expensive, impractical, or impossible to
duplicate managed resources. Recall that in autonomic
systems, managed resources may be either hardware or
software entities. From a business perspective, it may
not be economically viable to maintain duplicates of
some hardware or software components soley for testing
purposes. In addition, instantiating and executing copies
of software components may affect system performance
negatively and hence may not be practically feasible.
Safe adaptation with validation addresses these issues by
allowing testing to be performed directly on managed
resources. However, this approach has the disadvantage
that some application services may have to be temporarily
suspended while the validation process completes.

C. Replication with Validation

The replication with validation strategy requires the
system to create and/or maintain copies of the managed
resource for validation purposes (recall dashed box at
bottom-left of Figure 3). Change requests for managed
resources are first implemented on copies and validated
prior to execution on the actual managed resources. Using
this strategy, the steps of our testing methodology as
corresponds to Figure 3 differ as follows:

3. Replication with validation. The Orchestrating AM
initiates the replication with validation strategy (3a.)
by ensuring that the managed resource and the copy are
identical with respect to their structure and behavior. A
request is sent to the Orchestrating TM to set up the
validation process (3b.), which loads the validation
policy (3c.) into a Touchpoint TM.

4. Implement change plan on copy. The Touchpoint AM
implements the self-management change plan on a readily
available copy of the managed resource. This event would
be a signal to the Touchpoint TM that self-testing can now
be performed using the changed copy.

The replication with validation strategy should be used
when managed resources can be easily replicated. It has
the advantage that the regular service of the system does
not have to be suspended for the entire time required to
perform testing. Furthermore, if the component under test
is hot swappable, the system may be able to provide unin-
terrupted service in the presence of validation. Replication
with validation also allows testing services to be deployed
on a separate node, thereby removing any computational
and storage overhead from the autonomic system.

D. Auxiliary Test Services and Test Knowledge Sources

High-level test coordination within the self-testing
framework is supported by auxiliary test services (ATS)
and test knowledge sources, shown at the top-right of
Figure 3. The ATS component provides Orchestrating
TMs with access to external or third-party automated test
support tools; and implements facilities for manual test
management. Orchestrating TMs interact with the ATS to
configure test support tools such as code coverage pro-
filers, performance analyzers, and automated test drivers.
The ATS component supplements the services offered by
these support tools and tailors them to the specific testing
needs of the autonomic system.

The manual manager implementation of the autonomic
system interfaces with the ATS to provide administrators
with direct access to artifacts stored in test knowledge
sources. The ATS will enable administrative functions
such as updating validation policies, viewing test logs,
managing test cases, and collating test histories through
the management console of the autonomic computing
system. In addition, administrators will be able to choose
for certain testing tasks to require human intervention. For
example, upon determining that testing is required for a
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particular managed resource, the Orchestrating TM could
send a message to the management console requesting
the administrator to manually formulate the test plan for
this resource. Other interactive administration services
provided through the ATS may include defect tracking
and test scenario walkthroughs.

E. Addressing Challenges

To address the many challenges of testing autonomic
systems at runtime, we plan to use the proposed self-
testing framework as a focal point for the investigation
of various research directions that support quality assur-
ance in these systems. One such research direction is
the use of formal specifications to dynamically generate
test sequences, test oracles, and test data for system
components [16]. Embedding formal specifications within
autonomic system components would provide a means for
extracting precise descriptions of useful test information
such as preconditions, postconditions and invariants. Fur-
thermore, executable formal specifications facilitate the
development of visualization systems [17], which has
been identified as one of the major research challenges
of autonomic computing [5]. Such visualization systems
could be used to interactively guide the administrator
through test scenarios and during system debugging.

Regarding the problem of testing autonomic compo-
nents in the presence of unforseen circumstances, mech-
anisms for policy-based risk analysis and trust [18] could
be incorporated into the self-testing framework. Testing
requirements could then be based on measurements of the
estimated risk of interactions with unknown entities, or
under unexpected environmental conditions. Furthermore,
a risk-based strategy to regression test selection [19]
could be adopted to identify test cases which would be
appropriate for testing high-risk components.

IV. TEST MANAGERS: COMPONENT INTERACTIONS

Similar to the components in autonomic managers, the
MAPE components in TMs implement intelligent closed
loops of control. However, the intelligent control loops in
TMs focus on self-testing rather than self-management.
In this section, we provide descriptions of the interactions
between the components of our self-testing framework in
the context of these intelligent control loops. Component
interactions are described at two levels of granularity. At
the higher level, we discuss how the internal components
of Orchestrating TMs facilitate the coordination of test-
ing activities among multiple framework components. At
the lower level, we present step-by-step details on how
the internal components of Touchpoint TMs interact to
accomplish low-level testing tasks on managed resources.
A high-level algorithm for validating change requests is
also provided in this section.

A. Interactions within Orchestrating TMs

Figure 4 illustrates how the intelligent control loops of
Orchestrating TMs implement high-level test coordination

Orchestrating
AM

Sensor      

OTM
1(a)

Effector

Touchpoint
TM

Test Knowledge
Souces

OTM
1(b)

OTM
3

Auxilliary 
Test Services

Test
Monitor

Test
Planner

Test
Executer

Orchestrating Test Manager

OTM
2

OTM
6

OTM
5

Test Knowledge

OTM
4

Test
Analyzer

Figure 4. Intelligent closed loops of control in Orchestrating TMs.

activities. Test coordination involves complex interactions
between Orchestrating TMs and multiple components of
the integrated framework as shown at the bottom of Figure
4. Orchestrating TMs can invoke the sensor and effec-
tor mechanisms of Orchestrating AMs, test knowledge
sources, Touchpoint TMs, and auxiliary test services.
Information gathered from these framework components
is then passed through the MAPE functions of the Or-
chestrating TM to achieve various testing objectives; as
indicated by the lines labeled OTM that enter and exit
through the sensors and effectors in Figure 4.

Orchestrating TMs will continuously poll the sensors
of Orchestrating AMs (OTM 1a) to detect when the
autonomic system requires validation services. The test
knowledge sources component may also be monitored
(OTM 1b) to detect whenever a human administrator
manually updates a validation policy. Either of these
events can be handled by an intelligent control loop which
uploads the appropriate validation policy into Touchpoint
TMs (OTM 2) to instantiate the new or requested testing
functionality. During testing, Touchpoint TMs may be
monitored to detect when they require support tools such
as code coverage profilers to be configured (OTM 3).
Configuration of the support tools could then be initiated
by invoking the effector of the auxiliary test services
component (OTM 4). Once the support tool configuration
completes, this event would be detected (OTM 5) by the
Orchestrating TM so that a notification message could be
sent to the Touchpoint TM (OTM 6).

Other orchestrating interactions, not shown in Figure 4,
include receiving notifications from Touchpoint TMs as
to whether or not validation passed (OTM 7a) or if there
was inadequate test coverage (OTM 7b); and responding
to those notifications by either terminating the testing
process (OTM 8a) or continuing testing (OTM 8b) in an
attempt to improve test coverage.

B. Interactions within Touchpoint TMs

Figures 5(a) and 5(b) show two intelligent loops of
control within Touchpoint TMs. The first loop traces the
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Figure 5. Component interactions through two intelligent closed control loops (a) and (b) in Touchpoint TMs.

arc labeled with artifacts 1.1 through 1.5 in Figure 5(a),
and the second loop traces the arc labeled with artifacts
2.1 through 2.5 in Figure 5(b). As previously stated,
the operations of Touchpoint TMs may be coordinated
by an Orchestrating TM; as indicated by the lines labeled
with the prefix OTM which enter and exit through the top
sensors and effectors, respectively. Figure 6 shows a high-
level algorithm which corresponds to how the intelligent
control loops of Touchpoint TMs and Orchestrating TMs
work together to validate changes to managed resources.
The discussion for the rest of this subsection provides
details for the relationships between Figures 4, 5, and 6.

The Orchestrating TM first sends a validation policy
for the managed resource to a Touchpoint TM, which
loads it into the test knowledge component (1.0). The
Touchpoint TM automatically invokes the test monitor to
retrieve the new structure of the managed resource (1.1)
when it senses that the resource is ready to be validated.
The test monitor then sends the information about the
new structure to the test analyzer (1.2), which uses it
in conjuction with the previous structure and a baseline
test suite to prepare a new test suite. The test analyzer
notifies the test planner that a new test suite is ready and
requests that a test plan be created (1.3). At this point,
the Orchestrating TM detects that a request for a new test
plan (1.3.1) has occurred and intercepts the closed loop
to set up a code coverage profiling tool. Once the code
profiler has been set to instrument the managed resource
for test coverage, the test plan is finalized and control is
returned to the closed loop (1.3.2). The test plan is then
passed to the test executer component (1.4), which then
starts running test cases on the managed resource (1.5)
and initiates the second closed control loop.

The second intelligent control loop commences with the
retrieval of the test results and test coverage information
(2.1) from the managed resource. The test monitor
correlates this information into a test log and passes it

(OTM 2)

// External Monitored Event 

(OTM 3)

// Corresponding Actuated Event 

(OTM 6)

// External Monitored Events 

(OTM 7a)

(OTM 7b)

// Corresponding Actuated Events 

(OTM 8a)
(OTM 8a)

Figure 6. Change request validation algorithm for managed resources.

to the test analyzer (2.2). The test analyzer evaluates
the test log against the validation policy and determines
whether validation passed or failed (2.2.1a), or if the
test suite was inadequate (2.2.1b) with respect to the
test coverage criteria. The results of the evaluation are sent
to the Orchestrating TM, which determines whether to end
the validation process (2.2.2a), or continue testing after
re-analyzing the current test suite (2.2.2b). If a decision
is made to re-analyze the test suite, then the behavior of
the second loop from 2.3 to 2.5 in Figure 5(b) is the
same as the first loop from 1.3 to 1.5 in Figure 5(a).
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V. PROTOTYPE: AN AUTONOMIC CONTAINER

Due to the lack of freely available autonomic systems,
we were unable to locate an application that would
allow the seamless integration of a self-testing frame-
work. Therefore, to show the feasibility of our approach,
we developed a prototype of an application with self-
management capabilities. Our prototype is based on the
concept of an autonomic container [20], which is a data
structure with self-configuration and self-testing capabil-
ities. However, we extend the work presented in [20] by
implementing the container as a distributed system with
the added feature of self-protection. The current version
of the autonomic container therefore provides data storage
services to remote users, while performing dynamic self-
configuration, self-protection, and self-testing.

The prototype was developed in Java using the Eclipse
SDK, along with the necessary plugins and libraries
for the tools to support testing. Two tools were used
to support the testing effort: JUnit, a Java unit testing
tool from the xUnit family of testing frameworks [21];
and Cobertura, a Java code coverage analysis tool that
calculates the percentage of source code exercised by unit
tests [22]. In this section we describe the main features of
the autonomic container and present its top-level design.
We also provide implementation details on the self-testing
subsystem, and describe our test procedures and experi-
ment setup. We then discuss the findings of this work in
the context of the uses and limitations of the prototype.

A. Main Features and Top-Level Design

The managed element of the autonomic container pro-
vides data storage services to general users through its
public remote interface, while self-management features
are only available to autonomic managers via its touch-
point interface. The underlying data structure for the
prototype is implemented as a stack, and the following
services are defined in its remote interface: login,
logout, push, pop, isFull, and isEmpty.

The self-configuration and self-protection features of
the prototype dynamically execute changes on the stack
based on predefined symptoms. Self-configuration occurs
when the stack reaches or exceeds 80% of its full capacity,
and involves increasing the stack capacity to anticipate
depletion of available storage space. The self-protection
feature of the prototype safeguards the stack from failures
that may be caused by repeated overflow or underflow
conditions. Self-protection occurs when the number of
stack exceptions thrown by a particular user during a
session exceeds 3, and results in the associated user
account being disabled.

The design of the prototype is based on the replication
with validation strategy, and therefore a copy of the stack
is maintained by the autonomic system exclusively for
testing purposes. The top-level package for the self-testing
autonomic container, labeled edu.fiu.strg.STAC in
Figure 7, contains all the nested packages and libraries
used to develop the prototype. The four main packages
are as follows: (1) mResources – provides access to

edu.fiu.strg.STAC

.aManagers

<<subsystem>>
selfConfig

<<subsystem>>
selfProtect

.tManagers

<<subsystem>>
replicaTest

.mResources

<<subsystem>>
container

<<library>>
java.rmi.*

<<subsystem>>
copyContainer

.auxTest

<<library>>
junit.*

<<library>>
cobertura.*

Figure 7. Top-level design of self-testing autonomic container.

the actual stack resource being managed and its copy; (2)
aManagers – implements autonomic managers that per-
form dynamic self-configuration and self-protection of the
stack; (3) tManagers – implements test managers that
validate self-configuration and self-protection changes
using the stack copy; and (4) auxTest – provides an
interface to a test support tool that analyzes program code
for test coverage. The packages described in (1) and (2)
represent the autonomic system, while those described in
(3) and (4) comprise the self-testing framework.

The aforementioned packages are composed of subsys-
tems which provide the core functionality of the proto-
type. Within the mResources package, access to the
subsystems for the remote stack container, and its
replica copyContainer, is achieved by using the Java
Remote Method Invocation [23] system (indicated by the
dependencies on java.rmi in Figure 7). The package
aManagers contains two subsystems, selfConfig
and selfProtect, which implement intelligent closed
loops of control for self-configuration and self-protection
respectively. These two subsystems are responsible for
executing change plans on the copy of the stack prior
to validation, and on the actual stack if validation is
successful. The package tManagers consists of a single
subsystem replicaTest that coordinates the end-to-
end testing activity, including the execution of parameter-
ized test cases developed using the junit library. Lastly,
the auxTest package contains classes that implement
customized test services for code profiling, and automate
the analysis of test coverage reports generated by the
cobertura library.

B. Test Procedures and Setup Environment

To simulate the behavior of the architectural model
of the integrated framework depicted in Figure 3, the
autonomic system and self-testing framework were im-
plemented as separate threads within a remote server
application. Client programs were then developed to au-
tomatically invoke the public interface of the autonomic
container, thereby emulating the actions of remote users.
Both the server and client application programs were
run on the Eclipse 3.2 platform using the Java Runtime
Environment (JRE) 5.0 Update 12.

The client programs were designed to operate in a
manner that would induce the self-management features
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of the autonomic container. For example, a client was
designed to login to the server and push random integers
onto the stack until it exceeded 80% of its full capacity,
thereby triggering dynamic self-configuration of the stack.
We then observed as the self-testing framework validated
the self-configuration change request, and examined the
results produced during this pass of the simulation. A
similar technique was used to setup a testing scenario for
the self-protection feature of the prototype.

The initial test suite for the autonomic container con-
sisted of 24 test cases written in JUnit 3.8.1. The test cases
were developed using a combination of test strategies
including: boundary, random, and equivalence partitioning
[10]. A parameterization technique was used in test cases
that addressed variable properties of the container such as
stack capacity and user accounts. The validation policy
for the Touchpoint TM required 100% pass rate for
all test cases executed, and at least 75% branch and
statement coverage. Cobertura 1.8 was used to evaluate
test coverage, and generate reports in extensible markup
language (XML) format.

C. Self-Test Subsystem Implementation

As previously mentioned the self-test subsystem of
the prototype, replicaTest in Figure 7, contains
managers that coordinate testing activities. These test
managers, as well as the autonomic managers for
self-configuration and self-protection, are based on
a reusable manager design depicted by the package
edu.fiu.strg.ACSTF.manager in Figure 8. This
package is the first component developed for an Auto-
nomic Computing Self-Testing Framework (ACSTF). The
design uses synchronized threads, remote method calls,
generics, and reflection in Java [23] to implement the
MAPE functions of the manager and the knowledge
component.

The knowledge repository of the manager, represented
by the class KnowledgeData in Figure 8, realizes the
interface KnowledgeInterface that is used by the
MAPE functions to access shared information. Queues
to hold newly generated change requests and change
plans to be executed have also been incorporated into the
knowledge component. When a manager is instantiated,
the KnowledgeCoordinator class loads a policy
file containing the following information: (1) the fully
qualified class name of the touchpoint object to be used
for sensing and effecting; (2) the method name of the
sensor function to be polled by the monitor; (3) a set
of symptoms defined by relational mappings between
the variables of the touchpoint and desired values; and
(4) a set of executable change plans represented by
sequences of effector methods to be executed and their
actual parameters.

All high-level policies for the prototype are stored
in XML 1.0 format, using the ISO-8859-1 encoding
standard. Each policy contains name and version attributes
which distinguish it from other policies and facilitate
automation with respect to upgrades. A snippet of the

TouchData SymptomList
ExecutionQueue

RequestQueue

edu.fiu.strg.autonomic.manager

edu.fiu.strg.ACSTF.manager

+updateSD()
+run()

Monitor

TouchData

+loadPolicy()

KnowledgeCoordinator

‐sensedData    : TouchData
‐symptoms  : SymptomList
‐requests  : RequestQueue
‐exPlans : ExecutionQueue

KnowledgeData

TouchData

+updateCRs()
+run()

Analyzer

TouchData

+updateCRs()
+updateCPs()
+run()

Planner

TouchData

+updateCPs()
+run()

Executer

TouchData

«interface»
KnowledgeInterface

in

updates

invokes

updates

invokes

updates

invokes invokes

updates

Figure 8. Generic design of autonomic and test managers.

<?xml version=“1.0” encoding=“ISO-8859-1”?>

<policy name=“OTM Self-Test” version=“1.0”>

<monitor touchpackage=“edu.fiu.strg.STAC”
touchclass = “OTMTouchData”
sensormethod=“getCoordState”/>

<analyzer>
<symptom sid=“OTM ST 001”>

<mapping var=“requiresSC”
op =“==”
val=“true” />

</symptom>
</analyzer>

<planner>
<plan pid=“OTM ST 001”>

<action effector=“dequeueReqSC”/>
<action effector=“copyChangeSC”/>
<action effector=“setupTouchTM”/>

</plan>
</planner>

</policy>

Figure 9. Snippet of validation policy for the Orchestrating TM.

validation policy used by the Orchestrating TM of the
prototype is shown in Figure 9. Policies are divided
into three major sections represented by <monitor>,
<analyzer>, and <planner> tags. Each section con-
tains the portion of knowledge that will be primarily
used by the component corresponding to its tag name.
For example, combining the values of the attributes
touchpackage, touchclass, and sensormethod
of the <monitor> tag in Figure 9, produces the fully
qualified method name of the sensor function used by the
monitor of the Orchestrating TM. This method collects
state information on the two autonomic managers, auxil-
iary test services, and Touchpoint TM to coordinate test-
ing. Polling is achieved by first passing the fully qualified
class name edu.fiu.strg.STAC.OTMTouchData
to the monitor as the template parameter TouchData,
shown in Figure 8. The monitor then uses reflec-
tion to instantiate the class and continuously invokes
getCoordState.

The object returned from the invocation of the sen-
sor method is compared with one or more predefined
symptoms, which were loaded from the <analyzer>
tag of the policy. Figure 9 shows a test symptom with its
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OTMSelfTest
[from replicaTest] TTMSelfTest

[from replicaTest]

OAMSelfProtect
[from selfProtect]

OAMSelfConfig
[from selfConfig]

Stack
[from copyContainer]

KnowledgeCoordinator
[from ACSTF.manager]

Main
[from cobertura]

StackTest
[from replicaTest]

TestCase
[from junit]

StackCover
[from auxTest]

ProjectData
[from cobertura]

Figure 10. Class diagram of self-test and associated components.

symptom identifier (sid) attribute set to “OTM ST 001”.
This symptom consists of a single mapping between
the touchpoint state variable “requiresSC” and the
value “true”, using the relational comparison operator
“==”. The requiresSC variable is defined in terms
of the state of the request queue of the Orchestrating
AM for self-configuration, and evaluates true whenever
a change request for self-configuration is pending. There-
fore, if a self-configuration change request is generated,
and since this is the only relational condition required
by the symptom, the manager will recognize that the
symptom has been satisfied and locate an appropri-
ate test plan. Note that a similar technique is used
for specifying self-management symptoms. For example,
the self-configuration policy of the prototype’s Touch-
point TM contains a symptom defined by the relation
“usedSpacePercent >= 80”. Our prototype design
is highly extensible as it allows multiple variable map-
pings to be defined for a single symptom, and multiple
symptoms to be defined for any manager.

Test symptoms are associated with test plans which
provide remedies as sequences of low-level testing tasks.
Test plans consist of a plan identifier (pid) attribute
that is logically linked to a test symptom identifier,
along with one or more actions. Figure 9 shows a
test plan with pid “OTM ST 001”, which corresponds
to the previously mentioned test symptom for detecting
requests for self-configuration. The actions of the test
plan consist of the effector methods dequeueReqSC,
copyChangeSC, and setupTouchTM, which dequeue
the self-configuration change request; implement the
change on the stack copy; and set up the Touchpoint TM
for change validation. Actions may also contain one more
parameter tags (not shown in Figure 9) that provide the
actual parameters to be used when executing the effector
methods. In a similar fashion to the monitor, the executor
component uses Java reflection to invoke the effector
methods with the specified parameters.

Figure 10 shows the minimal class diagram
of the self-test subsystem, along with classes
from other communicating subsystems. The four
manager classes OTMSelfTest, TTMSelfTest,
OAMSelfConfig, and OAMSelfProtect, all extend
the KnowledgeCoordinator class from the ACSTFs
generic manager component. The OTMSelfTest class

implements MAPE functionality of the Orchestrating TM
that manages the Touchpoint TM TTMSelfTest, and
monitors the two Orchestrating AMs OAMSelfConfig
and OAMSelfProtect for newly generated change
requests. Test cases for the stack were developed by
extending the JUnit class TestCase and stored in the
class StackTest. The class StackCover provides
functionality for dynamically generating and executing
a batch file, which sets the Main class of Cobertura to
instrument the Stack class during testing.

D. Evaluation

The main objective of developing the prototype was to
validate the architectural model of the integrated frame-
work shown in Figure 3. Although the prototype only
implements a minimal autonomic system, it provides
evidence to support that the replication with validation
strategy is feasible. A mutation testing technique was
used to evaluate the prototype with respect to its ability
to detect faulty change requests for managed resources.
Mutation operators were applied to the stack class to
create mutant stacks, which were used to assess the
effectiveness of the prototype’s self-testing framework.

Our evaluation involved analyzing correct and incorrect
(mutant) change request scenarios for self-configuration
and self-protection of the stack. The scenario for incorrect
self-configuration was achieved by altering the method
that resizes the stack to cause a decrease rather than an
increase in the stack capacity. Similarly, incorrect self-
protection of the stack involved altering the method that
disables a specific user account to enable rather than
disable the user. The self-testing framework was then
allowed to operate on the original version of the stack,
and the two mutants with the faulty methods.

In the correct change request scenarios for self-
configuration and self-protection, all of the tests passed
and the following code coverage measurements were
recorded: self-configuration – 85% branch coverage,
100% statement coverage; and self-protection – 88%
branch coverage, 100% statement coverage. The scenarios
for the incorrect changes each produced two test case
failures, and hence the code coverage measurements have
been omitted. Our mutation analysis produced favorable
results as validation passed for the correct change request
scenarios, but failed for the incorrect ones. Therefore, the
self-testing framework would have prevented undesirable
and potentially harmful changes to the managed resource
of the autonomic system.

Building the prototype provided us with insight on the
scope of the self-test subsystem in terms of the operations
that should be performed by the autonomic system and
the self-testing framework. However, the current version
of the prototype utilizes a static lookup of predefined test
plans and therefore does not adequately address the need
for dynamic test planning in autonomic systems. Further-
more, the prototype only implements the replication with
validation strategy and is therefore limited with respect to
adaptive systems.
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VI. RELATED WORK

Self-testing as an implicit feature of autonomic com-
puting systems has received little attention in the research
community. The research focus of autonomic computing
has been on the major self-management properties of
self-configuring, self-healing, self-optimizing and self-
protecting. The pioneers of autonomic computing systems
[4], [6] clearly state that one of the major challenges is
validating the correctness of such systems during devel-
opment and after changes have been made at runtime.
It is important to note however that aspects related to
the validation approaches presented in the paper have
been studied in the literature. We now compare two such
aspects, self-testing software/components and dynamic
adaptation, along with the authors’ previous work to the
work presented in this paper.

Several researchers have investigated the notion of self-
testing software [24]–[28]. Blum et al. [24] introduced
a technique which uses self-testing/correcting pairs to
verify a variety of numerical problems. The idea is that a
user can take any program and its self-testing/correcting
pair of programs and, once the program passes the self-
test, on any input call the self-correcting program which
will make the appropriate calls to the original program
to compute the correct value. If this notion of self-
testing/correcting program pairs worked for complex pro-
grams then self-testing for autonomic computing systems
would be trivial. However, this technique only works for
very well defined functions.

Denaro et al. [29] present an approach that automati-
cally synthesizes assertions from the observed behavior of
an application with the objective of adaptive application
monitoring. The proposed approach embeds assertions
into the communication infrastructure of an application
that describes the legal interactions between the com-
municating entities. These assertions are then checked
at runtime to reveal misbehaviors, incompatibilities, and
unexpected interactions that may occur because of hidden
faults. The focus of the work is to provide systems
with the ability to automatically synthesize assertions
that evolve over time and adapt to context-dependent
interactions. The synthesis of assertions at runtime can
benefit the self-testing of adaptive systems by providing
a way to generate additional test cases, which can be used
to test components after an autonomic change has been
implemented.

The work by Le Traon et al. [27] is closely related to
our work; it describes a pragmatic approach to develop
self-testable components that link design to the testing
of classes. Components are self-testable by including test
sequences and test oracles in their implementation. For
this approach to be practical at the system level, struc-
tural test dependencies between self-testable components
must be considered at the system architecture level. The
concept of self-testable components strongly supports the
idea of self-testing in autonomic computing systems. In
our approach we do not consider the notion of self-
testable components. However, such components can be

easily incorporated into our strategy, thereby improving
the overall approach.

Zhang et al. [8], [15] present an approach that formal-
izes the behavior of adaptive programs using state ma-
chines and Petri nets, respectively. The approach separates
the adaptative behavior from the non-adaptive behavior,
thereby making the models easier to specify and verify
using automated techniques. The contributions of the
work by Zhang and Chen [15] that can be applied to
our work include: (1) specification of global invariants
of the properties of adaptive programs regardless of the
adaptations and (2) creation of state-based models that aid
in the generation of rapid prototypes. Using the specifi-
cations for global invariants and state-based models, test
cases can be dynamically generated to test an adapted
program at runtime.

The work presented in this paper is an extension of the
work done by King et al. [7] and Stevens et al. [20]. King
et al. proposed a framework that dynamically validates
change to autonomic systems. The framework includes
self-testing as an implicit characteristic to support self-
management in autonomic systems. Stevens et al. [20]
introduced the notion of a self-testing autonomic container
that uses the self-testing framework proposed by King et
al. [7]. The autonomic container uses the replication with
validation approach to testing the autonomic container.
We extended the initial work in [7] by: (1) augmenting
the self-testing framework with an auxiliary test services
component and test knowledge sources to assist high-level
test coordination and facilitate manual test management;
(2) explicitly illustrating of how the test managers interact
with these new components; and (3) stating research
directions that address some of the key challenges faced
by this work. The prototype presented in this paper ex-
tended the autonomic container in [7], [20] to include both
dynamic self-configuration and self-protecting features.
In addition, the container was implemented as a dis-
tributed system using a client-server architecture. Finally,
additional details of the implementation were presented
including the generic manager design, and the structure
of the policies used by the managers.

VII. CONCLUSION

In this paper we presented an integrated self-testing
framework for autonomic computing systems based on
two strategies: safe adaptation with validation, and repli-
cation with validation. Our framework extends the current
architecture of autonomic systems to include self-testing
as an implicit characteristic. We developed a prototype of
an autonomic computing system which incorporates self-
testing. Clearly many challenges still remain, however,
this work aims to stimulate the convergence of a set of
testing and development methodologies that facilitate the
construction of dependable autonomic systems.
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