

1-4244-0429-0/06/$20.00 ©2006 IEEE

A User-Centric Network Communication Broker for
Multimedia Collaborative Computing

Chi Zhang, S. Masoud Sadjadi, Weixiang Sun, Raju Rangaswami, Yi Deng
School of Computing and Information Sciences

Florida International University
{czhang, sadjadi, wsun001, raju, deng}@cis.fiu.edu

Abstract—The development of collaborative multimedia
applications today follows a vertical development approach,
which is a major inhibitor that drives up the cost of development
and slows down the pace of innovation of new generations of
collaborative applications. In this paper, we propose a network
communication broker (NCB) that provides a unified higher-
level abstraction that encapsulates the complexity of network-
level communication control and media delivery for the class of
multimedia collaborative applications. NCB expedites the
development of next-generation applications with diverse
communication logics. Furthermore, NCB-based applications can
be easily ported to new network environments. In addition, the
self-managing design of NCB supports dynamic adaptation in
response to changes in network conditions and user requirements.

I. INTRODUCTION

The convergence of various multimedia communications
including voice, video and data over IP networks during the
past decade has resulted in the emergence of a wide range of
collaborative communication applications. However, the fast
pace growth of innovations has been restrained by the
stovepipe approach currently employed in application
development. The development of domain-specific
collaborative applications is both time-consuming and error-
prone because the low-level communication services provided
by the existing systems are primitive and often heterogeneous.
Further, the underlying network configurations can also vary
significantly which can reduce application portability.

What is lacking is a shared and systematic approach to
design across various collaborative applications. In [6], we
introduced Communication Virtual Machine (CVM) that
represents a paradigm shift in how a collaborative application
is conceived and delivered. Through its layered architecture
and model-driven engineering, CVM supports separation of
major concerns such as modeling application-dependent
collaboration logic, automatic generation of scripts to drive the
collaboration logic, and the application-independent basic
communication service reusable by various applications.

In this paper, we focus on the basic application-independent
communication service. We propose Network Communication
Broker (NCB), a client-side middleware that encapsulates the
networking complexity and heterogeneity of basic multimedia
and multi-party communication for diverse upper-layer
collaborative applications, ranging from a simple phone call
and video conferencing to specialized communication

applications like scientific collaboration, disaster management,
and telemedicine. The key innovation of the NCB concept is a
unified communication abstraction that separates and isolates
the complexities of network-level communication control and
media delivery from the diversity of application-dependent
collaboration logic. Under this unified high-level abstraction,
internally NCB translates a high-level communication task
into a series of operations, and coordinates the underlying
heterogeneous network infrastructure, systems and libraries
(such as TCP/UDP sockets, SIP-based signaling, RTP-based
real-time media transport, and device drivers) to smoothly
carry out communication tasks. The scope of NCB abstraction
is limited to providing a user-centric multi-party and
multimedia communication service.

The values of this unified NCB abstraction are (a) the
unified abstraction provides generic user-centric
communication services reusable by a wide variety of
collaborative applications. (b) Since the NCB abstraction
encapsulates networking complexities, the high-level
application-dependent collaboration logic becomes relatively
simple to build. (c) NCB hides the network heterogeneity from
the applications so that applications can be easily ported to
new network environments.

In this paper, we investigate the minimum necessary
requirements for the NCB abstraction and provide an API that
exemplifies this abstraction. In terms of approaches, the paper
has made two novel contributions. We identify that the
concept of user-level sessions (vs. network-level sessions
adopted by the existing protocols) is critical to a flexible and
reusable NCB design to support next-generation collaborative
communications and accommodate heterogeneous networks.
Furthermore, we demonstrate how the self-managing design of
NCB supports dynamic adaptation in response to changes in
network conditions and user requirements.

The rest of this paper is organized as follows. In section II,
we identify the set of requirements for the NCB abstraction
and present a minimal API. In section III, we overview NCB’s
internal architecture and design. Section IV introduces the
prototype implementation of NCB in Java, as well as
experiments and findings. Section V presents related work and
section VI provides some concluding remarks.

II. NCB ABSTRACTION AND API

Finding the appropriate level of NCB abstraction is non-
trivial. An abstraction that is too high-level can reduce the
flexibility of the applications. On the other hand, an
abstraction that is too low-level, can significantly complicate
the task of the developer, and reduce portability. We now
elaborate on the 4 key aspects that are fundamental to satisfy
the needs of next generation collaborative applications.

Initiation and Presence Interface: The NCB abstraction
must provide a registration mechanism for all users that allows
a signaling server to locate users. Table I presents the
proposed NCB initialization and presence interface.

TABLE I. NCB INITIALIZATION AND PRESENCE INTERFACE.

Interface Description
void launch() Configures NCB

void shutdown() Do cleanup for NCB

boolean login(String realm, String
user, String passwd)

Login into signaling server

boolean logout() Logout from signaling server

Session Interface: The abstraction should support the basic
concept of a user session. We define a user session within
NCB as a communication process that involves a number of
participants, who can be added or removed dynamically. A
user session thus represents a “multicast communication
space”, within which each participant can send various media
to all the other session participants on demand (e.g. sending a
document in the middle of a voice communication). Further,
the NCB abstraction must be capable of supporting multiple
user sessions simultaneously, which is necessary for
sophisticated next-generation collaborative applications such
as disaster management. In response to a disaster, an
administrator may initiate several user sessions for different
groups, since different groups may have different topics,
media types (e.g., voice communication in one user session
and text chat in another), priorities and levels of secrecy.
Table II presents part of the session interface.

TABLE II. NCB SESSION INTERFACE.

Interface Description
int createSession(String comments) Create new

communication session,
return a session ID.

boolean destroySession(int sid) Destroy an existing
session

public boolean add/remParty(int sid,
ArrayList parties)

Add or remove new
parties in a session

boolean add/remMedia(int sid, String
media_type, String media_location)

Add or remove a new
media in a session

Callback Interface: The interface must provide a mechanism
to expose certain low-level events of networks (e.g. network
outage) and sessions, to the applications, since under certain
circumstance, the upper-layer application may desire to be
notified of the communication states, so that appropriate
decisions can be made based on its application-dependant

communication logic. The NCB callback interface in Table III
enhances NCB flexibility with different application logic.

TABLE III. NCB CALLBACK INTERFACE.

Interface Description
Void networkFailure(String nwFailure) Notification of network

failure

Void sessionStatus(int sid, String status) Report the status of a
session (open, close etc.)

void partyStatus(int sid, String user, int
status)

Report the status of a
participant

void mediaStatus(int sid, String
media_type, String media_URI, int
status)

Report the status of a media
in a session

Self-Management Interface: NCB must internally conduct
self-optimization to autonomously adapt media-delivery to the
changing network conditions. The NCB self-management [10]
interface, demonstrated by Table IV, allows upper-layer
applications to customize (by specifying high-level policies as
guidance) NCB adaptive behaviors under specific network
conditions, based on user or application preferences,.

TABLE IV. NCB SELF-MANAGEMENT INTERFACE.

Interface Description
String getPolicyStatus() Get the current policy in XML

format

int applyPolicy(String
xmlString)

Apply the self-management policy in
xmlString

We developed an XML Schema to be able to specify high-
level policies in XML documents. An example of a self-
optimization policy in XML that is currently supported by the
NCB is shown in Figure 1. The policy is specific to the session
with ID # 24 and it dictates that when NCB detects a low
bandwidth condition, it should increase the video compression
rate and vice-versa to maintain a steady frame-rate. See
section III for more policies and section IV for experiments.

Figure 1. Example self-optimization policy specification.

III. NCB INTERNAL ARCHITECTURE AND DESIGN

As shown in Figure 2, the internal architecture of NCB is
complex in that it coordinates both the control plane (i.e.,
signaling protocols negotiating the communication) and the
data plane (i.e., transport protocols delivering media).

The communication messages between different NCBs
following standard networking protocols may have their own
notions of low-level network sessions. To encapsulate various
network sessions (e.g. audio, video etc.) within one user
session (see section II) of NCB, NCB must internally maintain

<session sessionID=”24”>

<connectionConstraint
 condition=”networkBandwidthDecreasing”
 action=”decreaseVideoResolution” />
<connectionConstraint
 condition=”networkBandwidthIncreasing”
 action=”increaseVideoResolution” />

</session>

the mapping from the user-level session ID to the network-
level session IDs of the underlying protocols. In the rest of the
paper, the term “session” is used to denote a NCB user session,
unless otherwise stated. In Figure 2, only the modules above
the dotted line are aware of user sessions, while all the
modules below that line are responsible only for individual
network-level sessions. As we will show below, this
extensible design can facilitate the integration of new
communication features over heterogeneous network
condition. We briefly describe and discuss each module as
follows.

 (a) NCB Manager: The NCB Manager is responsible for the
initialization and the configuration of the entire NCB
middleware. For example, it maintains the signaling server
information (IP address etc.). Upon receiving an application
request for creating a new session (at the caller side), or a
signaling message INVITE (at the callee side) from a remote
user negotiating a new conversation, NCB Manager creates a
new Session Manager (see below) to handle the new
communication session. The NCB Manager maintains the list
of Session Managers for all active sessions.

(b) Session Manager: A session manager deals with a single
user session. Since the states associated with a session include
the call status, the participants, and the media transfer, this
module further delegates the tasks to the “Call Processing”,
“Session Participants”, and “Media Delivery” sub-modules
within the Session Manager. The Session Participants module
keeps the list of participants of this session.

The Call Processing module controls, at the level of user
sessions, the logic of a session. It converts high-level control
actions (such as “addParticipant”) of a user session to
low-level signaling operations, based on the underlying
Signaling module, which carries out the basic signaling. It
maintains the states of the user session, such as the mapping
between the user session and individual SIP signaling sessions

maintained by the Signaling module.
The Media Delivery module manages, at the level of user

sessions, the transfer of media in a session. It translates an
“addMedia” call from the application into a number of
internal operations. It first relies on the Call Processing
module to negotiate transmission parameters (port numbers
and encoding/decoding schemes) before the actual media
transmission. It then controls on the “Media Processing and
Transmission” module to actually transmit the media.

(c) Media Processing and Transmission: This module carries
out media transmission and receiving. In addition, media will
be pre-processed (e.g. encoding) at the sender side, and will be
post-processed (e.g. decoding) at the receiver side.

(d) Signaling: The Signaling module carries out the basic
signaling operations according to the signaling protocols, such
as registration, invite a participant, media type and parameter
negotiation. The Signaling module encapsulates the signaling
heterogeneity, such as different signaling protocols (SIP [9] vs.
H.323 [7]), with or without NAT traversal.

 (e) QoS and Self Management: As illustrated in Figure 3, the
QoS and Self-Management module autonomously monitors
and adapts the behavior of the Media Delivery module. The
self-management behavior of this module follows the high-
level policies specified through the applyPolicy interface
(see Table IV) as the guideline from upper-layer applications.
For example, if the available bandwidth is low, depending on
user/application preferences specified through high-level
policies, this module can instruct the Media Delivery module
to either (i) use encoding schemes that provide less resolution;
or (ii) suspend video transmission in order to maintain high-
quality voice communication; or (iii) slow down (by
decreasing socket buffer sizes) file transfer for high-quality
video/audio.

Session Manager

Network Sessions
User Sessions

NCB Unified Application Programming Interface

Signaling

NCB Manager

Signaling Protocols
(e.g., SIP)

Media
Delivery

Media Processing & Transmission

Networking Interface to the Underlying IP Networks and Protocols
Real-Time Protocols

(e.g., RTP)
Best Effort Protocols

(e.g., SCP, HTTP)

TCP /UDP Sockets

Presence

ParticipantsCall
Processing

QoS & Self-
management

Figure 2. The NCB architecture

QoS and Self-Management

Media Delivery

Monitor

Analyze

Sensors

Execute

Plan

Effectors

A
ut

on
om

ic
M

an
ag

er
M

an
ag

ed
El

em
en

t

getStatus applyPolicy

Knowledge

Figure 3. QoS and self-management internal architecture.

IV. PROTOTYPE IMPLEMENTATION AND EVALUATION

We have developed a prototype of NCB in Java, called
NCB/J. We chose the standard SIP as our signaling protocol,
based on the open source NIST implementation of JAIN SIP.
Adding a medium in the middle of a session is supported by
the SIP re-invite message. Negotiating unidirectional media
transfer is implemented by the “send-only” or “recv-only”
attributes of Session Description Protocol (SDP) [9]. Based on
JMF, RTP is used as the transport protocol for real-time
multimedia. To justify the NCB concept, we developed two
types of applications based on NCB: person-to-person voice
call, and person-to-person video communication (including
both video and audio). We compare these against two
equivalent open source applications developed upon JAIN-
SIP/JMF that we downloaded off the Internet: the JAIN-SIP-
Applet-Phone (https://jain-sip-applet-phone.dev.java.net/) for
person–to-person voice call and the SIP-Communicator
(https://sip-communicator.dev.java.net/) for person to person
video communication.

Value of High-level NCB Abstraction: We used the lines of
code (loc) metric to compare the above applications, with and
without the NCB abstraction. The results are shown in Table
V. Based on the lines of code comparison with and without
NCB, it is reasonable for us to conclude that the development
time without NCB will be significantly longer.

TABLE V. LINES OF CODE (LOC) COMPARISON FOR DEVELOPING
APPLICATIONS WITH/WITHOUT THE NCB ABSTRACTION.

Application Based on JAIN
SIP/JMF

Based on NCB

Person to Person Voice call 9478 435
Person to Person Video
Communication

16784 440

Performance Evaluation: While changing the paradigm of
application development on end hosts, NCB could potentially
introduce performance overhead. Our results demonstrate that
NCB can provide the higher-level abstraction without
increasing the CPU utilization or the network utilization. The
experiment data are omitted due to the limited space.

Self-Management Experiments: Next, we demonstrate how
NCB supports self-optimization that can be customized
according to user preferences. The high-level policy from the
upper-layer application reflects the user preferences: if the

network bandwidth changes, then adapt the video compression
rate, in order to maintain a stable frame rate (in this case 13
fps). This high-level policy is expressed using the XML policy
string as shown in Figure 1. Without the self-managing policy
for the sender, a decreased bandwidth will cause packet losses,
and significantly reduce the frame-rate at the receiver side.
With the above policy, the user can express his/her preference
to maintain the stable frame-rate at the expense of the frame-
size and hence the image resolution.

Figure 4. The network bandwidth (deep blue line) and video stream

(light blue line) over time.

We use NetPeeker (http://www.net-peeker.com/), a network
speed limiter, to simulate three network capacities: 1100KB/s,
500KB/s, and 100KB/s. As shown by the results in Figure 4,
NCB dynamically adjusts video throughput based on the
change of available bandwidth. We also performed the same
experiment with the SIP-Communicator and compared its
receiver-side frame-rate with the equivalent NCB-based
application, shown in Figure 5. With the configurable policy,
the frame rate of NCB is stable when the network bandwidth
decreases, due to the increased compression rate. With a fixed
compression rate, the receiving frame rate of SIP-
Communicator decreases and sometimes the video freezes.

NCB as a Layer in CVM: As mentioned in the introduction,
NCB realizes the lowest layer of abstraction inside the CVM

Figure 5. Frame rate changes with network bandwidth
change.

X

1.5fps

6.5fps

13fps X X o

Frame rate

Network
bandwidth

100kB/s 500kB/s 1500kB/s

o

o

NCB with self-management (x)

Sip-Communicator (o)

layered architecture [6]. To evaluate the effectiveness of NCB,
we have incorporated NCB/J into a CVM prototype. Figure 6
shows two screenshots of CVM prototype that illustrate how
easily a Telemedicine application can be made readily
available through the CVM generic Web-based GUI and
model-driven schema. This figure captures a scenario within
which Mary loads the Telemedicine communication schema
(which contains the application-dependent collaborative logic)
from the schema repository, and selects two participants (Eric
and John). The media used in the connection are selected
from the Media Library (represented by icons on the top right
of Figure 6), and the two JPG files (“Heart_Scan.jpg” and
“X_Ray1.jpg”), are dragged into the Connection Box by Eric.
The actual communication delivery is performed by the
application-independent NCB/J.

Figure 6. Screenshots of CVM prototype: an active Connection

V. RELATED WORK

Prior work related to NCB on communication software can
be categorized into three major groups.

Multimedia Communication Applications and Services. Yahoo
Messenger, MSN Messenger, AOL Instant Messenger, Jabber,
Google Talk, Polycom, VRVS, and Access Grid are among
the numerous multimedia communication applications that are
being widely used. These applications provide a one-size-fits-
all solution to multimedia communication and fail when there
is a need for more specialized communication applications.

Protocols, APIs, and Software Frameworks. SIP [9], H.323 [7]
and RTP [14] are among the network protocols for Internet
telephony and real-time audio/video. JAIN SIP, Java Media
Framework (JMF), and Java Telephony API are low-level
software framework that are either still significantly complex
to use, or inflexible to support next-generation collaborative
applications. BoxOS [2] and Parlay are frameworks
addressing server-side architectures. The server-side
architecture has different concerns than our client-side
middleware NCB.

Reflective and Adaptive Middleware and Toolkits. Instead of
reinventing the wheel, the NCB internal design employs two
general approaches to self-management: parameterized [5, 8,
11, 16] and compositional [1, 4, 12, 13] adaptation. [3, 13, 15]
are among the projects that we closely follow to incorporate
some of their services inside NCB.

VI. CONCLUSION AND FUTURE WORK

We have proposed NCB, a unified high-level abstraction
that separates the complexities of network-level multimedia
communication from the application-dependent collaborative
logic. NCB facilitates rapid creation of portable collaborative
applications. In the future, we plan to enhance the extensibility,
reusability, and self-management of NCB.

REFERENCES

[1] M. Aksit and Z. Choukair, “Dynamic, adaptive and reconfigurable
systems overview and prospective vision,” the 23rd International
Conference on Distributed Computing Systems Workshops, May 2003.

[2] G. W. Bond, E. Cheung, K. Hal Purdy, P. Zave, and J. C. Ramming,
“An open architecture for next-generation telecommunication services”,
ACM Transactions on Internet Technology IV(1):83-123, February 2004.

[3] G. S. Blair, G. Coulson, P. Robin, and M. Papathomas, “An architecture
for next generation middleware”, Middleware’98, September 1998.

[4] W. K. Chen, M. A. Hiltunen, and R. D. Schlichting, “Constructing
adaptive software in distributed systems,” the 21st International
Conference on Distributed Computing Systems (ICDCS), April 2001.

[5] A. K. Dey and G. D. Abowd, “The context toolkit: Aiding the
development of context-aware applications,” the 22nd International
Conference on Software Engineering, June 2000.

[6] Y. Deng, S. M. Sadjadi, P. Clarke, C. Zhang, V. Hristidis, R.
Rangaswami, and N. Prabakar, “A communication virtual machine”, the
30th International Computer Software and Applications Conference,
September 2006.

[7] ITU-T Recommendation H.323v.4 "Packet-based multimedia
communications systems", November 2000.

[8] M. A. Hiltunen and R. D. Schlichting, “Adaptive distributed and fault-
tolerant systems,” International Journal of Computer Systems Science
and Engineering, vol. 11, pp. 125–133, September 1996.

[9] M. Handley, H. Schulzrinne, E. Schooler and J. Rosenberg, “SIP:
Session Initiation Protocol”, RFC 2543, March 1999.

[10] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
IEEE Computer, vol. 36, pp. 41–50, January 2003.

[11] G. Kortuem et. al, “When peer-to-peer comes face-to-face: Collaborative
peer-to-peer computing in mobile ad-hoc networks,” the 2001
International Conference on Peer-to-Peer Computing , August 2001.

[12] P. K. McKinley, U. I. Padmanabhan, N. Ancha, and S. M. Sadjadi,
“Composable proxy services to support collaboration on the mobile
internet,” IEEE Transactions on Computers, pp. 713–726, June 2003.

[13] R. van Renesse, K. P. Birman, M. Hayden, A. Vaysburd, and D. Karr,
“Building adaptive systems using Ensemble,” Software Practice and
Experience, vol. 28, August 1998.

[14] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications”, RFC 3550, July 2003.

[15] D. Schmidt, “The ADAPTIVE Communication Environment: An object-
oriented network programming toolkit for developing communication
software,” Concurrency: Practice and Experience, vol. 5, no. 4, 1993.

[16] J. P. Sousa and D. Garlan, “Aura: an architectural framework for user
mobility in ubiquitous computing environments,” the 3rd Working
IEEE/IFIP Conference on Software Architecture, pp. 29–43, 2002.

