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Abstract

We introduce a receiver-oriented approach to congestion control, demonstrated by an experimental protocol, TCP-

Real. The protocol allows for a measurement-based transmission strategy, which complements the ‘‘blind’’ increase/

decrease window adjustments. Owing to its design, the protocol displays an inherent property to produce compre-

hensive dynamics in heterogeneous environments with wired or wireless networks and delay-sensitive or -tolerant

applications. TCP-Real controls congestion as standard TCP does. However, its receiver-oriented nature and its

‘‘wave’’ communication pattern allow for two amending mechanisms: (i) congestion avoidance, which reduces un-

necessary transmission gaps that hurt the performance of time-constrained applications, and (ii) advanced error de-

tection and classification, which designates recovery tactics responsive to the nature of the errors, thereby enhancing the

protocol performance over wireless links or asymmetric paths.

We detail the protocol mechanisms and specification and we report extensively on the comparative fairness and

efficiency evaluation of standard TCP, TCP-Real, and TCP-friendly protocols for both delay-tolerant and -sensitive

applications and in both wired and wireless networks.
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1. Introduction

Transmission control of reliable protocols, as

exemplified by TCP [21], is based on somewhat

‘‘blind’’ increase/decrease windowmechanisms that

dynamically exploit the bandwidth availability of a
communication channel, without relying on pre-

cise measurements of current conditions, but ra-

ther on specific events triggered by violated

thresholds. An inherent characteristic of a ‘‘blind’’

window increase strategy is the natural cause of

congestion and the subsequent need for error re-

covery. Congestion is detected by missing seg-
ments [1] and the increase/decrease strategy is

designed precisely to maintain a dynamic balance

of the protocol�s transmission rate during periods

of congestion and bandwidth availability. This

balance is achieved by the additive increase/mul-

tiplicative decrease (AIMD) algorithm proposed in
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[7] through graduated adjustments upwards, when

conditions permit, or downwards when a packet

loss is detected.

TCP�s strategy of rapid backward and gradu-

ated upward adjustments hurts the performance of

TCP-based applications and damages indeed the
delay-sensitive applications. Research efforts have

been concentrating on two directions: (i) to avoid

the damage of false congestion-oriented responses.

The wireless network domain was recently the

focus of attention, mainly due to its distinctive

error characteristics, (ii) to avoid significant dam-

age during congestion. Although some damage is

inevitable during congestion, a smooth backward
adjustment has the potential to enhance applica-

tion performance. TCP-friendly protocols achieve

that by trading off the parameter b, which reflects

the multiplicative factor of TCP(a; b), with the

parameter a, which reflects the additive increase

factor. In other words, they reduce the window

size less during congestion, but then, they apply a

moderated increasing rate.
A combined effort that enables both smooth

adjustments and network-driven error recovery has

yet to be presented. However, this combination

cannot be logistic. That is, a synthesis of mecha-

nisms that target those specific problems will not

necessarily produce combined dynamics but it may

produce different dynamics. For example, a design

that calls for more aggressive recovery and
smoother backward adjustments could violate the

established framework of fairness and, occasion-

ally, fail to deal with congestion effectively.

The receiver-oriented research framework that

we discuss here is implemented in the form of an

experimental protocol, namely TCP-Real. 1 The

desirable behavior for this protocol is precisely

to demonstrate efficiency in heterogeneous envi-
ronments with wired or wireless networks and

delay-sensitive or -tolerant applications. Receiver-

oriented error control incarnates the property of

the receiver to determine with better accuracy the

data delivery rate and the potential level of data

loss. This abrogates the impact of false assess-

ments at the sender due to lost or delayed ac-

knowledgements. Our approach to efficiency,

however, relies also on the potential of measure-

ment-based transmission control. Estimating the

level of contention allows for early measures to-

wards congestion avoidance, which, in turn, re-

duces the damaging transmission gaps. Accurate
measurements also enable a basic error classifica-

tion. For example, a drop associated with high-

contention and queuing delay is potentially due to

congestion. Similarly, a missing packet from a

data window that is delivered with minimum delay

would rather indicate a random bit corruption.

Such initial assessments can be further elaborated

and confirmed by matching the expected and de-
livered data rates during previous, current, and

oncoming RTTs, targeting an enhanced error

classification and hence a sophisticated and re-

sponsive protocol strategy. Our modifications re-

flect such a protocol strategy enhanced with new

recovery tactics. However, the semantics of TCP

are not violated and, indeed, the established goals

of fairness and friendliness are further emphasized.
We evaluate three major aspects of the protocol

behavior: its efficiency, fairness and friendliness.

Efficiency is considered on the basis of the appli-

cation requirements and the underlying network

characteristics. We compare our protocol, TCP-

Real, with the standard TCP and TCP-friendly

protocols.

We organized the paper as follows: in Section 2
we discuss the limitations of TCP from the

perspective of the application requirements and

network characteristics, emphasizing on the con-

ditions under which friendliness can be achieved.

We detail our design of receiver-oriented conges-

tion control in Section 3. There, we also describe

the justification and implementation of our ex-

perimental protocol, TCP-Real. We justify our
testing methodology and evaluation procedure

in Section 4. Results are presented and discussed in

Section 5 and our conclusion is summarized in

Section 6.

2. A framework for potential improvements

The application requirements and the limi-

tations of congestion control circumscribe a1 Initial results of TCP-Real are presented in [32].
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framework for potential improvements. We iden-

tify five distinct cases of interest, which have been

discussed in the recent literature.

1. Additive increase leads naturally to conges-

tion, which, in turn, degrades throughput for
two reasons: (i) routers need time to recover

even from a transitory congestive collapse and

sources need time to detect and retransmit miss-

ing packets [17]; (ii) congestion control is trig-

gered upon congestion; the window is adjusted

backwards and the timeout is extended, which

in turn degrades the protocol�s capability to de-

tect and exploit error free conditions and band-
width availability, respectively [28].

2. Additive increase is not efficient when the

network dynamics encompass rapid changes

of bandwidth availability. For example, when

short flows that cause congestion complete their

task, bandwidth becomes available. Similarly,

when a handoff is completed in a cellular net-

work, the entire channel�s bandwidth becomes
available. A more rapid response is then clearly

indicated [24].

3. Multiplicative decrease causes transmission

gaps that hurt the performance of real-time ap-

plications that experience jitter and degraded

goodput. Furthermore, multiplicative decrease

with a factor of 1/2 or a window adjustment

to two packets characterizes a rather conserva-
tive strategy [9,13,16,24,30,31].

4. Error detection lacks an appropriate classifica-

tion module that would permit a responsive

strategy, oriented by the nature of potential er-

rors. That is, when errors appear to be transient

due to short-lived flows or random wireless in-

terference, congestion control mechanisms (i.e.

timeout extension and multiplicative window
adjustment) are triggered unduly. The insuffi-

cient error detection/classification may also lead

to unfair bandwidth allocation in mixed wired/

wireless networks. By default, flows that experi-

ence wireless errors do not balance their band-

width loss with a more aggressive recovery

although such behavior could be justified: flows

that experienced no losses have occupied extra
bandwidth at the router temporarily, when the

wireless errors forced some senders to back

off. This situation is discussed as an open issue

in [28]; we demonstrate the validity of this ar-

gument, based on experimental results, in

Section 5.

5. Source-based decision on the transmission rate,
based on the pace of the acknowledgements,

necessarily incorporates the potentially asym-

metric characteristics (e.g. ack delays and/or

losses) of the reverse path [3]. Hence, the sen-

der�s transmission rate does not always reflect

the capacity of the forward path. This situation

has a direct impact on efficiency since available

bandwidth remains unexploited.

Several proposals have been presented to tackle

the problems of TCP over wireless/mobile net-

works. Most of these proposals rely on some form

of local retransmission at the wired/wireless boar-

der, and do not deal (either directly or indirectly)

with real-time application constraints (e.g. [2],

[4]––see [28] for a detailed description). Some re-
cent protocols restrict the modifications at the

transport level. TCP-freeze [15] distinguishes hand-

offs from congestion through the use of the Ad-

vertised Window. WTCP [23] implements a rate-

based congestion control replacing entirely the

ACK-clocking mechanism. TCP-Probing [25]

grafts a probing cycle and an Immediate Recovery

Strategy into standard TCP, in order to control
effectively the throughput/overhead tradeoff. Al-

though TCP-Probing deals effectively with both

throughput and energy performance in heteroge-

neous networks, due to its probing mechanism, it

may not satisfy the requirements of delay-sensitive

applications for reduced transmission gaps. TCP-

Westwood [6] relies on bandwidth estimation to

set the slow start threshold and the congestion
window upon three duplicate acknowledgments or

timeout. No specific mechanism exists to support

error classification and the corresponding recovery

tactics for wired/wireless networks, albeit the

proposed mechanism appears to be relatively

effective over symmetric wireless links due to its

efficient congestion control. Naturally, a sender-

based strategy does not cancel the TCP deficiency
over asymmetric channels. A well-designed, mea-

surement-based version of TCP is TCP Vegas [5].

Vegas defines a BaseRTT to be the minimum of all
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measured RTTs, and ExpectedRate to be the ratio

of congestion window and BaseRTT. The sender

measures the ActualRate based on the sample

RTTs. If the difference between the ExpectedRate

and ActualRate is below a threshold 2 a, the con-

gestion window increases linearly during the next
RTT; if the difference exceeds another threshold b,
TCP Vegas decreases the congestion window lin-

early during the next RTT. Vegas does not tackle

the problems of wireless errors and asymmetric

paths, listed as Cases 4 and 5 above. However,

from the research perspective of the present work

it is important to consider that the authors of

Vegas demonstrated effectively that measurement-
based window adjustment is a viable mechanism.

A new family of protocols has recently emerged,

namely the TCP-friendly protocols [10,13,16,

22,24,30]. Congestion control was designed based

on two fundamental requirements: (i) to achieve

smooth window adjustments; this is done by re-

ducing the window decrease factor during conges-

tion, and (ii) to compete fairly with TCP flows,
which is achieved by adjusting the increase rate,

calculated from a TCP throughput equation. TCP

Friendly Rate Control (TFRC) is an equation-

based TCP-friendly congestion control protocol

[13]. The sender explicitly adjusts its sending rate as

a function of the measured rate of loss events, to

compete fairly with TCP. A loss event consists of

one or more packet drops within a single round-
trip time. The receiver calculates the loss event rate

and reports feedback to the sender. The benefit of

TFRC is its ‘‘gentle’’ rate regression upon conges-

tion. GAIMD [30] generalizes TCP by parameter-

izing the congestion window increase value a and

decrease ratio b. It provides a balancing relation-

ship between a and b to guarantee friendliness:

a ¼ 4ð1� b2Þ=3: ð1Þ
Based on experiments, Yang and Lam [30] have

chosen b ¼ 7=8 as the appropriate value 3 for the

reduced the window (i.e. less rapidly than TCP

does). For b ¼ 7=8, (1) gives an increasing value

a ¼ 0:31.
Obviously, the choice of parameters a and b has

a direct impact on the ‘‘responsiveness’’ of the
protocols to conditions of increasing contention or

bandwidth availability. Indeed, the combined dy-

namics of a and b from Eq. (1) exploit an inter-

esting tradeoff: a choice of a that allows for rapid

bandwidth consumption (additive increase) is

counterbalanced by a friendliness-driven response

with multiplicative decrease, rendering the proto-

col inappropriate for real-time applications.
The differences between TCP, TFRC 4 and

GAIMD congestion control lie mainly in the spe-

cific values of a and b; their similarities lie in their

AIMD-based congestion control––a characteristic

that enables us to include them both in the family

of TCP(a; b) protocols. Standard TCP is therefore

viewed here as a specific case of TCP(a; b) with

a ¼ 1, b ¼ 0:5. From the perspective of our clas-
sification, TCP-friendly protocols are designed to

satisfy specific application requirements such as

those outlined in Cases 1 and 3 outlined in Section

2; however, as we show here, they may exhibit

further weakness when bandwidth becomes avail-

able rapidly (Case 2, Section 2). Apparently, the

tradeoff between responsiveness and smoothness

can be controlled to favor some applications, but it
will cause some other damages. Considering the

variability of network conditions and the duration

of flows, the equation-based recovery may provide

weak guarantees for friendliness. We briefly ex-

ploit this situation below.

According to [20] and extended by authors of

[30], TCP(a; b) throughput can be modeled as

Ta;bðp;RTT; T0; bÞ

¼ 1

RTT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bð1� bÞ
að1þ bÞ p

s
þ T0 min 1; 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� b2Þb

2a
p

r !
pð1þ 32p2Þ

ð2Þ

where p is the loss rate; T0 is the retransmission
timeout value; b is the number of packets ac-

2 The thresholds� notation in Vegas match coincidentally the

notation of additive increase/multiplicative decrease parame-

ters.
3 Note that although b was so far called the multiplicative

factor, its value determines the size of the window. That is, 7/8

means that the window was reduced by 1/8th.

4 In fact, TFRC has several other mechanisms that differ

from TCP.
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knowledged by each ACK; a and b are the con-

gestion control parameters: the sender�s window

size is increased by a if there is no packet loss in a

round-trip time, and the window is decreased by b
of current value if there is a loss indication. Ob-
servations of the window dynamics and event

losses are frequently assumed within a time period

of a congestion epoch. A congestion epoch is de-

fined in [12] as the time period that reflects the

uninterrupted growing lifetime of a window. 5 More

precisely, a congestion epoch begins with bW pack-

ets, increased by a packets per RTT and reach-

ing a congestion window of W packets, when a
packet is dropped. The congestion window is then

decreased to bW. Hence, a congestion epoch in-

volves

n ¼ b=a � Wþ 1 RTTs ð3Þ

TCP-friendly (a,b) protocols approximate the

throughput of standard TCP (a ¼ 1; b ¼ 0:5),
which means that Eq. (4) which is derived from (2)

(see [13,30]) provides a rough guide to achieve

friendliness.

Ta;bðp;RTT; T0; bÞ ¼ T1;0:5ðp;RTT; T0; bÞ ð4Þ

However, having the network or application con-

ditions changing rapidly, friendliness might not be
attained. More precisely, based on (3) we conclude

that (4) can be achieved at a time tn or later since

multiple drops will extend further the time of

convergence. Based on (3) we also conclude that

the time period required for (4) to hold is in reverse

proportion to the number of flows within a fixed

bandwidth channel; the smaller the number, the

larger the window. Finally, the propagation delay
has a direct impact on the time required for

TCP(a; b) to reach a full-window size. Practically

(and deterministically) this means that for a win-

dow of 64 KB and an RTT of 100 ms, TCP(1, 1/2)

needs at least 3.2 s to reach the max window size.

Any interrupting event prior to completeness

of the lifecycle would impact the dynamics of

friendliness.

Our receiver-oriented approach intends to elude

the balancing trade of the parameters of additive

increase and multiplicative decrease by introducing
another parameter, namely c, which determines the

window adjustments during congestion avoidance.

Congestion avoidance achieves the objective of

smoothness by eliminating the frequency of con-

gestive drops; it maintains responsiveness through

the unchanged additive increase rate. It can be as-

sumed initially that since during congestion the

protocol behavior is not exhibiting any differences
from standard TCP, the established standards of

protocol behavior are not violated. We verify this

hypothesis experimentally, in Section 5.

3. TCP-Real: receiver-oriented congestion control

3.1. Protocol strategy and justification

In order for the receiver to observe accurately

the level of contention and/or packet loss, a limpid

communication pattern with the sender is needed.

We call this pattern a ‘‘wave’’ and it was intro-

duced in [26,27]. A wave consists of a number

of fixed-sized data segments sent back-to-back,

matching the inherent characteristic of TCP to
send packets back-to-back. By default, a TCP

wave is effectively the congestion window with an

additional attribute: its size is published to both

peers. However, since the transmission pattern of

TCP is also constrained by its ACK-clocking

mechanism, when packets or acknowledgements

are delayed or lost, the congestion window may be

partitioned into smaller groups of back-to-back
packets; these groups correspond to distinct waves.

In effect, the wave pattern enables the marking of

those parts of the congestion window that are sent

back-to-back. The pattern in its own right has the

potential to cancel the impact of the hidden as-

sumption that packets within a congestion window

are actually sent back-to-back. The assumption is

made implicitly each time the receiver attempts to
monitor the network dynamics based on packet

dispersion, without shaping the traffic at the sen-

der prior to transmission.

5 This is the interpretation of the notion of congestion epoch

of the present authors.
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Having a well-known pattern of data exchange

that permits both peers to know the size of the

wave enables the receiver to estimate the level of

contention/congestion. The inter-packet gap and

the wave delivery time can be sources of infor-

mation that indicate the presence of contention
within the network, which in turn allows for

error classification and appropriate recovery. More

precisely, the receiver computes the data-receiving

rate of a wave (see Section 3.3 for details), which is

determined by the inter-leaving patterns of packets

from different flows at the bottleneck router. The

lower the perceived rate, the higher the multi-

plexing level at the bottleneck and the smaller the
congestion window suggested, and vice versa.

During congestion, the data-receiving rate might

fluctuate dramatically due to packet drops that

occur at the bottleneck router. However, if a

packet drop is due to a wireless error, the data-

receiving rate shall not be affected, and the corre-

sponding gap of the missing packet can be both

observed and estimated since the wave size is
known to the receiver. These observations are used

herein to implement an ad interim tactic to dis-

tinguish transient random errors from congestion;

the overall strategy is verified at the next RTT by

comparing the perceived rate and the previous

rate. The reasoning behind the interim nature of

the recovery tactic is the associated uncertainty of

the error detection and rate estimation. Although
a large window of data provides a good sample for

measurements of the receiving rate and a better

possibility to observe at least one inter-packet gap,

a ruling based on a small window is exposed to

potential errors and coincidences. The protocol�s
default behavior in the presence of uncertain de-

tection is dominated by the standard AIMD.

Presently, we are investigating the potential of a
recovery strategy in association with the estimated

error margin of detection and the specific charac-

teristics of the error pattern (i.e. frequency, dura-

tion etc.).

The improved error classification and conten-

tion/congestion estimation enables an error re-

covery strategy based on the nature of the error.

The receiver can decouple the packet losses from

the window adjustments: whenever the receiver

observes data delivery with low jitter and high

receiving rate, missing packet(s) indicate a random

(perhaps wireless) error. Therefore, unnecessary

congestion-oriented back-offs are avoided: when-

ever contention boosts up, the receiver instructs

the sender to smoothly adjust its rate backwards,

prior to congestion. Hence, congestion avoidance
could eliminate the number of drops and the

subsequent actions of congestion control. Clearly,

receiver-oriented control could also overcome the

problems of asymmetric paths––the receiver could

rule on the need for rate adjustment regardless of

the reverse-path characteristics.

3.2. Congestion avoidance and control algorithms of

TCP-Real

The congestion avoidance algorithm of TCP-

Real is shown in Fig. 1. The receiver measures the

data-receiving rate of each wave and attaches the

result to its ACKs, directing the transmission rate

of the sender. When new data is acknowledged and

the congestion window is adjusted, the current
data-receiving rate is compared against the previ-

ous one. If there is no receiving rate decrease, the

congestion window is increased by 1 MSS every

RTT ða ¼ 1Þ. If the magnitude of the decrease is

small, the congestion window remains temporarily

unaffected. If the magnitude of the rate decrease is

high, the sender reduces the congestion window

multiplicatively by c where c selected 1/8 for our
experiments, although it can be adaptive to the

detected conditions. The congestion avoidance al-

gorithm of TCP-Real is shown in Fig. 1. Note that

here the congestion window size is decreased prior

to congestion and therefore the value of c corre-

sponds to an additional parameter. When the wave

size is too small (less than four segments 6), the

measured data-receiving rate can only reflect
transient behavior and is ignored: the congestion

window is increased by 1 every RTT.

In each epoch, the sender keeps a record of the

lowest and highest data-receiving rate. When a

timeout or 3-dack event occurs, the sender evalu-

ates two conditions shown in lines 5 and 6 of Fig.

2. If both are satisfied, i.e. if the magnitude of re-

6 We determined the threshold of 4 empirically.
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ceiving-rate fluctuation is high (higher than c,
where c is a constant set at 3 in our experiments)

and the current data-receiving rate is relatively low

(i.e. the multiplexing level at the bottleneck is

high), congestion control is activated. The sender

reduces the congestion window as TCP Reno does

ðb ¼ 1=2Þ. This mechanism acts as an inspection

point of the receiver�s judgment during congestion,

when it is likely that the window size is small and
hence the wave-based rate-detection capability

might be weak. Otherwise, the packet loss is as-

sumed to be due to a transient (perhaps wireless

random) error and the congestion window size is

not adjusted backward. That is a reasonable ac-

tion; a somewhat significant queue build-up or

congestion most likely will be reflected at the data-

receiving rate, since packet inter-leaving will affect
the data-delivery pattern. We note, however, that

if the time of a congestion epoch is too short

(determined by a threshold, see lines 10–11 in Fig.

2), neither the sender nor the receiver have enough

information to assess the network conditions, and
the congestion window is reduced as in standard

TCP. Hence, TCP-Real enhances standard TCP

with a congestion avoidance tactic, taking advan-

tage of its error/contention detection capability. 7

It can therefore be viewed as a TCP(a; b; c) pro-

tocol where c captures the protocol�s behavior

prior to congestion, when contention boosts up.

Fig. 1. TCP-Real: congestion avoidance algorithm.

7 It is worth mentioning that error detection and capacity

measurement is a research topic in its own right. Precision of

measurements and accuracy of estimation would have a direct

impact on protocol performance. Presently, we have not

exhausted the error detection capabilities of the wave pattern

and therefore we did not incorporate a high degree of

sophistication in the protocol�s recovery strategy. Whenever

such sophistication is required due to dubious measurements or

incomplete information the protocol behaves as standard TCP.

Practically, this observation is in favor of our results, which

demonstrate notable improvement without exhausting the

mechanisms� potential.
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In order to avoid the wasteful window adjust-

ments downward over asymmetric links, the sen-

der needs to decouple the timeout mechanism and
the RTT from the window size. That is, in stan-

dard TCP, acknowledgement losses may cause

timeout to be extended and congestion window to

be reduced. In TCP-Real, the timeout can be ex-

tended, but the window size could remain the same

or even increase. The reasoning behind this stra-

tegic modification is that the sender needs to ex-

tend the timeout based on the RTT measurements,
in order to accommodate the potential delays of

the reverse path and avoid an early timeout.

However, only the perceived congestion level of

the forward path will determine the sender�s con-

gestion window size.

3.3. Implementation notes

The sender sends data in waves and piggybacks

the wave sequence number and wave size infor-

mation using a TCP header option: TCP_REAL.

TCP_REAL option is 4 bytes long. The third byte

contains the current wave sequence number, while

the fourth byte contains the wave size (number of

segments) of the wave. The wave size attached is

crucial for the measurements of the receiver, since

the number of packets sent side by side may be less

than the congestion window size.

The receiver computes the data transmission
rate by collecting the data packets corresponding

to the current wave. The receiver also records tf
and tl, the arriving time of the first and last seg-

ment in the wave, respectively. The data-receiving

rate can therefore be computed as the ratio of the

wave size to wave receiving time. The wave re-

ceiving time is the difference between tf and tl, and
could be much smaller than the RTT. Thus, the
data receiving rate captures the packet inter-leav-

ing pattern at the bottleneck, rather than the

available bandwidth or the achieved throughput.

The wave size used in calculations is the ‘‘ex-

pected’’ wave size contained in the header, not the

actual ‘‘received’’ wave size, since loss of corrupted

segments in a wave needs to be counted. Packet

loss due to random transient errors shall not affect
the computed rate, which is used to measure the

level of multiplexing/contention; packet loss due to

congestion could be detected by the change in the

receiving rate anyway.

The receiver reports the measured data-receiv-

ing rate and the corresponding wave sequence

number back to the sender within the returned

ACKs, using a TCP header option: TCP_REAL_

Fig. 2. TCP-Real: congestion control algorithm.
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ACK. TCP_REAL_ACK option is 4 bytes long.

The third byte contains the wave sequence num-

ber of the last wave received completely, while

the fourth byte contains the corresponding data-

receiving rate. The data-receiving rate is re-scaled

to the range of one byte [0, 255], where 255 in the
TCP_REAL_ACK option corresponds to the high-

est data-receiving rate observed by the receiver so

far. Since the identical TCP_REAL_ACK option

is reported in every ACK until the wave sequence

number changes, the probability not to deliver

the wave-level information to the sender is quite

low.

4. Experimental methodology

4.1. Testing environment

TCP-Real was implemented on both the xkernel

protocol platform [29] and the ns-2 network sim-
ulator [19]. Results from an earlier stage of the

protocol with the xkernel and single-flow mea-

surements can be found in [32].

The environment of ns-2 enabled simulations of

multiplexed wired/wireless channels and hence it

was deemed appropriate for implementing our

major testing plan. Simulations were conducted

for both simple and complex network topolo-
gies. The simple topology used as a test-bed is

the typical single-bottleneck dumbbell, as shown

in Fig. 3. The capacity of the bottleneck link

(bw_bottleneck), access links to source nodes

(bw_src), and access links to sink nodes

(bw_dst) was occasionally re-configured for the

different evaluation scenarios. In most cases,

however, bw bottleneck ¼ bw src ¼ bw dst unless
it is pointed out explicitly otherwise. By default, all

access links have a delay of 5 ms while the bot-

tleneck link has a delay of 25 ms. However, the

delays of access links to source nodes (de-

lay_src) and access links to sink nodes (de-

lay_dst) were re-configured in order to evaluate

the protocol behavior when the flows have differ-
ent RTTs (see Section 5.1). For heterogeneous

(wired and wireless) network simulations, ns-2

error models were inserted into the access links to

the sink nodes. The Bernoulli model was used to

simulate link-level errors with configurable packet

error rate (PER). Error models were configured on

both (forward and reverse) directions of the link

traffic, except for the link asymmetry test (see
Section 5.4), where the error is configured in the

reverse direction only. The number of flows (or the

number of source–sink pairs) n, varied from ex-

periment to experiment.

Protocol performance and fairness were also

tested with multiple bottlenecks and cross-traffic,

using the scenario of Fig. 4. The router R1 is the

bottleneck for the main traffic (flows between
source nodes to sink nodes), while the router R3 is

another bottleneck for the competing main traffic

and cross-traffic (flows between peripheral source

nodes and peripheral sink nodes).

4.2. Testing plan

The purpose of evaluation was to demonstrate
the capability of TCP-Real to combine the advan-

tages of standard TCP and TCP-friendly protocols

to control congestion and increase smoothness,

respectively. According to expectations, TCP-

Real should improve throughput and fairness of

standard TCP in heterogeneous wired/wireless

networks due to its enhanced error detection/

classification, and achieve better performance with
real-time traffic due to its congestion avoidance

tactics. Being less aggressive than TCP-friendly

protocols during congestion and more aggressive

when bandwidth becomes available, Real should

also demonstrate better friendliness. Accordingly,

we have selected five protocols for comparative

evaluation: TCP-Real, Reno, SACK, GAIMD

and TFRC. TCP Reno introduces Fast Recovery
[1] in conjunction with Fast Retransmit. Fast

Recovery sets the congestion window to half itsFig. 3. Dumbbell network topology.
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previous value, in the event of three dacks, after
the retransmitted segment gets acknowledged.

TCP-SACK [8,18] is the newer version of TCP,

and for that reason it was also included in the

experiments. 8 However, TCP-SACK differs in the

acknowledgment and retransmission strategy, en-

abling multiple segment retransmission within one

RTT. We note that its mechanisms can be incor-

porated in other protocols as well. All the other
protocols selected here have similar constraints

with regard to retransmission during congestion

(number of packets and timeouts), with the ex-

ception of TFRC, which is selected to enable a

rough comparative assessment on the performance

of rate-based TCP-friendly protocols under spe-

cific scenarios. Indeed, TFRC is significantly more

aggressive than the other four protocols and it was
deemed appropriate to demonstrate the conflicting

behavior of aggressive, equation-based protocols

when the situation calls for rapid bandwidth con-

sumption.

Evaluation is conditional according to the test-

ing subject and the protocols� and application

characteristics. To honor a focused discussion and a

reasonably tangible assessment we demonstrate the
results selectively and in steps. We normally begin

each scenario with a single-flow report, which is

used as a reference point. Results are presented with
ftp applications, over heterogeneous (wired and

wireless) networks, asymmetric transient errors,

and handoff conditions. To investigate the proto-

cols� performance with delay-sensitive applications,

we used the ns-2 Constant Bit Rate (CBR) agent to

simulate a playback-enabled application with data

rate 1 Mbps. The bottleneck link bandwidth satis-

fies the condition

1Mbps � n ¼ bw bottleneck

in order to provision just enough bandwidth to all

flows.

We also conducted experiments with diverse

RTTs, multiple bottlenecks, and cross-traffic. To

further investigate the protocols� performance

when the reverse path is congested by cross-traffic,

we configured the ns-2 exponential On/Off traffic

generator on the reverse path.
We evaluate TCP-friendly protocols in line with

the issues outlined in the introduction. Our major

issue here is the relative friendliness of TCP-Real.

We present a scenario where multiple flows of

protocol pairs compete for the channel�s band-

width and their ‘‘friendliness’’ can be adequately

demonstrated. Finally, as pointed out in Section 2,

a design tradeoff of TCP-friendly protocols is that
a smooth rate reduction comes at the expense of a

slow response to available bandwidth. In order to

evaluate this tradeoff we created a scenario of

temporary ‘‘blackouts’’ due to handoffs, during

8 The performance of TCP-NewReno [11], another version

of TCP, was similar to either Reno�s or SACK�s and, hence, was
not included in the presentation.

Fig. 4. Network topology with multiple bottlenecks and cross-traffic.
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which all transmitted packets were lost and the

channel�s bandwidth was becoming available im-

mediately afterwards.

4.3. Performance metrics

Our evaluation plan calls for common as well as

non-traditional metrics. The System Goodput is

used to measure the overall system efficiency in

bandwidth utilization with stationary environ-

ment. The Goodput for each flow is defined as:

Goodput ¼ Original Data=Connection Time

where Original_Data is the number of bytes

delivered to the high-level protocol at the receiver

(i.e. excluding retransmitted packets) and Con-

nection_Time is the amount of time required

for the data delivery. Consequently, the System

Goodput is the sum of the Goodput of all flows,

defined as

System Goodput ¼
X
i

gi

where gi is the goodput for the ith flow. Simi-
larly, we define Aggregated Protocol Goodput, as

the goodput sum of all the flows that correspond

to a particular protocol. The metric is used in

protocol-pair tests to enable comparison of pro-

tocol friendliness.

Fairness is measured by the Goodput Fairness

Index, derived from the formula given in [7] and

defined as

GFI ¼
P

i
gi

� 	2
n
P

i
g2
i

� 	 :
In order to characterize the behavior of different

traffic sources in the multi-bottleneck environment

shown in Fig. 4, we define Average Traffic Goodput

to be the average goodput of all the flows be-

longing to the same traffic, either the main or the

cross-traffic. The system fairness is thus captured

by the Average Traffic Goodput Ratio:

ATGR

¼ Average Traffic Goodput of Main Traffic

Average Traffic Goodput of Cross Traffic

¼
1
n

P
i
g maini

1
m

P
j
g crossj

where g maini is the goodput for the ith flow of

the main traffic and g crossj is the goodput for

the jth flow of the cross-traffic; n and m are the

number of flows belonging to the main traffic and

the cross-traffic, respectively. A value of ATGR
close to 1 is desired: the system is unfair to the

main traffic when the ATGR is smaller than 1; the

system is unfair to the cross-traffic when the ATGR

is larger than 1.

In the experiments with real time traffic, the

application attempts to read and consume up to

125 KB every second, (assuming the playback

buffer is exactly 125 KB). Because of the sending
window fluctuation and transmission gaps of TCP,

there are instances when the data is unavailable to

the application. The percentage of application�s
successful attempts to read x% of 125 KB data

from the playback buffer, namely x% Application

Success Percentage, is used to measure the proto-

col�s real-time performance:

Application Success percentage

¼ 100 �
XT
j¼1

Xn
i¼1

Successði;jÞ=ðnTÞ
" #

%

where, n is the total number of flows; T is the

connection time (in seconds); Success (i, j) is

defined as:

Successði;jÞ ¼
1 ifðAllotedGoodputði;jÞ=

TargetReceivingRateÞ > x%

0 otherwise

8<
:

where AllottedGoodput (i, j) is the goodput

of the ith flow within the jth second. In our

experimental configuration, Targeted Re-

ceiving Rate is 1 Mbps. From another per-
spective, the metric x% Application Success

Percentage captures the number of discrete time

slots when the flow achieves at least x% of 1 Mbps

data receiving rate.

The Sending rate is used to capture a protocol�s
aggressiveness to exploit available bandwidth. We

use this metric in scenarios of rapid bandwidth

increase when bandwidth becomes immediately
available after the handoff.
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5. Results and discussion

5.1. Performance with time-tolerant applications

Figs. 5 and 6 show that in a wired network with
a 10 Mbps bottleneck link, TCP-Real�s goodput

and fairness performance is as good as Reno�s and
SACK�s, with the number of flows ranging from 10

to 100 in the experiments.

We repeated the experiments with diverse

RTTs. The minimum RTT is fixed at 30 ms, while

the maximum flow RTT varies from experiment to

experiment. The total number of flows is 50, and

the ith flow�s RTT is given by the following

equation:

RTTi ¼ 30þ i � ðmaxRTT� minRTTÞ
=ð50� 1Þ ðmsÞ:

Figs. 7 and 8 show that in most cases, Real�s
fairness is not worse than Reno�s or Sack�s. Es-
pecially when the RTT dynamic range is high

(>400 ms) and the network capacity is limited (10
Mbps), TCP-Real achieves better fairness.

Protocol performance was also tested with

multiple bottlenecks and cross-traffic (see Fig. 4).

Half of the flows form the main traffic, while the

other half form the cross-traffic. Our first simula-

tion was conducted with drop tail routers. The re-

sult shown in Fig. 9 appears initially surprising:

although the propagation delay of the cross-traffic
was smaller than the delay of the main traffic and

the bandwidth provisioned to the cross-traffic was

higher, the main traffic consumed more bandwidth.

However, we note that the flows of the main traffic

were aggregated in a 20 Mbps link (R1–R2) before

entering the queue of the bottleneck R3, where they

compete with the cross-traffic. A detailed examin-

ation of the trace files has shown that packets ag-
gregated before entering the bottleneck R3 were

Fig. 6. Fairness over wired network (10 Mbps bottleneck link).

Fig. 7. Fairness over wired network (10 Mbps bottleneck link,

50 flows. RTTs are uniformly distributed between 30 ms and

max RTT).

Fig. 5. Goodput over wired network (10 Mbps bottleneck link).
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more uniformly distributed in the time domain,
therefore having smaller probability to get drop-

ped, compared to the bursty traffic of non-aggre-

gated cross-traffic flows (see Source 1. . . Source n
and Peripheral Source 1. . . Peripheral Source m in

Fig. 4). Notably, TCP-Real achieves relatively

better fairness. We repeated this experiment with

RED gateways [14]. The results show (Fig. 10) that

better system fairness is achieved, with TCP-Real

maintaining a slight comparative advantage. The

experiment also indicates that TCP-Real does re-

spond appropriately to RED drops, which happen
only when congestion boosts up.

5.2. Performance with heterogeneous networks

The relative system goodput of TCP-Real is

further improved over heterogeneous networks,

shown in Fig. 11. Unlike TCP-Real, the other

protocols do not have an error classification
mechanism and hence recovery cannot be respon-

sive to the error type.

To further confirm that assertion, we provide a

framework for characterizing the efficiency of a

protocol�s aggressiveness. For that purpose we

exceptionally include TFRC in the comparison.

The 10 Mbps throughput capacity of the wireless

links was interrupted by a handoff every 5 s; the
duration of the handoff was exponentially dis-

tributed with a mean of 500 ms. A protocol that is

relatively aggressive is expected to behave similarly

or even more aggressively when bandwidth be-

comes available rapidly. Otherwise its behavior is

not reasonable but rather conflicting. In other

words, since bandwidth becomes available imme-

diately after the handoff, a high sending rate re-
flects a desirable behavior; the protocols need not

adjust the rate due to congestion.

Fig. 9. Traffic goodput ratio over wired network (multiple

bottlenecks, with drop tail gateways).

Fig. 10. Traffic goodput ratio over wired network (multiple

bottlenecks, with RED gateways).
Fig. 8. Fairness over wired network (100 Mbps bottleneck link,

50 flows. RTTs are uniformly distributed between 30 ms and

max RTT).

V. Tsaoussidis, C. Zhang / Computer Networks 40 (2002) 477–497 489



Fig. 12 plots the protocol�s sending rate. Note

that the available capacity for each protocol is 10

Mbps since each protocol was tested separately.

Also note that TFRC is designed to respond to a

loss event 9 instead of a packet loss. Besides its

aggressiveness during congestion and the reduced

timeout adjustments due to the notion of a ‘‘loss
event’’, TFRC pays off the cost of equation-based

recovery by misinterpreting the present situation.

For this selected experiment the dominant pa-

rameter is a. After the handoff is over, the receiver

of TCP-Real observes the lack of flow multiplex-

ing and since contention has not been detected

it adjusts its congestion window faster than

GAIMD, Reno and SACK, and, in most cases,
than TFRC as well. Although the handoff event

had indeed triggered a timeout, the error pattern

did not justify a congestion-oriented response for

TCP-Real.

It can be depicted from Figs. 13 and 14 below,

that TCP-Real outperforms both Reno and SACK

also in a multiple-flow channel with 10 and 100

Mbps link, respectively. With 10 flows and ran-
dom transient errors varying from 0 to 0.05 PER,

Reno and SACK�s congestion control mechanisms

unnecessarily reduce the congestion window. TCP

Real avoids backward adjustments whenever the

receiving rate does not justify a congestion-ori-

ented response. However, as the error rate in-

creases, the System Goodput naturally decreases

for all protocols and the advantage of TCP-Real

appears to be reasonably diminishing since the
error rate increase determines the actual decreased

availability of bandwidth. Figs. 13 and 14 dem-

onstrate the weakness of the (a; b) trading in

wireless environments. Errors of some density

force all protocols to mistakenly back off; the im-

pact is dual for GAIMD since not only does it not

avoid the unnecessary adjustment but, indeed, it

delays the recovery.
In order to demonstrate further the impact of

TCP Real�s capability to distinguish congestion

and wireless errors, a heterogeneous-flow simula-

tion was conducted over a 10 Mbps bottleneck

link. That is, the number of flows was fixed at 10,

while the number of wireless access links (with

PER ¼ 0:01) to sink nodes varied from 0 to 10, in

11 distinct experiments. The results of the experi-
ment are shown in Figs. 15 and 16. An interesting

conclusion can be drawn by those results. Reno,

SACK and GAIMD appear to yield similar per-

formance (i.e. system goodput) with that of TCP-

Real, up to the point where at least one receiver is

wired. The situation changes dramatically for

Reno, SACK and GAIMD when all receivers are

wireless (see Fig. 15). We conjecture the following
justification: Reno, SACK and GAIMD are ca-

pable of exploiting the channels bandwidth even

with a single wired receiver; that is, a single re-

ceiver can consume all the available bandwidth, at

the expense of fairness to the other (wireless) flows

that experience losses due to wireless errors and

hence unnecessarily reduce their transmission rate.

Our hypothesis is confirmed by the results outlined
in Fig. 16. As the number of wireless receivers

increases, fairness of TCP-Reno, SACK and

GAIMD drops rapidly. When all 10 receivers are

wireless, Reno, SACK and GAIMD are as fair as

Real, but the bottleneck link is under-utilized

(observe in Fig. 15 the goodput achieved by 10

wireless Reno/SACK/GAIMD flows).

We repeated the experiments in the multi-bot-
tleneck environment of Fig. 4. The sink access

links of the main traffic flows were wireless, while

Fig. 11. Goodput over heterogeneous network (10 Mbps bot-

tleneck link, single flow).

9 Recall that a loss event may include several packet losses.
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all cross-traffic flows were wired flows. Gateways

were configured with the RED active queue man-

agement scheme. The results plotted in Fig. 17
show that TCP-Real�s performance degrades more

gracefully.

Fig. 12. Sending rate with handoff (10 Mbps botteneck link, single flow).

Fig. 13. Goodput over heterogeneous network (10 Mbps bot-

tleneck link, 10 flows).

Fig. 14. Goodput over heterogeneous network (100 Mbps

bottleneck link, 100 flows).
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5.3. Real-time performance

The application-centered comparison of the

protocols under different scenarios is outlined in

Figs. 18 and 19. Fig. 18 depicts the successful at-

tempts of the application to read at least 90% of

the data sent. The application runs on top of TCP-

SACK, Reno, GAIMD and Real, separately. We
can observe that TCP Real is, in general, superior

with regard to System Goodput. Furthermore, the

TCP-Real-based time-constrained application ex-

periences significantly better performance than the

SACK-, Reno-, and GAIMD-based application.

The dominant mechanism of TCP-Real is here the
wave-based error detection capability that enables

error classification (wired vs. wireless errors). This

mechanism is complemented by the window ma-

nipulation prior to congestion, which is activated

during high contention and is operated by pa-

Fig. 15. Goodput with wired and wireless flows (10 Mbps

bottleneck, PER ¼ 0:01, 10 flows).

Fig. 16. Fairness with wired and wireless flows (10 Mbps bot-

tleneck, PER ¼ 0:01, 10 flows).

Fig. 17. Traffic goodput ratio over heterogeneous networks

(multiple bottlenecks, 20 flows).

Fig. 18. 90% application success percentage (10 Mbps bottle-

neck link, 10 flows).

492 V. Tsaoussidis, C. Zhang / Computer Networks 40 (2002) 477–497



rameter c. Seasonable and moderated window

adjustments cancel the deficiency of unnecessary

transmission gaps due to the sharp, multiplicative

window decrease and the timeout extension. The
results of GAIMD with zero or minor error rate

demonstrate the effectiveness of smooth backward

adjustments under such conditions.

5.4. Impact of asymmetry

Our first scenario involves asymmetric error

rates. A high packet-dropping rate is configured at
the reverse path only. The PER of the forward path

is 0.005, while PER on the reverse path ranges from

0.05 to 0.4. As outlined in Fig. 20 where a single

flow behavior is reported, TCP Real prevails,

owing to the receiver-oriented congestion control

mechanism. By having the receiver reporting the

data-receiving rate, TCP-Real can protect itself

from an unnecessary regression of the sender�s ag-
gressiveness due to RTT-based decisions. The

sending rate of the forward path remains high since

the data packets arrive at the receiver timely and

correctly. Similar measurements are taken with

multiple competing flows (see Fig. 21).

Our second scenario involves a multi-bottle-

neck network with a congested reverse path. The

cross-traffic of the reverse path was generated by
an exponential On/Off traffic generator. The On

phase sojourn time varied from 600 to 1000 ms,

while the sum of the Off phase sojourn time and

the On phase sojourn time was fixed at 1000

ms. The On phase transmission speed was set
to 20 Mbps, i.e. the capacity of the reverse bot-

tleneck link (R4–R3 in Fig. 4), and the access

link capacity of the cross-traffic was adjusted

correspondingly to 20 Mbps to accommodate

the transmission speed. Although the bandwidth

required for the main traffic on the reverse path

Fig. 21. Goodput over asymmetric path (10 Mbps bottleneck

link, 10 flows 0.005 forward path PER).

Fig. 19. 70% application success percentage (100 Mbps bot-

tleneck, 10 Mbps wireless link, 100 flows).

Fig. 20. Goodput over asymmetric path (10 Mbps bottleneck

link, single flow forward path PER 0.001).
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was pretty low, the bandwidth consumption on

the forward path was significantly affected by the

ACK losses/delays on the congested reverse path.

The goodput and fairness results for the main

traffic are plotted in Figs. 22 and 23 and demon-

strate the particular strength of receiver-oriented
congestion control in dealing with asymmetry.

When the On phase lasts long, the goodput of

TCP-Reno/SACK is reduced to almost zero.

However, TCP-Real�s goodput is relatively unaf-

fected and its fairness index is twice better.

5.5. Friendliness

Friendliness is defined here based on the origi-

nal objective of TCP-friendly protocols to compete

fairly with standard TCP; not in terms of equa-

tion-based protocols. That is, our question is not

whether the equation-based adjustments are sat-

isfied but rather whether the protocols compete

fairly with standard TCP. Based on this definition,

equation-based protocols are also subject to eval-
uation rather than reference points; the role of the

reference point is held by TCP-Reno. Tests were

conducted over a 10 Mbps 10 link. The number of

participating flows ranges from 10 to 100. Flows

are divided into two groups per experiment. Half

of the flows are instances of the same protocol:

TCP-Real, TFRC, or GAIMD. The other half is a

group of Reno flows, which serves as the reference
for comparison. Ideally, each group of flows

should consume exactly half of the bottleneck link

capacity. Exceeding their fair-share at the expense

of the other group�s capacity would mean that the

Fig. 22. Goodput over wired network (multiple bottlenecks, 5

flows of main traffic reverse path congested by cross-traffic).

Fig. 23. Fairness over wired network (multiple bottlenecks, 5

flows of main traffic reverse path congested by cross-traffic).

Fig. 24. Real competing with and Reno flows (10 Mbps bot-

tleneck link).

10 Tests carried out also with a 100 Mbps link; the results are

similar.
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specific protocol is too aggressive. From the results

shown in Figs. 24–26, we can conclude that TCP

Real attains better performance not by simply

being more aggressive. It competes fairly with co-
existing TCP flows. Pace [13], TFRC is not

shown here to achieve its friendliness objective. 11

GAIMD on the other hand appears to be rela-

tively conservative in this context, allowing TCP-

Reno to consume bandwidth more aggressively,

and to exceed its fair share.

6. Conclusions and future work

We have evaluated the possibility of using an

alternative mechanism for congestion control,

using the receiver as the key peer who makes the

decision about the transmission rate adjustments.

We have enabled the receiver with an additional

property, owing to the wave pattern, to call for

window adjustments prior to congestion. The
wave-based communication appears to be a useful

mechanism for error classification as well. Moni-

toring the level of contention permits the receiver

to rule on the cause of packet drops. TCP-Real was

used as an experimental protocol to demonstrate

the potential of this mechanism in multiplexed

wired/wireless channels and with delay-tolerant

and––intolerant applications. In an experimental
confrontation, it was shown that TCP-friendly

protocols occasionally fail to achieve both their

objectives: friendliness and efficiency.

Some of the parameters of TCP-Real were

empirically validated. The present experimental

form of the protocol�s mechanisms allows for im-

provements in error detection, error recovery and

congestion avoidance strategy.
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