
A Communication Virtual Machine
Yi Deng, S. Masoud Sadjadi, Peter J. Clarke, Chi Zhang,

Vagelis Hristidis, Raju Rangaswami, and Nagarajan Prabakar
School of Computing and Information Sciences

Florida International University
11200 SW 8th St., Miami FL 33199

{deng, sadjadi, clarkep, czhang, vagelis, raju, prabu}@cs.fiu.edu

Abstract

The convergence of data, voice and multimedia
communication over digital networks, coupled with
continuous improvement in network capacity and
reliability has significantly enriched the ways we
communicate. However, the stovepipe approach used
to develop today’s communication applications and
tools results in rigid technology, limited utility, lengthy
and costly development cycle, difficulty in integration,
and hinders innovation. In this paper, we present a
fundamentally different approach, which we call
Communication Virtual Machine (CVM) to address
these problems. CVM provides a user-centric, model-
driven approach for conceiving, synthesizing and
delivering communication solutions across application
domains. We argue that CVM represents a far more
effective paradigm for engineering communication
solutions. The concept, architecture, modeling
language, prototypical design and implementation of
CVM are discussed.

Keywords: model driven, communication application,
multimedia, middleware, telemedicine.

1. Introduction
Communication is the most fundamental function of

business, government and society at large. In recent
years, the convergence of data, voice, and multimedia
over digital networks coupled with the continuous
improvement in network capacity and reliability has
enabled a wide range of communication applications.
Examples range from general-purpose communication
applications such as VoIP telephony, voice, video or
multimedia conferencing to specialized applications
such as disaster management and telemedicine. The
pace of innovation of new communication applications
will undoubtedly accelerate further as both capacity
and demand increase.

When we exam this trend a little further, however, it
reveals several major issues. First, today’s
communication tools are developed in stovepipe

fashion with limited separation between application
needs and logic, device types and underlying networks.
The combined complexity of these aspects results in
high cost and a lengthy development cycle. Second,
such vertically developed systems typically have fixed
functionality and interface and do not interoperate with
each other (because of differences in design,
architecture, API, and network/device assumptions). It
is difficult to adapt the systems to fit changing user
needs, the dynamics of underlying networks, and new
device and network technologies [17]. Users,
particularly sophisticated domain specific users, are
forced to hop between tools to satisfy their
communication needs. Third, the fragmented
development approach poses major challenges in
integration and in providing integrated communication
solutions. Last but not the least, it hinders the
development of new communication tools, particularly
for domain specific applications (e.g., telemedicine),
because of the complexity, cost, and lengthy cycle
required of vertical development.

In this paper, we present a fundamentally different
approach for engineering communication solutions.
This approach, which we call Communication Virtual
Machine (CVM), represents a paradigm shift on how a
communication application is conceived and delivered.
We argue that the CVM approach provides the basis to
effectively address the problems discussed above.

The design of CVM draws from the concepts of
model-driven engineering [1,25], communication
middleware [23] and middleware-based architecture
[24]. However, by focusing on the communication
domain only, CVM achieves high degree of
automation and effectiveness, and avoids the pitfalls of
many general purpose methods and techniques for
model-driven engineering that are overreaching and
consequently ineffective. Furthermore, the CVM
approach goes far beyond the goals of communication
middleware towards end-to-end communication
solutions. (See Section 7 for more in depth discussion).
As opposed to stovepipe development, which will
inevitably leads to repetitive and incompatible designs,
and costly, lengthy and error-prone developments,

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

CVM provides a model-driven process for conceiving,
structuring, synthesizing and delivering communi-
cations that are tailor-made for user or application
needs. In CVM, general purpose or domain specific
communication needs are specified in a model, called
communication schema, independent of device types
and underlying network configuration. Such a model is
instantiated, negotiated, synthesized and executed, by a
fully automated process, to satisfy the users’
communication needs. Since even a sophisticated
communication model can be built in terms of hours or
days, rather than months or years needed for designing
and implementing a major communication application
(e.g., telemedicine) CVM provides an effective way to
support user-centric on-demand communications. (As
discussed later, the on-demand feature of the CVM is
also reflected by its ability to change the
communication model at run-time.)

This model-driven communication is supported by
the CVM layered architecture (Section 3). These layers
are common to and shared by different communication
applications. This architecture separates and
encapsulates major concerns of communication
modeling, synthesis, coordination, and the actual
delivery of the communication by the underlying
network and devices, into self-contained compartments
with clear interface and responsibility. We will show
that this architectural principle of separation of
concerns employed in CVM is the basis for its
automation and flexibility. This is because system
components and communication protocols common to
different applications can be identified and shared
without having to be hard coded into a stovepipe
system. This will also enable the CVM architecture to
be independent of the underlying networking
infrastructure and communication devices.

Coupled with the CVM architecture are several
major components, together forming the CVM system
(Section 4): A communication modeling language
providing an intuitive graphic form for users (or user
organizations) to model declaratively their
communication requirements; a synthesis engine
responsible for negotiating and synthesizing user
communication sessions; a communication engine for
executing user communication logic; and network
communication broker to interfacing with the
underlying network infrastructure.

A prototypical design of the CVM is implemented
and fully functional (Section 5 and 6). In addition to
supporting general purpose communication functions
(e.g., multimedia conferencing), we have worked with
physicians and technical staff at the Miami Children’s
Hospital (MCH) and the Teges Corporation, which
supplies MCH with its patient medical information
system called i-Rounds©. We have conducted case
studies of using the CVM to support communication

between doctors involved in cardiovascular operations
based on scenarios and criteria formulated by the
doctors. We have demonstrated that and it took less
than a day to discuss, formulate and structure the
telemedicine scenarios into CVM communication
schemas; and it took two graduate students in a week
to integrate the CVM system with the i-Rounds patient
information systems, which transforms a general
purpose CVM into a communication platform capable
of supporting a variety of telemedicine
communications with structured exchange of patient
information.

2. A Motivating Example
Let us consider the following scenario: Eric is a

general practitioner who is examining one of his
patients. He observes an unusual symptom and decides
to call Mary, who is a specialist. During their
conversation, Mary calls John, who is a researcher
working in a medical laboratory, and asks him to join
the call. This turns the two-way call into a conference
call. Eric then decides to share parts of his patient’s
record with Mary and John and show them some
related images. This turns the voice conference into a
multimedia telemedicine application.

Clearly, carrying out this scenario is possible with
today’s technology. For instance, Eric would first place
a phone call to reach Mary. Next, assuming Mary’s
phone has conferencing capability, she switches to a
conference call to include John in a three-way
conversation. Otherwise, they have to use a
conferencing application such as Yahoo! Messenger.
Eric would then use a separate custom developed
telemedicine application for sharing the patient’s
record with Mary and John. In case either Mary or
John does not have access to such a custom
application, Eric may need to send the images via
email or a file sharing application. In general, although
such scenarios can be accommodated with today’s
technology, the users would either have to jump
between different tools (e.g., phone, email, file-
sharing, and messenger application), or to rely on
custom-developed applications, which are typically
expensive and rigidly designed.

In the following sections, we show how this
scenario, as well as any other similar scenarios, can be
satisfied on-demand and with ease using CVM.

3. Communication Virtual Machine
To better understand CVM, let’s first look to the

data management area. Figure 1 captures the
parallelism between the CVM paradigm and the one
for managing heterogeneous data sources. As the use
of computers and databases increases, we reach to a

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

point where data is dispersed to a large number of
sources with different data models (e.g., relational,
XML, text, and so on), data schemas and querying
interfaces (e.g., SQL, XQuery, and keyword search).
However, applications require access to multiple of
these data sources and it became clear that developing
specialized access mechanisms for each data source is
cumbersome and inflexible since, if a legacy database
is replaced by a newer one, the application has to be
changed. Hence, the logical data abstraction paradigm
was proposed, to hide the specifics of the underlying
sources and export a uniform interface to the
applications for querying data. The right part of Figure
1 shows a popular mediator architecture [7], where
XQuery (See www.w3.org/XML/Query/) is used as the
common data extraction language.

Figure 1: Analogy between CVM and Data
Mediator.

In the communication domain there is a similar
need to hide the underlying device and network
infrastructure and provide a unified communication
abstraction layer. The CVM plays the role of the
mediator and it handles the execution of
communication requests specified in CML (which
corresponds to XQuery. The wrappers on the left and
right side of Figure 1 play the role of abstracting the
network/device and data specifics, respectively.
Finally, the SIP messages (See www.iptel.org) play the
same role as break-down XQuery queries. Notice that
the arrows between the left and right parts depict the
correspondences between the two paradigms.

In this section, we present a CVM architectural
model for achieving the vision discussed earlier. There
are four major tasks need to be performed to serve the
users’ communication needs:
(1) Conceive and describe the users’ communication

requirements. In the case of a multimedia
conferencing, it is to specify who the participants of
the conference are and what kind of media or data
are to be exchanged. In the case of the telemedicine
application, it also includes the policy that governs

who can access which part(s) of the patient’s
medical record.

(2) Transform the user communication requirements
into a sequence of commands or actions, which
when executed will control the flow of user
communication as dictated by the requirements.

(3) Provide a platform or environment in which the
said sequence of commands can be executed to
regulate the flow of communication.

(4) Deliver the media or data among the
communicating parties through a communication
network or networks.
Today, these tasks are typically hard coded in a

communication system or tool, which predefines the
way that user will use the system. Such a stovepipe
design is the root cause of the problems discussed in
Section 1. At the heart of CVM is a layered
architecture, which provides a clean separation and
compartmentalization of these major concerns in the
spirit of [4], as illustrated in Figure 2. The CVM
architecture divides the major communication tasks
into four major levels of abstraction, which correspond
to the four key components of CVM:

(1) user communication interface (UCI), which
provides a language environment for users to
specify their communication requirements in the
form of a user communication schema or schema
instance1.

(2) synthesis engine (SE), which is a suite of
algorithms to automatically synthesize a user
communication schema instance to an executable
form called communication control script;

(3) user-centric communication middleware (UCM),
which executes the communication control script to
manage and coordinate the delivery of
communication services to users, independent of
the underlying network configuration; and

(4) network communication broker (NCB), which
provides a network-independent API to UCM and
works with the underlying network protocols to
deliver the communication services.
This layered division of responsibility is

reminiscent of the OSI layered stack model for
network communication [10]. Each layer has a specific
role in the stack and communicates logically with the
peer-layer at a remote site during communication
sessions. Each layer builds on the upper layers in the
stack to finally realize the user communication schema.

UCI is responsible for providing users with means
to define and manage their communication schema,
which describes the role of communicating parties and

1 A schema is a generic model of communication; an instance is an
instantiation of the schema for a particular communication session.
We will use the terms interchangeably until Section 4, where
communication modeling is discussed.

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

the communication logic (e.g., participants, flow of
data or information). For this purpose, a
communication modeling language is needed [8]. Such
a language (see Section 5) should be intuitive enough
to support on-the-fly communication modeling without
requiring knowledge of underlying networks and yet
rich enough to describe a variety of communication
tasks. The language design poses many interesting
research issues in its own right. In addition, it is
responsible for maintaining consistency between the
views of participants, and for serving as the runtime
interface for users to manage their sessions.

User Communication
Interface (UCI)

User/ Application (Initiator)

CVM

Communication Network

Network Communication
Broker (NCB)

User-centric Communication
Middleware (UCM)

Synthesis Engine
(SE)

User Communication
Interface (UCI)

User/ Application (Initiator)

Schema Instance
Negotiation

Communication Logic

Communication Data

CVM
User Communication

Communication Network

Network Communication
Broker (NCB)

User-centric Communication
Middleware (UCM)

Synthesis Engine
(SE)

Figure 2: Layered CVM architecture.

SE performs two major tasks. The first is schema
negotiation among participants of communication to
ensure that all parties agree to a consistent schema.
Second, SE automatically transforms the schema to an
executable communication control script. This script
represents the network-independent control logic for
user-level communication session specified in the
schema. A basic requirement for SE is that the
synthesis process must be fully automated. SE uses a
repository of pre-defined components for common as
well as domain-specific communication functions. SE
puts together the communication control script by
combining pre-defined components (e.g.,
communication session establishment or transmission
of text message) based on the user-defined schema.
Consequently, the capability of a schema synthesizer
can be improved incrementally as more “middleware”
components are developed. The design of automated
and efficient synthesis techniques and the middleware
components represents another class of interesting
research issues.

UCM is the execution engine for communication
control scripts. Based on the communication logic
defined in the script, UCM invokes the common
services provided by the NCB layer to perform tasks
including: (1) session creation, (2) adding a participant
to the session, (3) adding a media to the session, (4)
transmitting media, and (5) adjusting media QoS.
UCM is also responsible for updating the user
communication schema resulted from runtime changes.

These changes (received in the form of signals from
the NCB layer) may include: (1) session invitation, (2)
receive media, (3) end media transmission, and (4)
connection failed. Furthermore, UCM is responsible
for providing a safe state transition between the
running and updated communication control scripts.
For example, when a session participant changes the
communication schema by switching from a person-to-
person call to a multi-way conference, SE will generate
a new communication control script that reflects the
change. Once the new communication control script is
deployed to UCM, it should transfer the state of the old
control script to the new one seamlessly and safely
[29].

Table 1: Summary of high-level tasks of CVM
layers.

CVM Layer Tasks

User

Communication

Interface

1. Create/modify the communication
schema instance based on user input.

2. Check the correctness and validity of the
user communication schema.

3. Maintain consistency between
participants’ instances.

Synthesis Engine 1. Ensure the consistency of user
communication schema through schema
negotiation.

2. Perform schema synthesis to obtain the
communication control script.

3. Deploy the script to the user-centric
communication middleware.

User-centric

Communication

Middleware

1. Execute the communication control script.
2. Update the user communication schema

based on changes made by other
participants.

3. Perform a safe state transition from an
older schema to an updated one.

Network

Communication

Broker

1. Provide a high-level communication API,
which is independent of the platform.

2. Utilize and coordinate the available, low-
level network and hardware services.

3. Provide self-management in response to
dynamics of the underlying infrastructure.

NCB is responsible for providing a uniform API of
high-level and network-independent communication
services to diverse communication applications [31], in
such a way to shield user applications from the
underlying network/device heterogeneity and
dynamics. It utilizes and coordinates networking
functions (e.g., signaling, encoding & decoding, and
transmitting & receiving) provided by the underlying
networks, systems, and libraries. Given the variety and
complexity of network configurations, it must exhibit a
self-managing behavior that can respond to dynamics
of the underlying device and network infrastructure.
The concept of NCB offers a novel approach to
simplify application development and interoperation,

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

and introduces many important research issues
including self-management, dynamic configuration,
definition of application independent communication
API, and software framework for hiding network
heterogeneity.

These layers collectively fulfill the promise of
CVM − that of generating communication applications
that are reconfigurable, adaptive, and flexible based
only on a high-level description of communication
requirements. A summary of the high-level
responsibilities assigned to each of these layers is
presented in Table 1.

4. Communication Modeling Language
We present an intuitive communication modeling

language (CML) for modeling user communication
requirements. We developed two equivalent variants of
CML: the XML-based (X-CML) and the graphical (G-
CML), which are documented formally and in detail in
[8]. The former is the version that CVM understands
and processes, while the later is the user-friendly
graphical form. G-XML is analogous to the E-R
diagram [5] in the database domain. In [8], we show
how these two variants can be automatically converted
to each other. Figure 3 shows the (instantiated) X-
CML and G-CML representations for the scenario of
Section 2.

A connection in CML is a user session, and is
defined as a communication among a group of
participants, where exchanged data is by default
broadcasted to all participants. In addition to the local
side, a connection contains a set of media
(mediaAttached) currently transferred in the
connections (user communication session) and a set of
remote participants (remote). Both local and remote
participants are associated with a communication
device (e.g., PC, cell phone), which is associated by a
set of capabilities (deviceCapability).

Notice that the specific characteristics of a device,
such as its type (e.g., PC or cell phone) or its
connection type to the network (e.g., IP or cellular), are
not defined nor required. The reason is that CML
operates on an abstraction of the underlying network
and devices as mentioned above. We assume there is a
single virtual device per person, which has the union of
the capabilities of all physical devices attached to the
user.

A medium is a data piece or data stream, like a
Word document or a live video feed respectively. A
medium has a type which is one of the predefined
types supported by the system, a mediumURL that
contains the location of the medium (a file location for
a data piece or a port for a data stream), a
suggestedApplication which defines the application
that can be used to view or process a medium (e.g.,

Powerpoint for ppt files), and an action which defines a
default action that is performed on a medium. Actions
“send” and “doNotSend” mean transfer automatically
the medium or wait for the user to choose respectively,
while “startApplication” orders the system to open the
suggested application of the medium once transferred.

(a) G-CML

(b) X-CML
Figure 3: CML example for our scenario.

Finally, composite data are represented using forms
in CML, which are nested structures that contain media
as well as user-defined attributes (e.g., media with
common suggestedApplication or action settings can
be grouped together in a form). For example, it is
common in medical scenarios to require transferring
complex medical data consisting of multiple simple
media (e.g., a page in a patient medical record).

5. A Prototypical Design of CVM
We present a prototypical design of CVM, which

closely follows the CVM architecture. The notation of
Figure 4 (adopted by [12]) is used to describe the
interfaces between the prototype components, which

<?xml version="1.0" encoding="ISO-8859-1"?>
<userSchema>
<connection connectionID = "connection1">
 <device deviceID = "001" isVirtual = "false">
 <deviceCapability>LiveAudio</deviceCapability>
 <deviceCapability>NonStreamFile</deviceCapability>
 </device>
 <device deviceID = "002" isVirtual = "true">
 <deviceCapability>LiveAudio</deviceCapability>
 <deviceCapability>NonStreamFile</deviceCapability>
 </device>
 <device deviceID = "003" isVirtual = "true">
 <deviceCapability>LiveAudio</deviceCapability>
 <deviceCapability>NonStreamFile</deviceCapability>
 </device>
</connection>
<person personName = "Mary Smith" personID = "007" personRole = ""/>
<person personName = "Eric Goldberg" personID = "011" personRole = ""/>
<person personName = "John Johnson" personID = "012" personRole = ""/>
<isAttached personID = "007" deviceID = "001"></isAttached>
<isAttached personID = "011" deviceID = "002"></isAttached>
<isAttached personID = "012" deviceID = "003"></isAttached>
<data connectionID="connection2">
 <medium mediumDataType = "NonStreamFile" mediumName = "Heart_Scan.jpg"

mediumURL = "http://fiu.edu/Heart_Scan.jpg"/>
 <medium mediumDataType = "NonStreamFile" mediumName = "X_Ray1.jpg"

mediumURL = "http://fiu.edu/X_Ray1.jpg"/>
</data>
</userSchema>

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

are summarized in Table 2. Notice that each layer uses
(resp. handles) what the lower level provides (resp.
signals).
UCI Component. The architecture design of UCI,
which is detailed in [8], consists of four major
components: (1) the communication modeling
environment – provides the user with an environment
to develop communication schemas and instances in G-
CML which are then automatically transformed to X-
CML, (2) the schema transformation environment –
transforms an X-CML instance into a synthesis-ready
X-CML instance or stores the X-CML model in the
repository, (3) the repository – stores artifacts (e.g.,
grammar rules and CML schemas) to support the
creation of CML schemas/instances, and (4) the UCI-
to-synthesis engine interface – provides a conduit for
interaction with the synthesis engine.

Figure 4: Generic layer architecture [12].

UCI provides the interface functions
invoke(SchemaInst), invoke(SchemaData) and
store(SchemaInst), shown in Table 2, to the
User/Application (initiator) (Figure 2), where
SchemaInst and SchemaData are a communication
schema instance and the data to be sent, respectively,
and are both represented in X-CML. The functions
return an acknowledgement or error message in the
form of a message (msg). For example, in the scenario
describe in Section 2 Mary builds the communication
instance in a client application and submits the X-CML
shown in Figure 3(b) via the invoke functions to UCI.

Furthermore, UCI checks the syntactic and semantic
correctness of a communication schema instance by
building an abstract syntax tree of the X-CML
representation and traversing the tree to check type
compatibility of the media types and the values of the
fields of the attributes. Some schema instances
require that their abstract syntax trees be annotated
with meta-data associated with a communication
schema (a template for a class of communication
schema instances). This meta-data is defined using the
communication modeling environment and stored in
the repository.

UCI also stores the current state of the schema
instance. The state is required during communication
with the synthesis engine and is updated based on the
signals from the synthesis engine (see Table 2). For
example, if there is a problem in transmitting the
images of the patient record (scenario from Section 2)

to Mary (e.g., bandwidth of the connection is too
small) the UCI signals the User/Application (initiator)
of the problem. This status update allows Eric, the
sender of the image, to send text describing the images.

Table 2. Interface between CVM components.

SE Component. The role of the synthesis engine is to
convert the user schema in CML representation to an
executable communication control script. It is invoked
by UCI via its provides interface functions,
invoke(SchemaInst) and invoke(SchemaData). SE
performs the following tasks in sequence.

First, SE determines if the invocation from the UCI
requires a negotiation with the other session
participants. If yes, it establishes an initial
communication session with the other participants and
performs schema negotiation to obtain an agreed
schema in CML notation. SE then carries out the actual
synthesis process. It parses the CML representation to
obtain the logical components, which are the
relationships along with associated media. For each
logical component of the schema instance, the SE
appends the appropriate script invocation (detailed
below) to the communication control script. Finally, it
dispatches the communication control script to the
UCM layer.

In CVM, each participant of a communication
session has a local copy of their schema, which maybe
changed at runtime. Any change to the schema will
result in an update to the schemas of all participants. If
two users in a session are simultaneously altering their
schemas, concurrency problems arise. The SE
component uses a modified 3-phase handshake
protocol [26] for schema synchronization.

As an example, the script for the scenario of
Section 2 created by Mary’s local synthesizer is as
follows:
createSession(“ID”);
addParty("ID", "ericgoldberg");
addParty("ID", "johnjohnson");

CVM
Layer

Provides signals

UCI msg invoke(SchemaInst)
msg invoke(SchemaData)
msg store(SchemaInst)

Altered Instance
 (after negotiation by
SE)
medium transmission
status - Exceptions

SE msg invoke(SchemaInst)
msg invoke(SchemaData)

notifyMediaStatus
notifyParticipantStatus
notifyException
notifySIStatus

UCM executeScript(XML) notifyMediaStatus
notifyParticipantStatus
notifyException

NCB createSession(sessionID)
addParty(userID);
addMedia(mediaURI),
applyPolicy(xmlString);

notifySessionStatus
notifySessionInvitation
notifyNetworkFailure

Provides Signals

Uses Handles

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

addMedia("ID", "audio", "");
addMedia(“ID”, “nonStreamingFile”, <URL>);
addMedia(“ID”, “nonStreamingFile”, <URL>);

where the <URL>’s are replaced by their resolved
values for the actual Heart_Scan.jpg and X_Ray1.jpg
file locations. The above script is delivered to the
UCM using the executeScript() of UCM “provides”
interface (as presented in Table 2).

SE also delivers four types of notifications (See
Table 2) to the UCI layer. The notifyMediaStatus and
notifyParticipantStatus signals notify the UCI about
media delivery and participant connectivity. The
notifySIStatus signal notifies the UCI about changes to
the schema instance as a result of external changes due
to other participants such as addition of new participant
to an existing session or a change in capabilities of an
existing participant, etc. Finally, the notifyException
signals the UCI about exceptions such as lost network
connection.
UCM Component. UCM is responsible for executing
the communication control script and for maintaining
the states of user level communication (as opposed to
network level one). These states may include
communication logs, data exchanged, and so on. In
other words, UCM manages user communication
sessions.SE passes the control script to UCM through
the UCM API executeScript. Although UCM
encapsulates some of the raw signals coming from
NCB, it will process the signals and report the change
of session status to SE, in order to make necessary
modifications to the schema. We note that safe state
transition capability in user-centric communication
middleware is not yet available in this version of the
prototype.
NCB Component. NCB’s job is to manage network
sessions. (It should be clear that each user session may
result in many network sessions.) Each participant of a
session can multicast to all the other participants. The
NCB API (detailed in [31]) to UCM is both
application- and network-independent, through which
high-level communication tasks can be specified. A
new session is created by invoking the createSession
call provided by NCB, with a session ID, which
maintains a unique association between each user and
network sessions. NCB provides addParticipant, and
addMedia services to UCM to dynamically add
participants and media types in user sessions. The
NCB interface allows application to customize NCB
behavior under specific network and system
conditions, based on user or application preference.
The interface, applyPolicy, takes as input an XML
string which describes the policy for self-management.
The NCB callback interface presented in Table 2
allows it to signal the status of the network, the status
of the existing sessions, and a session invitation from a

remote user (i.e. the new session will be created after
the local user agrees to join the session).

NCB translates a high-level communication task
into a series of operations that control the underlying
networking facilities. It encapsulates and abstracts the
heterogeneity of the network protocols and their
interfaces. The NCB core further includes modules
such as Session Management, Participant Management,
Media Management, and QoS and Self-Management.
The current prototype implementation utilizes the
JAIN SIP and the JMF library, and supports SIP and
RTP as underlying networking protocols.

6. Prototype Implementation
A CVM prototype has been implemented using the

following technologies. The (Web-based) user
interface has been deployed with the Opera 8.5, a
voice-enabled browser. This prototype enables
creation, modification, and use of communication
schema instance using voice commands. The
technologies used at the browser side are HTML,
Javascript for dynamic effects and the program logic,
and XHTML+Voice2 for voice conversation. Part of
the Javascript code uses AJAX3 technology
(Asynchronous JavaScript and XML) to make web
requests and responses in the background, without
having to refresh the web pages. The rest of the CVM
layers are implemented in Java, deployed on each
node, and exposed to the browser GUI as a local Web
server. JAIN SIP and Java Media Framework (JMF)
are used for control and data communications,
respectively. Finally, we used SER (SIP Express
Router) server for registration and presence and
Asterisk for connection to PSTN and audio mixing.

Figure 5 shows three screenshots of our prototype
GUI. Figures 5 (a) and (b) show the prototype being
used as a standalone Web- based application, while
Figure (c) shows the prototype being used in
combination with the iRounds system4. Following the
scenario of Section 2, Mary loads the Telemedicine
communication schema from the schema repository,
and selects the two participants (Eric and John) from
her Address Book (the result is shown in Figure 5 (a)).
The media used in the connection are selected from the
Media Library (represented by icons on the top right of
Figure 5 (b)), and the two JPG files (“Heart_Scan.jpg”
and “X_Ray1.jpg”), are dragged into the Connection
Box by Eric (the result is shown in Figure 5 (b)).

We have tested our prototype implementation with
several other case studies both in general purpose
applications such as multimedia conferencing and in

2 http://www.voicexml.org/specs/multimodal/x+v/12/
3 http://java.sun.com/developer/technicalArticles/J2EE/AJAX/
4 i-Rounds© is an integrated clinical information system developed
by Teges® and currently being used in Miami Children’s Hospital.

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

domain specific applications such as Telemedicine and
Disaster Management. Our Telemedicine scenarios
have been provided by our partners at Miami Children
Hospital.

7. Related Work
There is a plethora of related research that addresses

the individual processes and artifacts used in the
various components of the CVM. However, not much
has been published on how such components can be
combined to provide flexible, user-centric and on-
demand communication solutions.

There are a number of off-the-shelf communication
applications such as Yahoo! Messenger and MSN
Messenger. We are also aware of several companies’
efforts to integrate various tools into comprehensive
communication solutions. The development approach
that these products are based on dictates that none of
them possesses the flexibility, on-demand, and user-
centric communication solutions addressed in this
paper. For example, it would be a tall order to adapt
any of these tools to a comprehensive telemedicine
application.

Model-Driven Engineering The CVM approach
shares some common traits with the concept of model-
driven engineering [1,3,13]. In contrast to general-
purpose model-driven development, automatic
generation of communication services is feasible in
CVM for two reasons. First, CVM is restricted to the
scope of communication services and does not bear the
complexity of generating general-purpose applications.
The complexity of communication logic can be
carefully regulated through the design of the schema
modeling language. Second, CVM utilizes
communication middleware components (e.g., those of
ACE [28]) and server-side architectures (e.g., [2]) as
building blocks to generate communication
applications. Such existing components encapsulate
procedures, patterns, and algorithms governing basic
communication services (e.g., session establishment of
person-to-person voice call, transmission of an image
file, and real-time video streaming), which are well
understood. The role of CVM is limited to the
identification and composition of such components
[19].

More specifically, Heckel and Voigt [13] describe
how models in UML are transformed into BPEL4WS
using the concept of pair grammars. We use a similar
approach in the UCI but our modeling language G-
CML is far more restrictive than UML and hence far
more manageable and its synthesis can be automated.
The implementation of the visual model in the UCI is
based on the work by Costagliola et al. [6].
Costagliola et al. provide a framework that allows the
user to define a visual language, create graphical

models, validate these models and convert the models
into strings of another language. The work in [3]
generates code from models using tool suites for
specific application domains that were developed using
a generic modeling environment. In our work, a
generic SE generates control scripts from a CML
description of communication logic, with restricted
utility to the communication domain.

(a) Overview of active communications.

(b) Details of a particular active connection.

(c) Integration of CVM with the iRounds system.
Figure 5: Screenshots of CVM prototype.

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

Communication Middleware. There has been
extensive work on communication middleware. Our
work used many of the principles presented by
Schmidt [23], including using patterns and frameworks
to alleviate complexity associated with a growing
range of multimedia data types, traffic patterns, and
end-to-end QoS requirements. Schmidt explored
common pitfalls of developing communication
software, including limitations of low-level native OSs
and APIs and the limitations of higher-level
middleware. The UCM and NCB components of CVM
are designed exactly to avoid these pitfalls.

The existing protocol stacks may not be always
suitable to take advantage of advanced transmission
technologies and high-speed networks. Geppert and
Rößler [11] discussed how communication
architectures could be made more flexible by
automatically configuring communication subsystems
based on a specification of desired target service. In the
NCB we use a similar approach.

Stiller et al. [27] described the Da CaPo++ system
as an end-system middleware for multimedia
applications adaptable to the application needs. The
authors claimed that Da CaPo++ automatically
configures suitable communication protocols, provides
an efficient runtime support, and offers an easy to use
object-oriented API, which shares some common traits
with the low layers of UCM components.

UCM design also leverages the concept of adaptive
and reflective middleware, such as ACE and Ensemble,
to provide self-management using only a high-level
guideline. ACE [28] is a real-time C++ framework that
wraps OS services and provides a variety of
communication-related patterns. Ensemble [21] is a
groupware communication toolkit, which enables
insertion of detectors in protocol graph. These
detectors can trigger dynamic adaptation by
distributing a new protocol-graph specification to all
involved participants using a reconfiguration protocol.

JAIN SIP [15] is a standardized Java interface to
SIP. Java Media Framework [16] is a library for audio
and video communication. The low-level APIs of these
communication libraries are still significantly complex
to use, and far less usable than the user-centric session
of UCM. The Java Telephony API is a high-level API
for traditional telephony applications. They do not
support next-generation multimedia communication
applications with sophisticated business logic.

Reference [30] discusses open software
architectures for IP-based voice communication. Parlay
[20] is an API for rapid creation of telecommunication
services. 14ERG project [14] provides core network
architecture for integrated communications. These
frameworks mostly address the server-side architecture
and service creations. The server-side architecture has
different concerns than the client-side middleware,

which is the focus of UCM. In contrast to traditional
telephone networks, in IP networks, end-hosts are
capable of sophisticated communication logic.

Finally, the CVM principle of separating policy
from mechanism has been popular in the operating
systems community for several decades [18].

8. Conclusion
We have presented CVM for on demand declaring,

synthesizing and delivering communications services.
We have discussed its architecture, as well as
supporting modeling language, components,
algorithms, interfaces, and prototypical
implementation.

We discussed how CVM allows users to rapidly
build and execute communication schemas to provide
communication solutions across different application
domains. It would be a misconception, however, to
assume that an end-user needs to know modeling
before they can use the CVM. For most end-users (e.g.,
a doctor), the modeling aspect will be hidden, because
the schemas they use will be packaged as predefined
services by their service providers or their
organizations (e.g., a hospital).

Several classes of issues including security and
performance at different layers of CVM are not
addressed in this paper. A number of useful features
can also be added. Robust and effective solutions to
these issues require further study, which represent
exciting and interesting research topics. We argue,
however, CVM represents a new paradigm for
structuring and delivering communication solutions
and services, which are far more effective than the
current ways of development. In fact, the unique
architectural traits of CVM allow new components and
features to be seamlessly added as they become
available. As such, CVM can serve as a
communication service framework, which can be built
upon and incrementally improved by the collective
wisdom of the research community.
Acknowledgements: This work was supported in part
by the National Science Foundation under grant HRD-
0317692. We thank Eric Johnson, Eduardo Monteiro,
Weixiang Sun, Eric Sanchez, Yingbo Wang, Robert
Redway, Farid Hosseini, Yasmary Hernandez,
Jonathan Corrales, and Onyeka Ezenwoye for their
participation in CVM prototype implementation.

9. References
 [1] Jorn Bettin, “Model-driven software development: An
emerging paradigm for industrialised software asset
development”, Tech report, SoftMetaWare, June 2004.

[2] Gregory W. Bond, Eric Cheung, K. Hal Purdy, Pamela
Zave, and J. Christopher Ramming, “An open architecture

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

for next-generation telecommunication services”, ACM
Transactions on Internet Technology IV(1) pp:83-123,
February 2004.

 [3] Krishnakumar Balasubramanian, Aniruddha Gokhale,
Gabor Karsai, Janos Sztipanovits, and Sandeep Neema
“Developing Applications Using Model-Driven Design
Environments”, IEEE Computer, pages 33 – 40, February
2006.

 [4] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal, “Pattern-Oriented Software
Architecture: A System of Patterns”, Wiley, 1998.

 [5] P. P. Chen, “The entity-relationship model: Toward a
unified view of data”, ACM Trans. Database Syst. 1, 1, 9–
36, 1976.

 [6] Gennaro Costagliola, Vincenzo Deufemia, and Giuseppe
Polese.A framework for modeling and implementing visual
notations with applications to software engineering. ACM
Transac- tions on Software Engineering and Methodology
(TOSEM), 13(4):431–487, 2004.

 [7] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland,
Y. Papakonstantinou, J. Unman, and J. Widom. The
TSIMMIS Project: Integration of Heterogeneous Information
Sources. In Proceedings of IPSJ Conference, Tokyo, Japan,
October 1994.

 [8] Peter J. Clarke, Vagelis Hristidis, Yingbo Wang,
Nagarajan Prabakar and Yi Deng. A Declarative Approach
for Specifying User-Centric Communication. Symposium on
Collaborative Technologies and Systems (CTS), 2006.

 [9] Department of Health. Health Insurance Portability and
Accountability Act (HIPPA) ttp://dchealth.dc.gov/hipaa/
hipaaoverview.shtm (June 2005).

 [10] John D. Day and Hubert Zimmermann, “The OSI
Reference Model”, Conformance testing methodologies and
architectures for OSI protocols, IEEE Computer Society
Press pp:38-44, 1995.

 [11] B. Geppert and F. Rößler, “Automatic Configuration of
Communication Subsystems – A Survey”, Tech. Report SFB
501 Report 17/96, University of Kaiserslautern, Germany,
1996.

 [12] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar,
David Culler, Kristofer Pister. System Architecture
Directions for Networked Sensors. In Architectural Support
for Programming Languages and Operating Systems, pp. 93-
104, 2000.

 [13] Reiko Heckel and Hendrik Voigt. Model-based
development of executable business processes for web
services. In Lectures on Concurrency and Petri Nets:
Advances in Petri Nets, volume 3098, pages 559–584.
Springer, June 2004.

 [14] The 14ERG Project, University of California, Berkeley.
http://14erg.cs.berkeley.edu/

 [15] JAIN SIP: https://jain-sip.dev.java.net/, 2006.

 [16] Java Media Framework API,
http://java.sun.com/products/java-media/jmf/, 2006.

 [17] David Krebs. “The Mobile Software Stack for Voice,
Data, and Converged Handheld Devices”, Mobile and
Wireless Practice Venture Development Corporation, April
2005.

 [18] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W.
Wulf, “Policy/Mechanism Separation in Hydra”, In
Proceedings of the 5th ACM Symposium on Operating
Systems Principles (SOSP ’75), pages 132–140, University
of Texas at Austin, November 1975.

 [19] Philip K. McKinley, Masoud Sadjadi, Eric P. Kasten,
and Betty H. C. Cheng. “Composing adaptive software”,
IEEE Computer, pages 56-64, July 2004.

 [20] The Parlay Group.
http://www.parlay.org/specs/library/index.asp, 2006.

 [21] R. van Renesse, K. P. Birman, M. Hayden, A.
Vaysburd, and D. Karr, “Building adaptive systems using
Ensemble,” Software Practice and Experience, vol. 28, p.
963979, August 1998.

 [22] R. L. Rivest, A. Shamir, L. Adleman, “A Method for
Obtaining Digital Signatures and Public-key Cryptosystems”,
Communications of the ACM, 1978.

 [23] D. C. Schmidt. “Applying Patterns and Frameworks to
Develop Object-Oriented Communication Software”, volume
1 of Handbook of Programming Languages. MacMillan
Computer Publishing, 1997.

 [24] D. C. Schmidt. Middleware for real-time and embedded
systems. Communications of the ACM, 45(6), June 2002.

 [25] D. C. Schmidt, “Model-Driven Engineering”, IEEE
Computer, February 2006, 25-31.

 [26] Dale Skeen: Non-blocking Commit Protocols. Pages:
133-142, SIGMOD 1981.

 [27] Burkhard Stiller and Christina Class and Marcel
Waldvogel and Germano Caronni and Daniel Bauer, “A
Flexible Middleware for Multimedia Communication:
Design, Implementation, and Experience”, IEEE Journal on
Selected Areas in Communications, vol. 17 no. 9 Sept. 1999,
pages 1580 – 1598.

 [28] D. C. Schmidt and S. D. Huston, C++ Network
Programming: Mastering Complexity Using ACE and
Patterns. Addison-Wesley Longman, 2002.

 [29] N. Venkatasubramanian, "Safe ‘Composability’ of
Middleware Services", Comm. ACM, June 2002.

 [30] Pamela Zave, Healfdene H. Goguen, and Thomas M.
Smith, “Component coordination: A telecommunication case
study”, Computer Networks 45(5):645-664, August 2004.

 [31] Chi Zhang, S. Masoud Sadjadi, Weixiang Sun, Raju
Rangaswami, and Yi Deng. User-centric communication
middleware. Technical Report FIU-SCIS-2005-11-01,
Florida International University, November 2005.

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

