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ABSTRACT 
In this paper, we observe that although multiplicative decrease is 
necessary to accomplish fairness in congestion control, it does not 
inevitably sacrifice system throughput, as long as the system 
operates between the knee and the cliff, according to an equation.  
However, even when the system throughput is relatively stable, 
end users of real-time applications do not necessarily experience a 
smooth traffic, mainly caused by the unsynchronized window 
adjustments due to random congestion indications. We analyzed 
and evaluated the negative impact of random window adjustments 
on smoothness, short-term fairness, and even long-term fairness 
measured by a novel fairness metric defined in this paper. 
Therefore, we propose an experimental congestion avoidance 
mechanism to improve TCP smoothness for media-streaming 
applications. The mechanism relies on a fine-grained RTT 
estimation to measure the network condition, and coordinates the 
upward and backward window adjustments to abolish the damage 
of unsynchronized window control. Congestive packet drops are 
reduced by a new control parameter γ, and the bottleneck queue 
length can also be controlled in an end-to-end way. Simulation 
results confirm that the new mechanism enhance significantly the 
smoothness and fairness, without a cost of responsiveness. In fact, 
by enabling a new parameter δ, the responsiveness can be even 
enhanced when the bandwidth is under-utilized.  

Categories and Subject Descriptors 
C.2.6 [Computer-Communication Networks]: Internetworking 
– Standards (e.g. TCP/IP). 

General Terms 
Design, Performance. 

Keywords 
Congestion Control, Fairness, Smoothness, Responsiveness, 
AIMD, Real-time Applications, TCP-friendly Protocols. 

 
 

1. INTRODUCTION 
Transmission control of standard TCP [1] is based on the Additive 
Increase / Multiplicative Decrease (AIMD) window adjustment 
strategy [3] that exploits available bandwidth, avoids persistent 
congestion, and achieves system fairness. Traditional AIMD is a 
somewhat “blind” mechanism, in the sense that the congestion 
window increases steadily until the occurrence of congestion, 
which necessitates the subsequent error recovery.  That is, 
congestion control mechanism itself is the natural cause of 
congestion, and congestion can be detected only by packet drops. 

The window adjustments of TCP Vegas [2] take a congestion- 
avoidance approach. Vegas defines a BaseRTT to be the 
minimum of all measured RTTs, and ExpectedRate to be the ratio 
of congestion window to BaseRTT. The sender measures the 
ActualRate based on the sample RTTs. If the difference between 
the ExpectedRate and the ActualRate is below a threshold α, the 
congestion window increases linearly during the next RTT; if the 
difference exceeds another threshold β, Vegas decreases the 
congestion window linearly during the next RTT. According to 
[2], TCP Vegas achieves better transmission rates than standard 
TCP. However, [8] shows that Vegas can not guarantee fairness. 

While TCP congestion control is basically appropriate for bulk 
data transfers, some real-time applications such as media-
streaming find the standard multiplicative decrease by a factor of 
2 upon congestion to be unnecessarily severe, as it can cause data-
rate oscillations and even transmission gaps [6]. TCP-friendly 
protocols therefore have been  proposed with two fundamental 
goals: (i) to achieve smooth backward adjustments; this is done by 
increasing the window decrease ratio during congestion, and (ii) 
to compete fairly with TCP flows; this is approached by reducing 
the window increase step according to a steady-state TCP 
throughput equation [11]. That is, TCP friendly protocols favor 
smoothness by using a gentle backward adjustment upon 
congestion, at the cost of lesser responsiveness - through 
moderated upward adjustments.  

TCP Friendly Rate Control (TFRC) is an equation-based TCP-
Friendly congestion control protocol for unicast applications [6]. 
The sender explicitly adjusts its sending rate as a function of the 
measured rate of loss events, to compete fairly with TCP. A loss 
event consists of one or more packet drops within a single round-
trip time. The receiver calculates the loss event rate and reports 
feedback to the sender. The benefit of TFRC is its “gentle” rate 
regression upon congestion. 
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GAIMD [14] is a parameterized TCP-friendly protocol. It 
generalizes AIMD congestion control by parameterizing the 
additive increase value α and multiplicative decrease ratio β1. For 
the family of TCP(α, β) protocols, authors of [14] derive a simple 
relationship between α and β to be friendly to  standard TCP (α = 
1, β = 1/2). Based on experiments, they propose a β = 0.875 as the 
appropriate ratio for smooth backward adjustment, and a 
moderated increase value   α = 0.31 to achieve TCP friendliness. 
In [15], we investigated the interrelation of TCP smoothness and 
responsiveness by studying the impact of network conditions on 
the friendliness-oriented α/β tradeoff. We confirmed 
experimentally that, in general, smoothness and responsiveness 
constitute a tradeoff; however, we uncover undesirable dynamics 
of the protocols when the network or flow characteristics do not 
follow a prescribed and static behavior. For example, we showed 
that moderated upward adjustments (as a result of the tradeoff for 
smoothness) confine the protocol’s capability to exploit resources 
that become available rapidly, where responsiveness is the 
dominant factor. Also, smooth backward adjustments of existing 
flows embarrass the fair and efficient growth of new incoming 
flows.  

Therefore, the challenge does not lie in simply achieving smooth 
congestion control, but rather in providing smoothness along with 
bandwidth efficiency, fairness, responsiveness, as well as 
controlled queue length. Responsiveness to variations of 
bandwidth availability facilitates quick adjustments for rate-
adaptive real-time applications in a dynamic environment. 
Queuing delay is also a concern here, because it affects the 
subjective performance of delay-sensitive applications. 
Furthermore, we realize that previous theoretical work on 
congestion control [3, 9, 11] ignores some basic factors which are 
essential to the understanding of smoothness. For example, [3] 
[11] (and hence the TCP-friendly protocols based on [11]) 
overlook the role of bottleneck queue in the dynamics of 
congestion control (see section 2.1). Analyses based on fluid 
model [9] do not discuss the impact of unsynchronized 
multiplicative decrease on the performance smoothness and 
system fairness (see section 2.2). 

In this paper, we provide an intuitive interpretation to the 
dynamics of congestion control. We first extend the AIMD 
analysis model presented in [3], by taking into account the role of 
the bottleneck queue. We observe that although multiplicative 
decrease is necessary to accomplish fairness, it does not 
necessarily sacrifice system throughput, as long as the system 
operates between the knee and the cliff defined in [3].  We derive 
an analytical expression of the knee and the cliff. Based on that, 
we provide an equation for adaptively setting an efficient window 
decrease ratio. We further emphasize that in a real system 
multiplicative window decreases are often unsynchronized among 
competing TCP flows, due to random congestive drops.  We 
analyze the negative impact of random multiplicative decrease on 
the short-term fairness, and hence the throughput smoothness 
experienced by end users. We argue that   the major obstacle for 
achieving smoothness is the unsynchronized window adjustments. 
We also reveal that random window decreases can undermine 
even long-term fairness, if measured by worst-case fairness, a new 
metric proposed to provide a tight bound on fairness.  

                                                 
1 The notation of AIMD parameters matches coincidentally the 
threshold’s notation in TCP Vegas. 

Based on these observations, we propose an experimental 
congestion avoidance mechanism to improve the sending-rate 
smoothness for real-time applications, within the framework of 
bandwidth efficiency and fairness. The mechanism relies on a 
fine-grained RTT estimation to measure the network condition, 
and coordinates the upward and backward window adjustments to 
abolish the damage of unsynchronized window control on 
throughput smoothness. It introduces new control parameters 
adaptable to the current network condition.  Congestive packet 
drops can be avoided by defining an adaptive parameter γ, which 
determines the window decreasing ratio when the level of 
contention exceeds a threshold that indicates an upcoming 
congestion. Therefore damaging transmission gaps due to packet 
losses are reduced, and queuing delays can also be controlled in 
an end-to-end approach. Our simulation results verify that the new 
mechanism enhances significantly the smoothness and fairness, 
without compromising the responsiveness. In fact, by enabling a 
new parameter δ, the responsiveness can be even improved when 
bandwidth underutilization is detected. Notably, our mechanism 
can be easily adapted and incorporated into unreliable transports 
for real-time applications. 

The paper is organized as follows: In section 2 we discuss the 
dynamics of congestion control and provide some observations on 
improving the smoothness of TCP ‘sending rate’. In section 3, we 
describe and justify an experimental congestion avoidance 
mechanism. Simulation results are presented in section 4 and our 
conclusion is summarized in section 5.  

2. DISCUSSIONS ON TCP SMOOTHNESS 
2.1 The Dynamics of Congestion Control  

R1 R2 

A Simple Network Topology 

sink_delay 
sink_bw 

delay 
bw 

src_delay 
src_bw 

Sink n Source n 

Sink 1 Source 1 

 
First we extend the analysis model of [3] by taking into account 
the role of bottleneck queue. Consider a simple network topology 
shown above, in which the link bandwidth and propagation delay 
are labeled. In our scheme, n TCP flows share a bottleneck link 
with capacity of bw, and the round trip propagation delay is RTT0 
= 2 * (src_delay + delay + sink_delay). Since our focus in this 
subsection is on the overall system behavior, we define the 
aggregated congestion window size at time t as: 

                                   ∑
=

=
n

i
i tcwndtcwnd

1
)()(                            (1)  

where cwndi(t) is the window size of the ith flow. Consequently, 
the system throughput at time t can be given by the following 
equation: 
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)(
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0 tqdelayRTT
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+
=

=                           (2) 

where qdelay(t) is the queuing delay at the bottleneck router R1. 
As can be seen from (2), the throughput is not only a function of 
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the congestion window, but also a function of the queuing delay, 
which was not incorporated into the analyses in [3, 11].  

Assume all flows are in the additive increase stage. First consider 
the case where cwnd(t) is below the point knee [3]: 
                                  bwRTTcwndknee ⋅= 0

                                 (3) 
Then there is no steady queue build-up2 in R1 (i.e. RTT(t) = 
RTT0), and according to (2), the throughput grows in proportion to 
cwnd. The bottleneck capacity is not fully utilized until cwnd 
increases to cwndknee. 

If cwnd(t) increases further beyond cwndknee, however, the system 
displays different dynamics. The bottleneck queue starts to build 
up, after the bottleneck capacity is saturated. Rewrite cwnd(t) as: 
                       )0)(()()( >∆∆+= twtwcwndtcwnd knee

                (4) 
Since the bottleneck link can transmit at most cwndknee packets in 
one RTT0 (see (3)), )(tw∆  packets will linger in the queue. 
Hence the steady queuing delay at the bottleneck will be: 
                                     bwtwtqdelay /)()( ∆=                                 (5) 
Intuitively, the system throughput is bounded by the physical 
capacity bw, in spite of the increase of cwnd(t) beyond the knee, 
because qdelay(t) in the denominator of (2) grows as well.  This is 
confirmed by the following computation: 

                           

bw
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                    (6) 

The system dynamics can be continuously described by equations 
(4) – (6), until the queue length )(tw∆ reaches the maximum 
buffer size, i.e. when cwnd touches the point cliff 3 
                    bwqdelayRTTcwndcliff ⋅+= )max( 0

                  (7) 

TCP senders then multiplicatively decrease their congestion 
window, after packet losses due to buffer overflow are detected. 

The computation of (6) demonstrates that increasing cwnd beyond 
the knee does not enhance further the system throughput, but only 
results in increasing queuing delay. However, our analysis also 
indicates that some queue build-up is inevitable, in order to 
provide fairness-oriented AIMD algorithm an operating scope 
where the system throughput fully exploits the bottleneck 
bandwidth. More precisely, although multiplicative decrease is 
necessary to accomplish fairness dynamically [3, 15], it does not 
necessarily mean that the throughput will be sacrificed, as long as 
the system operates between the knee and the cliff. In order to 
prevent the system from operating below the knee where 
bandwidth is under-utilized, and meanwhile maintain adequate 
AIMD oscillation (which affects the speed to converge to fairness 
[15]), an efficient window decreasing ratio could be                

       

bwRTT
BufferSize

bwRTT
bwqdelay

RTT
qdelaykwhere

kcwnd
cwnd

cliff

knee

⋅
=

⋅
⋅==

+
==

000

maxmax

1
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2 There could be temporary queue build-up in this scenario, due to 
the traffic burstiness. This is neglected to simplify our analysis.    
3 The intuitive concept of knee and cliff was first introduced in 
[3].  Here we give an analytical expression. 

When the bottleneck buffer size equals to delay-bandwidth 
product, k = 1 and β = 0.5. Equation (8) corroborates that an 
efficient window decrease ratio   depends on the network settings. 
It calls for a measurement-based congestion control scheme that 
can adapt the control parameters to the network condition.  

2.2 Observations on Improving TCP Traffic 
Smoothness.  
Assume the system operates between the knee and the cliff in 
equilibrium, where the overall system throughput is kept at 
maximum and therefore relatively stable. Does this mean that 
each end user will observe a smooth throughput? Before we go 
one step further, an important intricacy need to be examined. The 
analysis of [3] assumed a synchronized model, meaning that all 
flows synchronously adjust backward upon congestion indication.  
However, our simulation experience confirms the early findings 
[4] that global synchronization rarely happens even with drop tail 
buffer. That is, in a real system, packet losses do not occur to all 
flows when the bottleneck buffer overflows.  Some flows 
experiencing early packet drops reduce their sending windows 
quickly, which might bring about partial queue draining.  This 
could leave sufficient space for additive increase afterwards, and 
hence the remaining flows keep growing. Due to this partial 
backward adjustment upon congestion, from the system 
perspective, the multiplicative decrease ratio of the aggregated 
window is higher than the ratio β an individual flow adopts. The 
selection of which flows to drop is random by nature. With active 
queue management, such as RED [7], random congestion 
indications are explicitly performed.  

The detailed analysis on the impact of unsynchronized and 
random multiplicative decrease on system fairness and the queue 
length is out of the scope of this paper. The work based on fluid 
model [9], which takes into account both the random 
multiplicative decrease and the role of bottleneck buffer, shows 
that the system can still converges to fairness. However, our 
simulation results (see section 4) reveal that it takes very long 
time to converge to the long-term fairness (measured at a 
timescale of connection time), when evaluated by a new fairness 
metric proposed in section 4.2. 

We are particularly interested in the impact of random 
multiplicative decrease on the smoothness observed by end users. 
Authors in [13] show that smoothness is directly related to the 
short-term fairness (measured at a time scale of several RTTs). 
We now give our intuitive explanation based on the notion of 
random multiplicative decrease. Assume an adequate level of 
long-term fairness is achieved. Similar to (2), the throughput of 
the ith  flow at time t is: 
                      

)(
)(

)(
0 tqdelayRTT

tcwndtthroughput i
i +

=                   (9) 

Since qdelay(t) is common to all flows, the throughput 
distribution among flows at time t depends mainly on the 
difference in cwndi(t). Obviously, unsynchronized multiplicative 
decrease degrades the short-term fairness, due to random 
congestive drops that permit some flows to grow beyond their fair 
shares, at the cost of the other flows forced to decrease, in a short 
period of time. Assuming an adequate level of long-term fairness 
is achieved (due to the inherent characteristic of randomness in 
selecting which flows to drop), flows consuming extra bandwidth 
at one time period must pay back the credit to the flows 
consuming less bandwidth, at some other time period. As a result 
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of the long-term fairness accomplished without short-term 
guarantee, individual end users are unavoidably subject to 
throughput oscillations, even though the overall system 
throughput is smooth. Therefore, we argue that the major obstacle 
for achieving smoothness is the unsynchronized and random 
window adjustments.  

If the system follows the synchronized model presented in [3], 
however, window upward and downward adjustments are 
coordinated after the system reaches equilibrium. Therefore short-
term fairness is not damaged. Given the condition of a stable 
system throughput, the bandwidth allocated to each end user will 
be also smooth along the time. From the perspective of an 
individual flow, multiplicative decrease of cwndi(t) in equation (9) 
does not necessarily affect the throughput, if qdelay(t) in the 
denominator decreases correspondingly because of synchronized 
backward adjustments of all flows. Therefore, smoothness can be 
achieved along with bandwidth efficiency and fairness. 
Traditional wisdom might argue that global synchronization is 
more likely to cause the system to operate below the knee where 
bandwidth is under-utilized. However, as shown by equation (8), 
this can be avoided by setting the multiplicative decrease ratio 
adaptively.  

3. AN EXPERIMENTAL PROTOCOL 
Based on the observations in section 2, in this section we propose 
a synchronized and measurement-based congestion avoidance 
mechanism to improve the smoothness of TCP sending-rate for 
real-time applications, within the framework of bandwidth 
efficiency and fairness, and without compromising responsiveness 
to variations of bandwidth availability. 

3.1 The Congestion Avoidance Mechanism 
The sender measures the fine-grained RTT (see section 3.2 for 
implementation details). It records the minimum RTT and the 
maximum RTT perceived. The queuing delay can be derived by 
deducting the minimum RTT (which corresponds to the round-trip 
propagation delay) from the current RTT measured. The slow start 
mechanism of TCP is not modified, to allow the queue length to 
fully grow to overflow during initialization, so that the maximum 
RTT with the highest queuing delay could be observed before the 
congestion avoidance stage takes over.  

In the congestion avoidance stage, the additive increase speed (α = 
1) of standard TCP is untouched, and the sender halves the 
congestion window upon a packet loss (β = 0.5). However, the 
standard congestion control is complemented with the following 
congestion avoidance mechanism. Upon the detection of the 
following condition: 
             

upperTh
RTTRTT

RTTtRTT
qdelay

tqdelay ≥
−

−=
minmax

min)(
max

)(             (10) 

where the threshold Thupper is experimentally set to be 0.5, the 
congestion window is decreased after one RTT, with window 
decrease ratio γ set to be: 
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      (11) 

where k is defined in Equation (8). Note that γ-based 
multiplicative decrease is carried out one RTT after the condition 
of (10) is detected,   in order to assure that no sender adjusts 
backward before the condition is observed by all the other 
senders. Equation (11) bears some similarities with equation (8). 
Both of them assume a synchronized model, and intend to prevent 
the system from operating below the knee. However, equation (8) 
presumes that drop-tail buffer synchronously feeds back 
congestion indications (i.e. packet drops) to all flows, which is not 
true in reality.  In contrast, backward adjustments based on (11) is 
triggered by a threshold on the queuing delay, which can be 
synchronously detected by all senders. From the perspective of 
congestion control, γ determines the window decreasing ratio 
when the level of contention exceeds a threshold that indicates an 
upcoming congestion. Since γ-based multiplicative decrease is 
applied when the system is half way between the knee and the 
cliff, γ is higher than β. 

Another optional control parameter δ is introduced, in order to 
enhance the additive increase speed when the network is under-
utilized. More specifically, when the following condition persists: 
                  

lowerTh
RTTRTT

RTTtRTT
qdelay

tqdelay ≤
−

−=
minmax

min)(
max

)(           (12) 

the queue is relatively close to empty and the bandwidth is 
possibly under-utilized. The additive increase adopts a faster 
speed: δ = 2. The threshold Thlower is experimentally set to be 0.1. 
Once the threshold is exceeded, δ hands over the control to α.   

3.2 Fine-grained RTT Measurement 
In our fine-grained RTT measurement, the sender records the 
system clock each time a packet is sent. When the corresponding 
ACK is returned, the sender reads the clock again and computes 
the RTT. As in the coarse-grained RTT estimation in standard 
TCP, fine-grained RTT measurement is taken only for packets 
that have been sent just once.  

However, there are two interfering factors to be canceled: (i) TCP 
delayed acknowledgement is widely deployed. The receiver 
transmits an ACK for every second data packets received. If a 
second data packet is not received within a given timeout, an 
ACK is transmitted. In the latter case, the RTT measured at the 
sender incorporates the ACK delay time at the receiver.  (ii) TCP 
acknowledgement is cumulative ACK. When a packet is dropped 
due to congestion, duplicate ACKs received at the sender can not 
be used for RTT computation, although duplicative ACKs are 
triggered by the data packets that do get through the bottleneck 
link and provide valuable information on the maximum queuing 
delay when the bottleneck buffer overflows. 

Our solution is attaching to the cumulative ACK the sequence 
number of the data packet that triggers this ACK, as a TCP header 
option. Therefore RTT computation can be conducted even with 
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duplicate ACKs: use the attached sequence number to compute 
the RTT for the data packet that triggers the duplicative ACK. 
When the ACK is triggered by a timeout on ACK delay, the 
receiver does not attach the option to the ACK, and RTT 
computation is skipped at the sender.  

3.3 Mechanism Justification and Comparison 
The protocol introduces a number of novel features:  

(a) It is measurement-based. It relies on a fine-grained RTT 
estimation to measure the network condition, beyond the 
traditional congestion indication - packet drops. Therefore, 
sophisticated methods are enabled.  

(b) It follows a synchronized model. The upward and downward 
window adjustments of all flows in the system are coordinated, so 
that the system can escape the damage of unsynchronized and 
random window adjustments on short-term fairness and 
throughput smoothness. Notably the smoothness is accomplished 
without compromising responsiveness to the variations of 
bandwidth availability in a dynamic environment. The 
responsiveness is maintained through the unchanged additive 
increase rate. In fact, by enabling the parameter δ, the 
responsiveness can be even improved when bandwidth 
underutilization is detected. 

(c) It avoids congestion by scheduling backward window 
adjustments well before the occurrence of congestion and 
consequent packet drops. Congestion avoidance prior to 
congestion reduces packet drops, which cause the damaging 
transmission gaps, and timeout events that disturb the system 
stability.   

(d) Its control parameters are adaptive. Not only can the 
multiplicative decrease ratio be tuned (through γ) to prevent the 
system from operating below the knee, but also the additive 
increase speed can be enhanced (through δ) when the bandwidth 
is under-utilized. 

 (e) It’s an end-to-end solution that controls the average queue 
length through the thresholds in equations (10) and (11), without 
the deployment of active queue management in routers. 

Above all, these features do not violate the established framework 
of fairness-oriented AIMD. Notably, TCP Vegas also has features 
(a) (c) and (e). However, its fine-grained RTT measurements do 
not take into account the impact of delayed ACK. More 
importantly, its congestion avoidance mechanism follows an 
Additive Increase and Additive Decrease (AIAD) scheme, which 
does not guarantee fairness [3]. Window adjustment strategy of 
Vegas can’t be categorized as synchronized or unsynchronized, 
because the design philosophy of Vegas is to maintain the status 
quo if each flow has a couple of extra packets in the buffer and the 
bottleneck bandwidth is fully utilized [2]. This lack of concern for 
fairness is verified by experiments in [8], and amplified by our 
new fairness metric shown in section 4.3.1. 

4. EVALUATION AND ANALYSIS 
4.1 Testing Plan and Methodology 
The protocol was evaluated on ns-2 network simulator [10]. 
Simulations were conducted over the network topology shown in 
section 2.1. By default, the propagation delay is 30ms for the 
bottleneck link and 5ms for the access links. Simulations with 
diverse propagation delays were also conducted. The bottleneck 

buffer size at R1 was set to be the product of the round-trip 
propagation delay and the bottleneck capacity, which varied from 
10Mbps to 100Mbps in simulations. The deployment of RED at 
bottleneck router R1 was also tested, in order to investigate the 
effect of random multiplicative decreases explicitly enforced by 
RED, in comparison with the implicit random decrease of drop-
tail buffer. The settings for RED were as per [5]. Specifically, 
min_th  =  buffer_size / 6,  max_th  =  buffer_size / 2. Also we 
selected max_p = 0.1 and w = 0.002. 

To evaluate the protocol’s capability to exploit the bandwidth that 
becomes available rapidly (i.e. the responsiveness), we also 
created a scenario of temporary “blackouts” due to mobile 
handoffs, during which all transmitted packets were lost.  An error 
model was inserted into the access links to the receivers (assumed 
in wireless domain), with 100% packet dropping rate. 

We selected 7 protocol configurations: Reno (α = 1, β=0.5), Reno 
with RED configured at R1, TCP Vegas, Reno with the γ 
parameter,   Reno with γ and δ (= 2), and smooth TCP (α = 0.31, β 
= 0.875) [14], and TFRC [6]. We were particularly interested in 
the comparison between the γ mechanism and TCP(0.31, 0.875), 
whose smoothness is achieved by increasing the window decrease 
ratio, at the cost of lesser responsiveness. TCP Vegas was selected 
to demonstrate the unfairness of Additive Increase and Additive 
Decrease (AIAD) congestion avoidance. TFRC is an equation-
based rate control mechanism for unicast applications. Since 
TFRC is not a reliable transport control, it’s somewhat 
unreasonable to compare its performance with reliable TCP 
protocols. Nonetheless, TFRC was included as a reference of 
smoothness. Notably, our mechanism can be easily adapted for 
unreliable media-streaming. 

4.2 Performance Metrics 
Long-term Fairness is measured by the Fairness Index, defined by 
[3]: 

∑
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where throughputi is the throughput of the ith flow, measured at a 
time scale of connection time. This Fairness Index provides a sort 
of “average-case” analysis used by most researchers. In order 
conduct a “worst-case” analysis and provide a tight bound on 
fairness, we propose the Worst-Case Fairness as: 

ini

ini

throughput

throughput
airnessWorstCaseF

≤≤

≤≤=
1

1

max

min  

The range of worst-case fairness is also in [0, 1], with 1 
representing the greatest fairness.  As an example demonstrating 
why worst-case fairness is introduced, consider a scenario of 6 
flows, the throughputs of which are 9 Mbps, 9.5 Mbps, 8.5 Mbps, 
9 Mbps, 9 Mbps, and 6 Mbps, respectively. The traditional 
“average-case” fairness index is 0.982, while the worst-case 
fairness is 0.667. Compare this scenario with a perfectly fair case 
in which all flows achieve 9.5 Mpbs, and both the “average-case” 
fairness index and worst-case fairness index are 1.0. The 
difference between the first scenario and the ideal case can’t be 
obviously distinguished by the “average-case” fairness index. In 
the first scenario, the system is fair in general, but is particularly 
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unfair to the 6th flow. This unfairness to a very small fraction of 
flows can only be captured by the worst-case fairness. 

To investigate the performance smoothness observed by end 
users, allotted throughput throughti(t) for the ith flow is sampled at 
a time scale of several RTTs, throughout the entire connection. In 
our simulations, the sample time period is set to be 0.5 seconds (3 
to 6 RTTs). Following the metric in [13], we use Coefficient of 
Variation (CoV) to gauge the throughput smoothness experienced 
by flow i:   

)}({
)}({)}({ 22

tthoughputE
tthoughputEtthoughputE

CoV
it

itit
i

−
=  

where Et{} denotes the computation of  the mean along the time.  
For a system with multiple flows, the system CoV is the average 
of CoVs of all flows. Allotted throughput is also used to compute 
the short-term fairness, derived from the traditional Fairness 
Index: 
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Allotted throughput, and hence CoV and short-term fairness, are 
measured 15 seconds after the simulation starts, in order to just 
capture the system performance after it enters equilibrium state.  

Bottleneck queue lengths are also traced, since it affects the end-
to-end delay and hence the subjective performance of delay-
sensitive applications. Queue lengths are sampled periodically at a 
time scale of several RTTs. The queue length is normalized by the 
buffer size, with normalized queue length 1 representing a full 
queue. 

4.3 Results and Analysis 
4.3.1 Fairness and Smoothness 
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Figure 1. Fairness Index
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We first conducted 10 simulations, with the number of flows 
varied from 10 to 100. The bottleneck link capacity scaled 
correspondingly, such that the fair share for each flow was 1 
Mbps. Protocol performances with 100 second connection time 
are shown in Figures 1 – 4. If assessed by traditional fairness 
index (Figure. 1), all protocols achieve high level of fairness, 
except Vegas. However, Figure 2 reveals that random 
multiplicative decrease can not guarantee worst-case fairness, 
compared to the synchronized window adjustments of Reno + γ. 

As the number of flows increases, the worst-case fairness with 
random decrease strategy fluctuates and gradually degrades, 
reflecting the inherent characteristics of randomness. The 
deployment of RED can slightly improve the worst-case fairness 
of TCP flows. The overall fairness performance of Vegas is the 
worst. 
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Figure 2. Worst Case Fairness

Reno + Gamma
TCP(0.31, 0.875)
Reno
Reno + RED
Vegas
TFRC

 

0 10 20 30 40 50 60 70 80 90 100

number of flows 

0.2

0.4

0.6

0.8

1.0

s
h
o
r
t
-
t
e
r
m
 
f
a
i
r
n
e
s
s
 

Figure 3. Short-term Fairness
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Figure 4. CoV
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The short-term fairness and CoV measurements are shown in 
Figures 3 and 4, respectively. Reno + γ achieves higher short-term 
fairness and lower CoV (i.e. higher smoothness) than the 
protocols based on random window adjustments, including Reno, 
Reno + RED, TCP(0.31, 0.875) and even TFRC. Note that the 
smoothness of Reno + γ is achieved not by increasing the window 
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decreasing ratio as with TCP(0.31, 0.875). Since the buffer size is 
set to the round-trip propagation delay times the bottleneck 
bandwidth, the γ applied is around 2/3, according to equation (11). 
Rather, the smoothness is achieved by implementing coordinated 
multiplicative decreases, taken before the occurrence of 
congestion. Furthermore, how much to decrease is now adaptively 
set according to the measurement on the network condition. The 
lowest CoV is achieved by TCP Vegas because of its design 
philosophy to maintain the status quo. However, as analyzed in 
section 3.3, this is accomplished at the expense of fairness, due to 
its Additive Increase and Additive Decrease congestion avoidance 
strategy. Its unfairness is further amplified by the next set of tests.    

Next, we fixed the number of flows at 30, and varied simulation 
time from 100 seconds to 1000 seconds, in order to watch the 
effect of connection time on performance metrics. The 
performances of CoV, fairness, and short-term fairness remain 
almost unchanged, as the connection time increases. However, 
Figure 5 shows that the worst-case fairness with random window 
adjustments grows with the connection time. This gives a clue to 
an explanation of the low worst-case fairness of   random 
multiplicative decreases: The number of congestion epochs4 
experienced by the system is in direct proportion to the connection 
time. That is, the number of times to randomly select flows to 
drop is in proportion to the connection time. Assume the random-
drop selection upon congestion is not biased against any flow, or 
the probability that a flow receives congestion indication upon a 
congestion event is p, where p is the same for all flows. According 
to the law of large numbers in statistics, however, the actual 
percentage of random selections in which a specific flow is 
chosen to drop gradually converges to p, only when the number of 
times to randomly select flows to drop grows to infinity, or more 
practically, when connections last for a very long time. Therefore, 
over time, the system appears more unbiased and the worst-case 
fairness is improved. However, even at time 1000 seconds, worst-
case fairness with random window adjustments is still below that 
of Reno + γ. Furthermore, the fairness of TCP Vegas stays low, 
no matter how long the connection time is. The highest 
throughput achieved by individual flows is 75% higher “forever” 
than the lowest one, due to its tendency to maintain the status quo 
after the bandwidth efficiency is achieved. Without attempts to 
dynamically adjust and converge to fairness, the system loses the 
gravity to draw it back to a fair state once it initially enters an 
unfair steady state. 
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Figure 5. Worstcase Fairness with 30 Flows
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4 A congestion epoch is defined to be the time period between two 
successive congestion indications. 

4.3.2 Queue Length 
Queue lengths traces with 10 flows are displayed in Figures 11 – 
16 attached to the end of this paper. As we can see, RED, Vegas 
and Reno + γ can control the bottleneck queue length, while 
standard TCP Reno periodically causes full queue length or buffer 
overflow. More seriously, without active queue management, 
TCP-friendly protocols result in a queue always close to full, due 
to their “gentle” regression upon buffer overflow. Both Reno + γ 
and Vegas control the queue lengths in an end-to-end fashion. 
Although Vegas has lower queuing delay, it is achieved by a 
window adjustment strategy that lacks concern for fairness.  
4.3.3 Performance with Diverse RTTs 
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Figure 6. Fairness Index with Diverse RTTs
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Figure 7. Worst Case Fairness with Diverse RTTs
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Figure 8. Short-term Fairness with Diverse RTTs

Reno + Gamma
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Figure 9. CoV with Diverse RTTs
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We repeated the tests in section 4.3.1 with diverse RTTs. The 
propagation delays of access links to sink nodes are now 
uniformly distributed between 5 ms to 15 ms.   The performances 
are demonstrated in Figures 6 – 9. Reno + γ still outperforms 
other protocols, and its synchronized congestion avoidance 
mechanism is not disrupted by the diverse RTTs. 

4.3.4 Responsiveness in Dynamic Environment 
Moreover, the high smoothness of coordinated window 
adjustments is achieved not at the cost of responsiveness, as 
shown by our next simulation over heterogeneous (wires/wireless) 
networks. A single flow runs on the 10Mbps bottleneck link. At 
time 20 seconds, the wireless access link was interrupted by a 1 
second handoff period, during which all packets were lost. Since 
bandwidth becomes available immediately at the end of the 
handoff, a high sending rate increase is the desired behavior. The 
protocols’ aggressiveness after the handoff is shown in Figure 10. 
Since both cwnd and ssthresh are reduced to minimum during the 
handoff, the additive increase speed is the dominant factor when 
the handoff is over. Due to the lesser responsiveness (α = 0.31) as 
a result of TCP-friendly α/β tradeoff, it takes 57 seconds for 
TCP(0.31, 0.875) to fully recover the transmission speed, while 
the recovery time for Reno or Reno + γ is 19 seconds, with α = 1. 
If the optional parameter δ = 2 is enabled, the recovery time can 
be further reduced to 10 seconds. As the condition of bandwidth 
under-utilization is detected after the handoff is over, a faster 
additive increase step can be adopted. The recovery speed of 
Vegas is slightly below that of Reno. Notably the modified slow 
start [2] of Vegas hinders its capability to quickly exploit the 
available bandwidth even during the flow initialization stage 
(before the mobile handoff). 
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Figure 10. Thoughput with 1.0 Second Handoff 
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5. CONCLUSION AND FUTURE WORK 
We argued that the major obstacle for achieving smoothness is the 
unsynchronized and random window adjustments, and that global 
synchronization may elude bandwidth under-utilization by 
adapting control parameters to the network conditions. We also 
revealed the negative impact of random window decreases on 
fairness, measured by the novel worst-case fairness index. Based 
on these observations, we proposed an experimental congestion 
avoidance mechanism that relies on fine-grained RTT 
measurements to coordinate window adjustments. TCP 
smoothness is enhanced, without compromising efficiency, 
fairness and responsiveness. The mechanism can also control the 
queuing delay of drop-tail buffers. With the current experimental 
protocol, the queuing delay on the reverse path could be reflected 
in the RTT measurements and thus affect the congestion 
avoidance mechanism. A receiver-oriented approach [12] can be 
incorporated to improve the system robustness with two way 
traffic. 
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Figure 11. Queue Length of Reno + Gamma with 10 flows  
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Figure 12. Queue Length of Reno with 10 flows  
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Figure 13. Queue Length of Reno + RED with 10 flows  

139



0 10 20 30 40 50 60 70 80 90 100

time (s) 

0.0

0.2

0.4

0.6

0.8

1.0

n
o
r
m
a
l
i
z
e
d
 
q
u
e
u
e
 
l
e
n
g
t
h
 

Figure 14. Queue Length of Vegas with 10 flows  
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Figure 15. Queue Length of TCP(0.31, 0.875) with 10 flows  
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Figure 16. Queue Length of TFRC with 10 flows  
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