
Improving TCP Smoothness by Synchronized
and Measurement-based Congestion Avoidance

Chi Zhang
College of Computer Science

Northeastern University
Boston, MA 20115

czhang@ccs.neu.edu

Vassilis Tsaoussidis
College of Computer Science

Northeastern University
Boston, MA 20115

vassilis@ccs.neu.edu

ABSTRACT
In this paper, we observe that although multiplicative decrease is
necessary to accomplish fairness in congestion control, it does not
inevitably sacrifice system throughput, as long as the system
operates between the knee and the cliff, according to an equation.
However, even when the system throughput is relatively stable,
end users of real-time applications do not necessarily experience a
smooth traffic, mainly caused by the unsynchronized window
adjustments due to random congestion indications. We analyzed
and evaluated the negative impact of random window adjustments
on smoothness, short-term fairness, and even long-term fairness
measured by a novel fairness metric defined in this paper.
Therefore, we propose an experimental congestion avoidance
mechanism to improve TCP smoothness for media-streaming
applications. The mechanism relies on a fine-grained RTT
estimation to measure the network condition, and coordinates the
upward and backward window adjustments to abolish the damage
of unsynchronized window control. Congestive packet drops are
reduced by a new control parameter γ, and the bottleneck queue
length can also be controlled in an end-to-end way. Simulation
results confirm that the new mechanism enhance significantly the
smoothness and fairness, without a cost of responsiveness. In fact,
by enabling a new parameter δ, the responsiveness can be even
enhanced when the bandwidth is under-utilized.

Categories and Subject Descriptors
C.2.6 [Computer-Communication Networks]: Internetworking
– Standards (e.g. TCP/IP).

General Terms
Design, Performance.

Keywords
Congestion Control, Fairness, Smoothness, Responsiveness,
AIMD, Real-time Applications, TCP-friendly Protocols.

1. INTRODUCTION
Transmission control of standard TCP [1] is based on the Additive
Increase / Multiplicative Decrease (AIMD) window adjustment
strategy [3] that exploits available bandwidth, avoids persistent
congestion, and achieves system fairness. Traditional AIMD is a
somewhat “blind” mechanism, in the sense that the congestion
window increases steadily until the occurrence of congestion,
which necessitates the subsequent error recovery. That is,
congestion control mechanism itself is the natural cause of
congestion, and congestion can be detected only by packet drops.

The window adjustments of TCP Vegas [2] take a congestion-
avoidance approach. Vegas defines a BaseRTT to be the
minimum of all measured RTTs, and ExpectedRate to be the ratio
of congestion window to BaseRTT. The sender measures the
ActualRate based on the sample RTTs. If the difference between
the ExpectedRate and the ActualRate is below a threshold α, the
congestion window increases linearly during the next RTT; if the
difference exceeds another threshold β, Vegas decreases the
congestion window linearly during the next RTT. According to
[2], TCP Vegas achieves better transmission rates than standard
TCP. However, [8] shows that Vegas can not guarantee fairness.

While TCP congestion control is basically appropriate for bulk
data transfers, some real-time applications such as media-
streaming find the standard multiplicative decrease by a factor of
2 upon congestion to be unnecessarily severe, as it can cause data-
rate oscillations and even transmission gaps [6]. TCP-friendly
protocols therefore have been proposed with two fundamental
goals: (i) to achieve smooth backward adjustments; this is done by
increasing the window decrease ratio during congestion, and (ii)
to compete fairly with TCP flows; this is approached by reducing
the window increase step according to a steady-state TCP
throughput equation [11]. That is, TCP friendly protocols favor
smoothness by using a gentle backward adjustment upon
congestion, at the cost of lesser responsiveness - through
moderated upward adjustments.

TCP Friendly Rate Control (TFRC) is an equation-based TCP-
Friendly congestion control protocol for unicast applications [6].
The sender explicitly adjusts its sending rate as a function of the
measured rate of loss events, to compete fairly with TCP. A loss
event consists of one or more packet drops within a single round-
trip time. The receiver calculates the loss event rate and reports
feedback to the sender. The benefit of TFRC is its “gentle” rate
regression upon congestion.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NOSSDAV’03, June 1-3, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-694-3/03/0006…$5.00.

131

GAIMD [14] is a parameterized TCP-friendly protocol. It
generalizes AIMD congestion control by parameterizing the
additive increase value α and multiplicative decrease ratio β1. For
the family of TCP(α, β) protocols, authors of [14] derive a simple
relationship between α and β to be friendly to standard TCP (α =
1, β = 1/2). Based on experiments, they propose a β = 0.875 as the
appropriate ratio for smooth backward adjustment, and a
moderated increase value α = 0.31 to achieve TCP friendliness.
In [15], we investigated the interrelation of TCP smoothness and
responsiveness by studying the impact of network conditions on
the friendliness-oriented α/β tradeoff. We confirmed
experimentally that, in general, smoothness and responsiveness
constitute a tradeoff; however, we uncover undesirable dynamics
of the protocols when the network or flow characteristics do not
follow a prescribed and static behavior. For example, we showed
that moderated upward adjustments (as a result of the tradeoff for
smoothness) confine the protocol’s capability to exploit resources
that become available rapidly, where responsiveness is the
dominant factor. Also, smooth backward adjustments of existing
flows embarrass the fair and efficient growth of new incoming
flows.

Therefore, the challenge does not lie in simply achieving smooth
congestion control, but rather in providing smoothness along with
bandwidth efficiency, fairness, responsiveness, as well as
controlled queue length. Responsiveness to variations of
bandwidth availability facilitates quick adjustments for rate-
adaptive real-time applications in a dynamic environment.
Queuing delay is also a concern here, because it affects the
subjective performance of delay-sensitive applications.
Furthermore, we realize that previous theoretical work on
congestion control [3, 9, 11] ignores some basic factors which are
essential to the understanding of smoothness. For example, [3]
[11] (and hence the TCP-friendly protocols based on [11])
overlook the role of bottleneck queue in the dynamics of
congestion control (see section 2.1). Analyses based on fluid
model [9] do not discuss the impact of unsynchronized
multiplicative decrease on the performance smoothness and
system fairness (see section 2.2).

In this paper, we provide an intuitive interpretation to the
dynamics of congestion control. We first extend the AIMD
analysis model presented in [3], by taking into account the role of
the bottleneck queue. We observe that although multiplicative
decrease is necessary to accomplish fairness, it does not
necessarily sacrifice system throughput, as long as the system
operates between the knee and the cliff defined in [3]. We derive
an analytical expression of the knee and the cliff. Based on that,
we provide an equation for adaptively setting an efficient window
decrease ratio. We further emphasize that in a real system
multiplicative window decreases are often unsynchronized among
competing TCP flows, due to random congestive drops. We
analyze the negative impact of random multiplicative decrease on
the short-term fairness, and hence the throughput smoothness
experienced by end users. We argue that the major obstacle for
achieving smoothness is the unsynchronized window adjustments.
We also reveal that random window decreases can undermine
even long-term fairness, if measured by worst-case fairness, a new
metric proposed to provide a tight bound on fairness.

1 The notation of AIMD parameters matches coincidentally the
threshold’s notation in TCP Vegas.

Based on these observations, we propose an experimental
congestion avoidance mechanism to improve the sending-rate
smoothness for real-time applications, within the framework of
bandwidth efficiency and fairness. The mechanism relies on a
fine-grained RTT estimation to measure the network condition,
and coordinates the upward and backward window adjustments to
abolish the damage of unsynchronized window control on
throughput smoothness. It introduces new control parameters
adaptable to the current network condition. Congestive packet
drops can be avoided by defining an adaptive parameter γ, which
determines the window decreasing ratio when the level of
contention exceeds a threshold that indicates an upcoming
congestion. Therefore damaging transmission gaps due to packet
losses are reduced, and queuing delays can also be controlled in
an end-to-end approach. Our simulation results verify that the new
mechanism enhances significantly the smoothness and fairness,
without compromising the responsiveness. In fact, by enabling a
new parameter δ, the responsiveness can be even improved when
bandwidth underutilization is detected. Notably, our mechanism
can be easily adapted and incorporated into unreliable transports
for real-time applications.

The paper is organized as follows: In section 2 we discuss the
dynamics of congestion control and provide some observations on
improving the smoothness of TCP ‘sending rate’. In section 3, we
describe and justify an experimental congestion avoidance
mechanism. Simulation results are presented in section 4 and our
conclusion is summarized in section 5.

2. DISCUSSIONS ON TCP SMOOTHNESS
2.1 The Dynamics of Congestion Control

R1 R2

A Simple Network Topology

sink_delay
sink_bw

delay
bw

src_delay
src_bw

Sink n Source n

Sink 1 Source 1

First we extend the analysis model of [3] by taking into account
the role of bottleneck queue. Consider a simple network topology
shown above, in which the link bandwidth and propagation delay
are labeled. In our scheme, n TCP flows share a bottleneck link
with capacity of bw, and the round trip propagation delay is RTT0
= 2 * (src_delay + delay + sink_delay). Since our focus in this
subsection is on the overall system behavior, we define the
aggregated congestion window size at time t as:

 ∑
=

=
n

i
i tcwndtcwnd

1
)()((1)

where cwndi(t) is the window size of the ith flow. Consequently,
the system throughput at time t can be given by the following
equation:

)(
)(

)(
)()(

0 tqdelayRTT
tcwnd

tRTT
tcwndtthroughput

+
=

= (2)

where qdelay(t) is the queuing delay at the bottleneck router R1.
As can be seen from (2), the throughput is not only a function of

132

the congestion window, but also a function of the queuing delay,
which was not incorporated into the analyses in [3, 11].

Assume all flows are in the additive increase stage. First consider
the case where cwnd(t) is below the point knee [3]:
 bwRTTcwndknee ⋅= 0

 (3)
Then there is no steady queue build-up2 in R1 (i.e. RTT(t) =
RTT0), and according to (2), the throughput grows in proportion to
cwnd. The bottleneck capacity is not fully utilized until cwnd
increases to cwndknee.

If cwnd(t) increases further beyond cwndknee, however, the system
displays different dynamics. The bottleneck queue starts to build
up, after the bottleneck capacity is saturated. Rewrite cwnd(t) as:
)0)(()()(>∆∆+= twtwcwndtcwnd knee

 (4)
Since the bottleneck link can transmit at most cwndknee packets in
one RTT0 (see (3)),)(tw∆ packets will linger in the queue.
Hence the steady queuing delay at the bottleneck will be:
 bwtwtqdelay /)()(∆= (5)
Intuitively, the system throughput is bounded by the physical
capacity bw, in spite of the increase of cwnd(t) beyond the knee,
because qdelay(t) in the denominator of (2) grows as well. This is
confirmed by the following computation:

bw
tqdelayRTT

bwtqdelaybwRTT
tqdelayRTT
twcwnd

tthroughput knee

=
+

⋅+⋅
=

+
∆+

=

)(
)(

)(
)(

)(

0

0

0

 (6)

The system dynamics can be continuously described by equations
(4) – (6), until the queue length)(tw∆ reaches the maximum
buffer size, i.e. when cwnd touches the point cliff 3
 bwqdelayRTTcwndcliff ⋅+=)max(0

 (7)

TCP senders then multiplicatively decrease their congestion
window, after packet losses due to buffer overflow are detected.

The computation of (6) demonstrates that increasing cwnd beyond
the knee does not enhance further the system throughput, but only
results in increasing queuing delay. However, our analysis also
indicates that some queue build-up is inevitable, in order to
provide fairness-oriented AIMD algorithm an operating scope
where the system throughput fully exploits the bottleneck
bandwidth. More precisely, although multiplicative decrease is
necessary to accomplish fairness dynamically [3, 15], it does not
necessarily mean that the throughput will be sacrificed, as long as
the system operates between the knee and the cliff. In order to
prevent the system from operating below the knee where
bandwidth is under-utilized, and meanwhile maintain adequate
AIMD oscillation (which affects the speed to converge to fairness
[15]), an efficient window decreasing ratio could be

bwRTT
BufferSize

bwRTT
bwqdelay

RTT
qdelaykwhere

kcwnd
cwnd

cliff

knee

⋅
=

⋅
⋅==

+
==

000

maxmax

1
1β (8)

2 There could be temporary queue build-up in this scenario, due to
the traffic burstiness. This is neglected to simplify our analysis.
3 The intuitive concept of knee and cliff was first introduced in
[3]. Here we give an analytical expression.

When the bottleneck buffer size equals to delay-bandwidth
product, k = 1 and β = 0.5. Equation (8) corroborates that an
efficient window decrease ratio depends on the network settings.
It calls for a measurement-based congestion control scheme that
can adapt the control parameters to the network condition.

2.2 Observations on Improving TCP Traffic
Smoothness.
Assume the system operates between the knee and the cliff in
equilibrium, where the overall system throughput is kept at
maximum and therefore relatively stable. Does this mean that
each end user will observe a smooth throughput? Before we go
one step further, an important intricacy need to be examined. The
analysis of [3] assumed a synchronized model, meaning that all
flows synchronously adjust backward upon congestion indication.
However, our simulation experience confirms the early findings
[4] that global synchronization rarely happens even with drop tail
buffer. That is, in a real system, packet losses do not occur to all
flows when the bottleneck buffer overflows. Some flows
experiencing early packet drops reduce their sending windows
quickly, which might bring about partial queue draining. This
could leave sufficient space for additive increase afterwards, and
hence the remaining flows keep growing. Due to this partial
backward adjustment upon congestion, from the system
perspective, the multiplicative decrease ratio of the aggregated
window is higher than the ratio β an individual flow adopts. The
selection of which flows to drop is random by nature. With active
queue management, such as RED [7], random congestion
indications are explicitly performed.

The detailed analysis on the impact of unsynchronized and
random multiplicative decrease on system fairness and the queue
length is out of the scope of this paper. The work based on fluid
model [9], which takes into account both the random
multiplicative decrease and the role of bottleneck buffer, shows
that the system can still converges to fairness. However, our
simulation results (see section 4) reveal that it takes very long
time to converge to the long-term fairness (measured at a
timescale of connection time), when evaluated by a new fairness
metric proposed in section 4.2.

We are particularly interested in the impact of random
multiplicative decrease on the smoothness observed by end users.
Authors in [13] show that smoothness is directly related to the
short-term fairness (measured at a time scale of several RTTs).
We now give our intuitive explanation based on the notion of
random multiplicative decrease. Assume an adequate level of
long-term fairness is achieved. Similar to (2), the throughput of
the ith flow at time t is:

)(
)(

)(
0 tqdelayRTT

tcwndtthroughput i
i +

= (9)

Since qdelay(t) is common to all flows, the throughput
distribution among flows at time t depends mainly on the
difference in cwndi(t). Obviously, unsynchronized multiplicative
decrease degrades the short-term fairness, due to random
congestive drops that permit some flows to grow beyond their fair
shares, at the cost of the other flows forced to decrease, in a short
period of time. Assuming an adequate level of long-term fairness
is achieved (due to the inherent characteristic of randomness in
selecting which flows to drop), flows consuming extra bandwidth
at one time period must pay back the credit to the flows
consuming less bandwidth, at some other time period. As a result

133

of the long-term fairness accomplished without short-term
guarantee, individual end users are unavoidably subject to
throughput oscillations, even though the overall system
throughput is smooth. Therefore, we argue that the major obstacle
for achieving smoothness is the unsynchronized and random
window adjustments.

If the system follows the synchronized model presented in [3],
however, window upward and downward adjustments are
coordinated after the system reaches equilibrium. Therefore short-
term fairness is not damaged. Given the condition of a stable
system throughput, the bandwidth allocated to each end user will
be also smooth along the time. From the perspective of an
individual flow, multiplicative decrease of cwndi(t) in equation (9)
does not necessarily affect the throughput, if qdelay(t) in the
denominator decreases correspondingly because of synchronized
backward adjustments of all flows. Therefore, smoothness can be
achieved along with bandwidth efficiency and fairness.
Traditional wisdom might argue that global synchronization is
more likely to cause the system to operate below the knee where
bandwidth is under-utilized. However, as shown by equation (8),
this can be avoided by setting the multiplicative decrease ratio
adaptively.

3. AN EXPERIMENTAL PROTOCOL
Based on the observations in section 2, in this section we propose
a synchronized and measurement-based congestion avoidance
mechanism to improve the smoothness of TCP sending-rate for
real-time applications, within the framework of bandwidth
efficiency and fairness, and without compromising responsiveness
to variations of bandwidth availability.

3.1 The Congestion Avoidance Mechanism
The sender measures the fine-grained RTT (see section 3.2 for
implementation details). It records the minimum RTT and the
maximum RTT perceived. The queuing delay can be derived by
deducting the minimum RTT (which corresponds to the round-trip
propagation delay) from the current RTT measured. The slow start
mechanism of TCP is not modified, to allow the queue length to
fully grow to overflow during initialization, so that the maximum
RTT with the highest queuing delay could be observed before the
congestion avoidance stage takes over.

In the congestion avoidance stage, the additive increase speed (α =
1) of standard TCP is untouched, and the sender halves the
congestion window upon a packet loss (β = 0.5). However, the
standard congestion control is complemented with the following
congestion avoidance mechanism. Upon the detection of the
following condition:

upperTh
RTTRTT

RTTtRTT
qdelay

tqdelay ≥
−

−=
minmax

min)(
max

)((10)

where the threshold Thupper is experimentally set to be 0.5, the
congestion window is decreased after one RTT, with window
decrease ratio γ set to be:

kTh

RTTThRTTTh
RTT

qdelayThRTT
RTT

tRTTbw
RTTbw

tcwnd
cwnd

upper

upperupper

upper

knee

⋅+
=

−+⋅
=

⋅+
=

⋅
⋅==

1
1

min)1(max
min

maxmin
min

)(
min

)(
γ

 (11)

where k is defined in Equation (8). Note that γ-based
multiplicative decrease is carried out one RTT after the condition
of (10) is detected, in order to assure that no sender adjusts
backward before the condition is observed by all the other
senders. Equation (11) bears some similarities with equation (8).
Both of them assume a synchronized model, and intend to prevent
the system from operating below the knee. However, equation (8)
presumes that drop-tail buffer synchronously feeds back
congestion indications (i.e. packet drops) to all flows, which is not
true in reality. In contrast, backward adjustments based on (11) is
triggered by a threshold on the queuing delay, which can be
synchronously detected by all senders. From the perspective of
congestion control, γ determines the window decreasing ratio
when the level of contention exceeds a threshold that indicates an
upcoming congestion. Since γ-based multiplicative decrease is
applied when the system is half way between the knee and the
cliff, γ is higher than β.

Another optional control parameter δ is introduced, in order to
enhance the additive increase speed when the network is under-
utilized. More specifically, when the following condition persists:

lowerTh
RTTRTT

RTTtRTT
qdelay

tqdelay ≤
−

−=
minmax

min)(
max

)((12)

the queue is relatively close to empty and the bandwidth is
possibly under-utilized. The additive increase adopts a faster
speed: δ = 2. The threshold Thlower is experimentally set to be 0.1.
Once the threshold is exceeded, δ hands over the control to α.

3.2 Fine-grained RTT Measurement
In our fine-grained RTT measurement, the sender records the
system clock each time a packet is sent. When the corresponding
ACK is returned, the sender reads the clock again and computes
the RTT. As in the coarse-grained RTT estimation in standard
TCP, fine-grained RTT measurement is taken only for packets
that have been sent just once.

However, there are two interfering factors to be canceled: (i) TCP
delayed acknowledgement is widely deployed. The receiver
transmits an ACK for every second data packets received. If a
second data packet is not received within a given timeout, an
ACK is transmitted. In the latter case, the RTT measured at the
sender incorporates the ACK delay time at the receiver. (ii) TCP
acknowledgement is cumulative ACK. When a packet is dropped
due to congestion, duplicate ACKs received at the sender can not
be used for RTT computation, although duplicative ACKs are
triggered by the data packets that do get through the bottleneck
link and provide valuable information on the maximum queuing
delay when the bottleneck buffer overflows.

Our solution is attaching to the cumulative ACK the sequence
number of the data packet that triggers this ACK, as a TCP header
option. Therefore RTT computation can be conducted even with

134

duplicate ACKs: use the attached sequence number to compute
the RTT for the data packet that triggers the duplicative ACK.
When the ACK is triggered by a timeout on ACK delay, the
receiver does not attach the option to the ACK, and RTT
computation is skipped at the sender.

3.3 Mechanism Justification and Comparison
The protocol introduces a number of novel features:

(a) It is measurement-based. It relies on a fine-grained RTT
estimation to measure the network condition, beyond the
traditional congestion indication - packet drops. Therefore,
sophisticated methods are enabled.

(b) It follows a synchronized model. The upward and downward
window adjustments of all flows in the system are coordinated, so
that the system can escape the damage of unsynchronized and
random window adjustments on short-term fairness and
throughput smoothness. Notably the smoothness is accomplished
without compromising responsiveness to the variations of
bandwidth availability in a dynamic environment. The
responsiveness is maintained through the unchanged additive
increase rate. In fact, by enabling the parameter δ, the
responsiveness can be even improved when bandwidth
underutilization is detected.

(c) It avoids congestion by scheduling backward window
adjustments well before the occurrence of congestion and
consequent packet drops. Congestion avoidance prior to
congestion reduces packet drops, which cause the damaging
transmission gaps, and timeout events that disturb the system
stability.

(d) Its control parameters are adaptive. Not only can the
multiplicative decrease ratio be tuned (through γ) to prevent the
system from operating below the knee, but also the additive
increase speed can be enhanced (through δ) when the bandwidth
is under-utilized.

 (e) It’s an end-to-end solution that controls the average queue
length through the thresholds in equations (10) and (11), without
the deployment of active queue management in routers.

Above all, these features do not violate the established framework
of fairness-oriented AIMD. Notably, TCP Vegas also has features
(a) (c) and (e). However, its fine-grained RTT measurements do
not take into account the impact of delayed ACK. More
importantly, its congestion avoidance mechanism follows an
Additive Increase and Additive Decrease (AIAD) scheme, which
does not guarantee fairness [3]. Window adjustment strategy of
Vegas can’t be categorized as synchronized or unsynchronized,
because the design philosophy of Vegas is to maintain the status
quo if each flow has a couple of extra packets in the buffer and the
bottleneck bandwidth is fully utilized [2]. This lack of concern for
fairness is verified by experiments in [8], and amplified by our
new fairness metric shown in section 4.3.1.

4. EVALUATION AND ANALYSIS
4.1 Testing Plan and Methodology
The protocol was evaluated on ns-2 network simulator [10].
Simulations were conducted over the network topology shown in
section 2.1. By default, the propagation delay is 30ms for the
bottleneck link and 5ms for the access links. Simulations with
diverse propagation delays were also conducted. The bottleneck

buffer size at R1 was set to be the product of the round-trip
propagation delay and the bottleneck capacity, which varied from
10Mbps to 100Mbps in simulations. The deployment of RED at
bottleneck router R1 was also tested, in order to investigate the
effect of random multiplicative decreases explicitly enforced by
RED, in comparison with the implicit random decrease of drop-
tail buffer. The settings for RED were as per [5]. Specifically,
min_th = buffer_size / 6, max_th = buffer_size / 2. Also we
selected max_p = 0.1 and w = 0.002.

To evaluate the protocol’s capability to exploit the bandwidth that
becomes available rapidly (i.e. the responsiveness), we also
created a scenario of temporary “blackouts” due to mobile
handoffs, during which all transmitted packets were lost. An error
model was inserted into the access links to the receivers (assumed
in wireless domain), with 100% packet dropping rate.

We selected 7 protocol configurations: Reno (α = 1, β=0.5), Reno
with RED configured at R1, TCP Vegas, Reno with the γ
parameter, Reno with γ and δ (= 2), and smooth TCP (α = 0.31, β
= 0.875) [14], and TFRC [6]. We were particularly interested in
the comparison between the γ mechanism and TCP(0.31, 0.875),
whose smoothness is achieved by increasing the window decrease
ratio, at the cost of lesser responsiveness. TCP Vegas was selected
to demonstrate the unfairness of Additive Increase and Additive
Decrease (AIAD) congestion avoidance. TFRC is an equation-
based rate control mechanism for unicast applications. Since
TFRC is not a reliable transport control, it’s somewhat
unreasonable to compare its performance with reliable TCP
protocols. Nonetheless, TFRC was included as a reference of
smoothness. Notably, our mechanism can be easily adapted for
unreliable media-streaming.

4.2 Performance Metrics
Long-term Fairness is measured by the Fairness Index, defined by
[3]:

∑

∑

=

=









= n

i
i

n

i
i

throughputn

throughput
dexFairnessIn

1

2

2

1

where throughputi is the throughput of the ith flow, measured at a
time scale of connection time. This Fairness Index provides a sort
of “average-case” analysis used by most researchers. In order
conduct a “worst-case” analysis and provide a tight bound on
fairness, we propose the Worst-Case Fairness as:

ini

ini

throughput

throughput
airnessWorstCaseF

≤≤

≤≤=
1

1

max

min

The range of worst-case fairness is also in [0, 1], with 1
representing the greatest fairness. As an example demonstrating
why worst-case fairness is introduced, consider a scenario of 6
flows, the throughputs of which are 9 Mbps, 9.5 Mbps, 8.5 Mbps,
9 Mbps, 9 Mbps, and 6 Mbps, respectively. The traditional
“average-case” fairness index is 0.982, while the worst-case
fairness is 0.667. Compare this scenario with a perfectly fair case
in which all flows achieve 9.5 Mpbs, and both the “average-case”
fairness index and worst-case fairness index are 1.0. The
difference between the first scenario and the ideal case can’t be
obviously distinguished by the “average-case” fairness index. In
the first scenario, the system is fair in general, but is particularly

135

unfair to the 6th flow. This unfairness to a very small fraction of
flows can only be captured by the worst-case fairness.

To investigate the performance smoothness observed by end
users, allotted throughput throughti(t) for the ith flow is sampled at
a time scale of several RTTs, throughout the entire connection. In
our simulations, the sample time period is set to be 0.5 seconds (3
to 6 RTTs). Following the metric in [13], we use Coefficient of
Variation (CoV) to gauge the throughput smoothness experienced
by flow i:

)}({
)}({)}({ 22

tthoughputE
tthoughputEtthoughputE

CoV
it

itit
i

−
=

where Et{} denotes the computation of the mean along the time.
For a system with multiple flows, the system CoV is the average
of CoVs of all flows. Allotted throughput is also used to compute
the short-term fairness, derived from the traditional Fairness
Index:

































=
∑

∑

=

=
n

i
i

n

i
i

t

tthroughputn

tthroughput
EairnessShortTermF

1

2

2

1

)(

)(

Allotted throughput, and hence CoV and short-term fairness, are
measured 15 seconds after the simulation starts, in order to just
capture the system performance after it enters equilibrium state.

Bottleneck queue lengths are also traced, since it affects the end-
to-end delay and hence the subjective performance of delay-
sensitive applications. Queue lengths are sampled periodically at a
time scale of several RTTs. The queue length is normalized by the
buffer size, with normalized queue length 1 representing a full
queue.

4.3 Results and Analysis
4.3.1 Fairness and Smoothness

0 10 20 30 40 50 60 70 80 90 100

number of flows

0.4

0.6

0.8

1.0

f
a
i
r
n
e
s
s

i
n
d
e
x

Figure 1. Fairness Index

Reno + Gamma
TCP(0.31, 0.875)
Reno
Reno + RED
Vegas
TFRC

We first conducted 10 simulations, with the number of flows
varied from 10 to 100. The bottleneck link capacity scaled
correspondingly, such that the fair share for each flow was 1
Mbps. Protocol performances with 100 second connection time
are shown in Figures 1 – 4. If assessed by traditional fairness
index (Figure. 1), all protocols achieve high level of fairness,
except Vegas. However, Figure 2 reveals that random
multiplicative decrease can not guarantee worst-case fairness,
compared to the synchronized window adjustments of Reno + γ.

As the number of flows increases, the worst-case fairness with
random decrease strategy fluctuates and gradually degrades,
reflecting the inherent characteristics of randomness. The
deployment of RED can slightly improve the worst-case fairness
of TCP flows. The overall fairness performance of Vegas is the
worst.

0 10 20 30 40 50 60 70 80 90 100

number of flows

0.0

0.2

0.4

0.6

0.8

1.0

w
o
r
s
t
-
c
a
s
e

f
a
i
r
n
e
s
s

Figure 2. Worst Case Fairness

Reno + Gamma
TCP(0.31, 0.875)
Reno
Reno + RED
Vegas
TFRC

0 10 20 30 40 50 60 70 80 90 100

number of flows

0.2

0.4

0.6

0.8

1.0

s
h
o
r
t
-
t
e
r
m

f
a
i
r
n
e
s
s

Figure 3. Short-term Fairness

Reno + Gamma
TCP(0.31, 0.875)
Reno
Reno + RED
Vegas
TFRC

0 10 20 30 40 50 60 70 80 90 100

number of flows

0.0

0.1

0.2

0.3

0.4

0.5

C
o
V

Figure 4. CoV

Reno + Gamma
TCP(0.31, 0.875)
Reno
Reno + RED
Vegas
TFRC

The short-term fairness and CoV measurements are shown in
Figures 3 and 4, respectively. Reno + γ achieves higher short-term
fairness and lower CoV (i.e. higher smoothness) than the
protocols based on random window adjustments, including Reno,
Reno + RED, TCP(0.31, 0.875) and even TFRC. Note that the
smoothness of Reno + γ is achieved not by increasing the window

136

decreasing ratio as with TCP(0.31, 0.875). Since the buffer size is
set to the round-trip propagation delay times the bottleneck
bandwidth, the γ applied is around 2/3, according to equation (11).
Rather, the smoothness is achieved by implementing coordinated
multiplicative decreases, taken before the occurrence of
congestion. Furthermore, how much to decrease is now adaptively
set according to the measurement on the network condition. The
lowest CoV is achieved by TCP Vegas because of its design
philosophy to maintain the status quo. However, as analyzed in
section 3.3, this is accomplished at the expense of fairness, due to
its Additive Increase and Additive Decrease congestion avoidance
strategy. Its unfairness is further amplified by the next set of tests.

Next, we fixed the number of flows at 30, and varied simulation
time from 100 seconds to 1000 seconds, in order to watch the
effect of connection time on performance metrics. The
performances of CoV, fairness, and short-term fairness remain
almost unchanged, as the connection time increases. However,
Figure 5 shows that the worst-case fairness with random window
adjustments grows with the connection time. This gives a clue to
an explanation of the low worst-case fairness of random
multiplicative decreases: The number of congestion epochs4
experienced by the system is in direct proportion to the connection
time. That is, the number of times to randomly select flows to
drop is in proportion to the connection time. Assume the random-
drop selection upon congestion is not biased against any flow, or
the probability that a flow receives congestion indication upon a
congestion event is p, where p is the same for all flows. According
to the law of large numbers in statistics, however, the actual
percentage of random selections in which a specific flow is
chosen to drop gradually converges to p, only when the number of
times to randomly select flows to drop grows to infinity, or more
practically, when connections last for a very long time. Therefore,
over time, the system appears more unbiased and the worst-case
fairness is improved. However, even at time 1000 seconds, worst-
case fairness with random window adjustments is still below that
of Reno + γ. Furthermore, the fairness of TCP Vegas stays low,
no matter how long the connection time is. The highest
throughput achieved by individual flows is 75% higher “forever”
than the lowest one, due to its tendency to maintain the status quo
after the bandwidth efficiency is achieved. Without attempts to
dynamically adjust and converge to fairness, the system loses the
gravity to draw it back to a fair state once it initially enters an
unfair steady state.

0 100 200 300 400 500 600 700 800 900 1000

connection time (s)

0.0

0.2

0.4

0.6

0.8

1.0

w
o
r
s
t
-
c
a
s
e

f
a
i
r
n
e
s
s

Figure 5. Worstcase Fairness with 30 Flows

Reno + Gamma
TCP(0.31, 0.875)
Reno
Reno + RED
Vegas
TFRC

4 A congestion epoch is defined to be the time period between two
successive congestion indications.

4.3.2 Queue Length
Queue lengths traces with 10 flows are displayed in Figures 11 –
16 attached to the end of this paper. As we can see, RED, Vegas
and Reno + γ can control the bottleneck queue length, while
standard TCP Reno periodically causes full queue length or buffer
overflow. More seriously, without active queue management,
TCP-friendly protocols result in a queue always close to full, due
to their “gentle” regression upon buffer overflow. Both Reno + γ
and Vegas control the queue lengths in an end-to-end fashion.
Although Vegas has lower queuing delay, it is achieved by a
window adjustment strategy that lacks concern for fairness.
4.3.3 Performance with Diverse RTTs

0 10 20 30 40 50 60 70 80 90 100

number of flows

0.4

0.6

0.8

1.0

f
a
i
r
n
e
s
s

i
n
d
e
x

Figure 6. Fairness Index with Diverse RTTs

Reno + Gamma
TCP(0.31, 0.875)
Reno
Reno + RED
Vegas
TFRC

0 10 20 30 40 50 60 70 80 90 100

number of flows

0.0

0.2

0.4

0.6

0.8

1.0

w
o
r
s
t
-
c
a
s
e

f
a
i
r
n
e
s
s

Figure 7. Worst Case Fairness with Diverse RTTs

Reno + Gamma
TCP(0.31, 0.875)
Reno
Reno + RED
Vegas
TFRC

0 10 20 30 40 50 60 70 80 90 100

number of flows

0.2

0.4

0.6

0.8

1.0

s
h
o
r
t
-
t
e
r
m

f
a
i
r
n
e
s
s

Figure 8. Short-term Fairness with Diverse RTTs

Reno + Gamma
TCP(0.31, 0.875)
Reno
Reno + RED
Vegas
TFRC

137

0 10 20 30 40 50 60 70 80 90 100

number of flows

0.0

0.2

0.4

C
o
V

Figure 9. CoV with Diverse RTTs

Reno + Gamma
TCP(0.31, 0.875)
Reno
Reno + RED
Vegas
TFRC

We repeated the tests in section 4.3.1 with diverse RTTs. The
propagation delays of access links to sink nodes are now
uniformly distributed between 5 ms to 15 ms. The performances
are demonstrated in Figures 6 – 9. Reno + γ still outperforms
other protocols, and its synchronized congestion avoidance
mechanism is not disrupted by the diverse RTTs.

4.3.4 Responsiveness in Dynamic Environment
Moreover, the high smoothness of coordinated window
adjustments is achieved not at the cost of responsiveness, as
shown by our next simulation over heterogeneous (wires/wireless)
networks. A single flow runs on the 10Mbps bottleneck link. At
time 20 seconds, the wireless access link was interrupted by a 1
second handoff period, during which all packets were lost. Since
bandwidth becomes available immediately at the end of the
handoff, a high sending rate increase is the desired behavior. The
protocols’ aggressiveness after the handoff is shown in Figure 10.
Since both cwnd and ssthresh are reduced to minimum during the
handoff, the additive increase speed is the dominant factor when
the handoff is over. Due to the lesser responsiveness (α = 0.31) as
a result of TCP-friendly α/β tradeoff, it takes 57 seconds for
TCP(0.31, 0.875) to fully recover the transmission speed, while
the recovery time for Reno or Reno + γ is 19 seconds, with α = 1.
If the optional parameter δ = 2 is enabled, the recovery time can
be further reduced to 10 seconds. As the condition of bandwidth
under-utilization is detected after the handoff is over, a faster
additive increase step can be adopted. The recovery speed of
Vegas is slightly below that of Reno. Notably the modified slow
start [2] of Vegas hinders its capability to quickly exploit the
available bandwidth even during the flow initialization stage
(before the mobile handoff).

0 10 20 30 40 50 60 70 80 90 100

time (sec)

0

2

4

6

8

10

a
l
l
o
t
t
e
d

t
h
r
o
u
g
h
p
u
t

(
M
b
p
s
)

Figure 10. Thoughput with 1.0 Second Handoff

Reno + Gamma
TCP(0.31, 0.875)
Reno
Reno + Gamma + Delta
Vegas

5. CONCLUSION AND FUTURE WORK
We argued that the major obstacle for achieving smoothness is the
unsynchronized and random window adjustments, and that global
synchronization may elude bandwidth under-utilization by
adapting control parameters to the network conditions. We also
revealed the negative impact of random window decreases on
fairness, measured by the novel worst-case fairness index. Based
on these observations, we proposed an experimental congestion
avoidance mechanism that relies on fine-grained RTT
measurements to coordinate window adjustments. TCP
smoothness is enhanced, without compromising efficiency,
fairness and responsiveness. The mechanism can also control the
queuing delay of drop-tail buffers. With the current experimental
protocol, the queuing delay on the reverse path could be reflected
in the RTT measurements and thus affect the congestion
avoidance mechanism. A receiver-oriented approach [12] can be
incorporated to improve the system robustness with two way
traffic.

6. REFERENCES
[1] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion

Control”, RFC2581, April 1999.
[2] L.S. Brakmo and L.L. Peterson, “TCP Vegas: End to End

Congestion Avoidance on a Global Internet”, IEEE Journal
on Selected Areas in Communications, 13(8):1465-1480, Oct
1995

[3] D.-M. Chiu and R. Jain, “Analysis of the Increase and
Decrease Algorithms for Congestion Avoidance in Computer
Networks”, Computer Networks and ISDN Systems, 17(1):1-
14, 1989.

[4] C. Diot, G. Iannaccone and M. May, “Aggregate Traffic
Performance with Active Queue Management and Drop from
Tail”, Sprint ATL Technical Report, TR01-ATL-012501.

[5] S. Floyd, “RED: Discussions of Setting Parameters”,
November 1997, available from
http://www.icir.org/floyd/REDparameters.txt

[6] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-
Based Congestion Control for Unicast Applications”,
Proceedings of ACM SIGCOMM 2000, August 2000.

[7] S. Floyd, and V. Jacobson, “Random Early Detection
gateways for Congestion Avoidance”, IEEE/ACM
Transactions on Networking, August 1993.

[8] U. Hengartner, J. Bolliger and Th. Cross, “TCP Vegas
Revisited”, In Proceedings of IEEE INFOCOM 2000, March
2000.

[9] V. Misra, W. Gong, D. Towsley, “A Fluid-based Analysis of
a Network of AQM Routers Supporting TCP Flows with
Application to RED”, ACM SIGCOMM’00, September
2000.

[10] NS-2, The Network Simulator: http://www.isi.edu/nsnam/ns/
[11] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, "Modeling

TCP Throughput: A Simple Model and its Empirical
Validation", In Proceedings of ACM SIGCOMM ’98,
August 1998.

[12] V. Tsaoussidis and C. Zhang, “TCP-Real: Receiver-Oriented
Congestion Control”, Computer Networks Journal (Elsevier),
Vol. 40, No. 4, November 2002.

138

[13] Y.R. Yang, M.S. Kim and S.S. Lam, “Transient Behaviors of
TCP-friendly Congestion Control Protocols”, In Proceedings
of IEEE INFOCOM 2001, April 2001.

[14] Y.R. Yang and S.S. Lam, “General AIMD Congestion
Control”, Proceedings of the 8th International Conference on
Network Protocols, ICNP 2000, November 2000.

[15] C. Zhang and V. Tsaoussidis, “The Interrelation of TCP
Smoothness and Responsiveness in Heterogeneous
Networks”, Proceedings of the 7th IEEE Symposium on
Computers and Communications, ISCC 2002, July 2002
(runner-up award winner).

0 10 20 30 40 50 60 70 80 90 100

time (s)

0.0

0.2

0.4

0.6

0.8

1.0

n
o
r
m
a
l
i
z
e
d

q
u
e
u
e

l
e
n
g
t
h

Figure 11. Queue Length of Reno + Gamma with 10 flows

0 10 20 30 40 50 60 70 80 90 100

time (s)

0.0

0.2

0.4

0.6

0.8

1.0

n
o
r
m
a
l
i
z
e
d

q
u
e
u
e

l
e
n
g
t
h

Figure 12. Queue Length of Reno with 10 flows

0 10 20 30 40 50 60 70 80 90 100

time (s)

0.0

0.2

0.4

0.6

0.8

1.0

n
o
r
m
a
l
i
z
e
d

q
u
e
u
e

l
e
n
g
t
h

Figure 13. Queue Length of Reno + RED with 10 flows

139

0 10 20 30 40 50 60 70 80 90 100

time (s)

0.0

0.2

0.4

0.6

0.8

1.0

n
o
r
m
a
l
i
z
e
d

q
u
e
u
e

l
e
n
g
t
h

Figure 14. Queue Length of Vegas with 10 flows

0 10 20 30 40 50 60 70 80 90 100

time (s)

0.0

0.2

0.4

0.6

0.8

1.0

n
o
r
m
a
l
i
z
e
d

q
u
e
u
e

l
e
n
g
t
h

Figure 15. Queue Length of TCP(0.31, 0.875) with 10 flows

0 10 20 30 40 50 60 70 80 90 100

time (s)

0.0

0.2

0.4

0.6

0.8

1.0

n
o
r
m
a
l
i
z
e
d

q
u
e
u
e

l
e
n
g
t
h

Figure 16. Queue Length of TFRC with 10 flows

140

