
TCP-Real
Improving Real-time Capabilities of TCP

over Heterogeneous Networks

C. Zhang and V. Tsaoussidis
College of Computer Science

Northeastern University
Boston, MA 02115

{czhang,vassilis}@ccs.neu.edu

ABSTRACT

We present a TCP-compatible and -friendly protocol which
abolishes three major shortfalls of TCP for reliable multimedia
applications over heterogeneous networks: (i) ineffective
bandwidth utilization, (ii) unnecessary congestion-oriented
responses to wireless link errors (e.g., fading channels) and
operations (e.g. handoffs), and (iii) wasteful window adjustments
over asymmetric, low-bandwidth reverse paths. We propose TCP-
Real, a high-throughput transport protocol that minimizes
transmission-rate gaps, thereby enabling better performance and
reasonable playback timers. In TCP-Real, the receiver decides
with better accuracy about the appropriate size of the congestion
window. Slow Start and timeout adjustments are used whenever
congestion avoidance fails; however, rate and timeout adjustments
are cancelled whenever the receiving rate indicates sufficient
availability of bandwidth. We detail the protocol design and we
report significant improvement on the performance of the protocol
with time-constrained traffic, wireless link errors and asymmetric
paths.

1. INTRODUCTION

The standard Transmission Control Protocol (TCP) has some
expedient properties that match the requirements of reliable best
effort service over wired networks. However, these properties
cannot render TCP the protocol of choice for real-time
communications over heterogeneous networks. Congestion
control dominates the behavior of the protocol, even when errors
are caused by transmission deficiencies. In the presence of non-
congestive conditions, TCP might under-utilize the available
bandwidth. False congestion-oriented responses due to
transmission errors or asymmetric paths [6], with rapid downward
window adjustments, undermine the protocol’s eligibility for
time-constrained applications that rely on smooth playback timers.

The most well-known and widely-used versions of TCP are Tahoe
and Reno[1]. The congestion-control algorithm introduced by
Tahoe includes Slow Start, Congestion Avoidance, and Fast
Retransmit. The congestion window effectively grows
exponentially (slow start) until a threshold is reached. Beyond that
point additive increase (congestion avoidance) takes over. When
retransmission timeout event occurs, the congestion window is set
to double the maximum segment size. In Fast Retransmit, a
number of successive duplicate acknowledgements (dacks) trigger
off a retransmission without waiting for the associated timeout
event to occur. Then the slow start is applied. TCP Reno
introduces Fast Recovery in conjunction with Fast Retransmit.
Fast Recovery effectively set the congestion window to half its
previous value, rather than performing Slow Start, after the
retransmitted segment gets acknowledged. TCP NewReno[9]
introduces the concept of Partial Acknowledgement, which is an
indication of multiple segment drops in presence of dacks. In such
case, Fast Recovery procedure goes on re-transmitting multiple
dropped segments until the absence of Partial Acknowledgements.

Since TCP’s approach to error detection is based on mechanisms
that only confirm that a segment is missing (i.e., 3-DACKs,
timeouts), the nature of the error is not detected and does not
determine alternative recovery strategies. The protocol’s behavior
is dominated by congestion control, even when errors are caused
by transient random errors, transmission burst errors, and
handoffs. However, recovery from non-congestion errors using
the standard congestion control mechanism results in unnecessary
degraded performance. The congestion control mechanisms
rapidly reduce the window and re-adapt slowly after the error
conditions are over. Communication time is extended and
transmission rate fluctuation cannot conform to some
applications’ time-constrained patterns of data processing. Similar
anomalies have been observed not only in the context of wireless
networks but also in wired. For example, congested or asymmetric
reverse paths that might carry the receiver-generated
acknowledgments downgrade the transmission rates and the
bandwidth utilization of the forward path. The reason is that in
standard TCP the recovery strategy is dominated by the Round-
Trip-Time (RTT) measurements. Hence, the applicability of TCP
for multimedia applications over heterogeneous networks is
limited for two reasons: (i) throughput is degraded, and (ii) data
transmission cannot always conform to the time constraints of
some applications.

Permissions to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NOSSDAV’01, June 25-26, 2001, Port Jefferson, New York, USA.
Copyright 2001 ACM 1-58113-370-7/01/0006…$5.00.

The above limitations can be outlined precisely by the protocol’s
behavior in conjunction with the token bucket algorithm. The
algorithm can determine an upper bound for TCP’s throughput,
hence alleviating the concerns of fairness. It also presents a
challenge for TCP to demonstrate its capability to exploit the
available bandwidth. Given a token rate r and a depth B, TCP is
faced with the opportunity to consume r tokens per time interval.
The window backward adjustments circumscribe further the
throughput; tokens might not be consumed within the time
interval and new tokens will be wasted due to the limitation of the
token depth. Clearly, the number of tokens consumed per RTT
constitutes an appropriate metric for the evaluation of the
protocol’s performance. We present results using this metric in
section 4.

A well-designed version of TCP, which is however focused on
sender-based congestion avoidance, is TCP Vegas [3]. Vegas
defines a BaseRTT to be the minimum of all measured RTTs, and
ExpectedRate to be the ratio of congestion window and BaseRTT.
The sender measures the ActualRate based on the sample RTTs. If
the difference between the ExpectedRate and ActualRate is below
a threshold α, the congestion window increases linearly during the
next RTT; if the difference exceeds another threshold β, TCP
Vegas decreases the congestion window linearly during the next
RTT. According to [3], Vegas achieves better transmission rates
than Reno and Tahoe. Currently, it does not contribute to error
detection and recovery in wired/wireless networks. Its RTT-based
window adjustments do not allow for improving the protocol’s
behavior over asymmetric paths.

The authors in [2] studied TCP interaction with IETF control-load
services for reservation-based applications. Compliant packets are
sent marked while non-compliant and best-effort packets are sent
unmarked. Their proposal extends RED by setting for marked
packets a much lower dropping probability than for unmarked.
For reservation-based connections, the congestion window
consists of two parts: a reserved part equal to the product of
reserved rate and the estimated RTT, and a variable part that tries
to estimate the residual capacity and share it with other active
connections.

The Wave-and-Wait Protocol (WWP) [4, 5] is a TCP-
incompatible lightweight transport protocol running on top of IP.
WWP introduces the concept of “wave”. A wave consists of a
predetermined number of fixed-sized data segments sent side by
side, where the number of segments comprising a wave is set
according to a “wave level”. The less the perceived congestion
risk, the higher the wave level and hence, the more segments a
wave contains. A wave is effectively the congestion window with
two additional attributes: (i) its size is fixed during each RTT and
corresponds to the data receiving rate (i.e., it is not based on the
acknowledgements received by the sender), and (ii) its size is
published to both peers. The receiver decides about the next wave
level according to the current wave level and the actual
transmission time of the wave. It notifies the sender about the next
wave level expected by using negative-SACK. WWP is a high-
throughput energy-saving transport protocol and owns a number
of advantages over standard TCP on heterogeneous networks.

A major component of TCP-Real is the wave-based
communication pattern. Unlike the sender-based indistinct
window manipulation, the wave-based communication enables

both the sender and the receiver to use a limpid communication
pattern. We show that, in the context of wired/wireless
heterogeneous computing, a wave-based communication in
conjunction with appropriate modifications to the error control
mechanism could cancel TCP's inflexible behavior. TCP-Real
enables accurate rate adjustments initiated by the receiver,
possibility to distinguish the nature of the error, and appropriate
recovery strategies within the frame of fair behavior and friendly
rates. We show that transmission gaps can be reduced and
throughput can be increased, thereby enabling better performance
and feasible playback timers. Furthermore, asymmetric-link-
caused behavior can be avoided. Our modification requires no
infrastructure changes and is designed to work with standard TCP
and to collaborate well with reservation mechanisms.

2. TCP-Real

2.1 Protocol Strategy and Justification

The basic idea of TCP-Real is to incorporate into TCP the concept
of “wave” from WWP without changing the semantics of TCP
and without violating the established standards of Additive-
Increase/Multiplicative-Decrease-based congestion control1

during congestion. The reason to introduce the concept of wave is
that in order for the receiver to effectively estimate network
congestion based on the successive segments reaching it, it needs
some knowledge of the sender’s pattern of transmission of these
segments. Since TCP sender sends packets side by side within the
congestion window every RTT, from receiver’s point of view, the
sender sends packets in waves. In TCP-Real, the sender’s
congestion window size is controlled by the receiver, rather than
the sender itself. The receiver measures the data-receiving rate
and adjusts the wave level according to the change of data
receiving rate, which reflects network conditions. The lower the
perceived rate, the higher the wave level suggested by the
receiver, and vice versa. The receiver notifies the sender about the
new wave level, using an option attached to the corresponding
ACK. When the sender receives the ACK, it extracts the option
field and changes its congestion window accordingly.

TCP-Real is a transport level solution that requires no
modification at the routers. The contribution of TCP-Real is based
on the accuracy of congestion level estimation and the subsequent
appropriate recovery. Since the up-to-date congestion condition is
monitored by measuring the data-receiving rate, TCP-Real
receiver can not only know whether there is congestion, but also
estimate more precisely the level of congestion. Taking
advantages of this property, TCP-Real is designed to avoid
congestion2. With Slow Start and Congestion Avoidance
mechanisms used by TCP Reno/Tahoe, the sender continuously
increases the sending window until the packet loss caused by
congestion occurs, where it rapidly reduce the sending window.
With TCP-Real, the sender can adjust the sending window before
the packet loss occurs, thereby the fluctuation of the transmission
rate is smaller.

1 A recent paper [7] discusses the inefficiencies of AIMD,
although the issue is still a subject of discussion.
2 Source-based congestion avoidance was first introduced in TCP-
Vegas.

The above modifications also constitute the foundation for an
efficient recovery strategy over heterogeneous networks, which
increases the throughput and reduce the transmission gap of real
time applications. When transient random errors occur on wireless
links, the data-receiving rate is unaffected. That is, an error might
occur while the congestion level could not justify a detected
packet drop. The sender then could avoid window adjustments
backwards and transmit conservatively or aggressively, depending
on the level of congestion and the density of the error detected.
Our design currently is relatively more conservative: upon a
timeout TCP-Real always backs off as Tahoe and Reno, but
adjusts rapidly upwards to the appropriate wave level when the
timeout was caused by transient random errors.

TCP-Real’s receiver-based rate control renders the sender capable
of recovering quickly after an error condition is over. This is a
nice mechanism against burst errors and handoffs of wireless
links. After the burst error is over, the receiver can estimate the
congestion level faster and the sender’s congestion window will
be set accordingly by the receiver. With Slow Start and
Congestion Avoidance mechanism and in presence of relatively
large delay-bandwidth product, it takes more round trips to reach
the appropriate size of the sending window.

In order to avoid the wasteful window adjustments downward
over asymmetric links, the sender needs additional equipment: to
decouple the timeout mechanism and the RTT from the window
size. That is, in standard TCP, when there is an acknowledgement
loss, timeout is extended and congestion window is reduced. In
TCP-Real, the timeout can be extended, but the window size
could remain the same or even increase. The reasoning behind this
strategic modification is that the sender needs to extend the
timeout based on the RTT measurements, in order to
accommodate the potential delays of the reverse path and avoid an
early timeout. However, only the perceived congestion level of
the forward path will determine the sender’s congestion window
size.

In practice, the wave-based communication of TCP introduces a
novelty: both the sender and the receiver are aware of the current

window size (wave level), since the congestion window is now
included in the header. As it is exemplified by flow control that
requires the Advertised Window to be included in the header, the
receiver now communicates with the sender including also the
Congestion Window in the header, by means of the wave level.
However, although the Advertised Window indicates the number
of bytes permitted for transmission, the Congestion Window
indicates the number of segments. Note that both flow and
congestion measurements are taken at the receiver; the sender
uses a Sending Window, which is the minimum of the two distinct
windows, minus the data that is already in transit. Hadn’t we been
worried about TCP’s semantics, we could have combined the two
windows into a single Sending Window manipulated at the
receiver and replacing the Advertised Window.

2.2 Protocol Implementation

TCP-Real extends TCP-Reno. In TCP-Real, the receiver
computes the data transmission rate by collecting the current
wave-length of data. The receiver also records tf and tl, the
arriving time of the first and last segment in the wave,
respectively. The data-receiving rate can therefore be computed as
the ratio of the wave size to wave receiving time. The wave
receiving time is the difference between tf and tl, and could be
much smaller than the RTT. The wave size used in calculations is
actually the “expected” wave size, not the “received” wave size,
since loss of corrupted segments in a wave needs to be counted.
Packet loss due to random transient errors should not affect the
computed rate, which is used to measure the congestion level;
packet loss due to congestion could be detected by the change in
the receiving rate anyway.

The receiver determines the next wave level according to the
change of the data-receiving rate over time. Whenever a new
receiving rate is computed, it is compared against the previous
one. If the rate increases (decreases), which means the network
gets less (more) congested, the next wave level should be adjusted
to higher (lower) levels. The two weights, preserve_weight and
adjust_weight indicate the inclination to adjust conservatively or
aggressively, respectively.

if (previous_rate > current_rate){
 if (current_wave_level > wave_level_threshold)

next_wave_level = (0.618 + 0.382*(current_rate /
 previous_rate)) * current_wave_level ;

else
next_wave_level = (0.382 + 0.618*(current_rate /
 previous_rate)) * current_wave_level ;

}
else{
 if (current_wave_level > wave_level_threshold)

next_wave_level = (0.382 + 0.618*(current_rate /
 previous_rate)) * current_wave_level ;

else
next_wave_level = (0.5 + 0.5*(current_rate /
 previous_rate)) * current_wave_level ;

}
if (next_wave_level>max_wave_level)
 next_wave_level>max_wave_level;

Figure 1. Wave level adjustment algorithm

rate_ratio=current_rate/previous_rate;
next_wave_level = current_wave_level*
 (preserve_weight+adjust_weight*rate_ratio);
where preserve_weight + adjust_rate = 1.

According to the paradigm of Slow Start and Congestion
Avoidance, the sender’s congestion window should expand
aggressively (conservatively) when the window size is relatively
small (large). We further propose in TCP-Real that the
congestion window decreases aggressively (conservatively) when
the window size is large (small). Notice that here the congestion
window decreases before a packet loss occurs. Hence, the weights
in the above formula need to be set dynamically depending on the
relative size of current wave level, with a wave level threshold
serving as judging reference. Whenever a receiver wave-decision-
timeout event occurs (see below), the threshold is set to half the
wave level prior to the timeout. Figure 1 shows the wave level
adjustment algorithm, with weights set dynamically in different
cases.

The receiver inserts the TCP-REAL option in the header every
time a segment is acknowledged, to notify the sender about the
next wave level. The TCP_REAL option is four bytes long. The
second two-byte content of the option contains the next wave
level suggested by the receiver. The sender extracts the
TCP_REAL option from the ACK’s header and sets its congestion
window accordingly. Since the identical TCP_REAL option is
repeated in every ACK before the wave level changes, the
probability not to deliver the wave-level information to the sender
is pretty low. However, the sender should have some kind of a
self-adjusting mechanism activated upon the lack of all wave-
level signals sent by the receiver. A bit is associated with the
sender’s retransmission timer. Before the timer expires, if any
DACK is received, the bit is set. Upon a timeout, the sender
retransmits the packet but reduces the congestion window to two
segments, like Slow Start, only if the bit is not set. This is taken as
an indication that the sender did not receive any wave information
during that time. Thus, reliable transmission and congestion
control are effectively decoupled.

If the last segment in the wave is lost, the receiver will not be able
to compute the receiving rate (tl unavailable) and update the next
wave level until the sender timeouts and retransmits. Note that the
sender needs the information most when congestion develops. In
such case, the receiver needs to update the wave level information
before it completes collecting the current wave of data. Therefore,
a wave-level-decision timer needs to be set at the time the receiver
first receives any segment within a wave. The length of the timer
is set to two times the expected wave receiving time (size of the
current wave divided by the previous data-receiving rate). After
the timer expires, the receiver computes the receiving rate when
the next segment arrives, and updates the wave level information
immediately. Then the newly updated wave is sent back with the
ACK triggered.

3. TESTING

The protocol is implemented using the x-kernel protocol
framework [8]. In our experiments we used 24 wave levels,
ranging from 1 to 24. For wave level i, the corresponding
congestion window size is 2*i*max_segment_size. The
minimum wave level corresponds to the size of 2 segments, while

the maximum wave level corresponds to the maximum congestion
window. The number is selected to be sufficient to fill in a
relatively large Delay*Bandwidth product. The tests were carried
out in a single session, with client and server running on two
directly connected dedicated hosts. 5M bytes original data was
sent from one end host to another in a single session. The data was
selected to be sufficiently large to avoid significant deviations of
measurements. We measured the protocol’s goodput performance
as:
Goodput = Original data / Connection time

In order to simulate the error conditions, we developed a new x-
kernel “virtual protocol”, which was configured between TCP and
IP. The protocol’s core mechanism consists of a two-state
continuous Markov chain. Each state has a mean sojourn time mi,
a drop rate ri (i = 1,2) whose values are set by user. Thus when it
visits state i, the mechanism remains there for an exponentially-
distributed amount of time with mean mi, during which it
randomly drops segments with probability ri. In our experiments,
one states were always configured with a zero drop rate. Thus,
simulated error conditions during a given experiment alternated
between “On” and “Off” phase during which drop actions were in
effect and were suspended, respectively. The two states have the
same sojourn time, 1 second, which is sufficiently large to permit
a full window recovery under “clear” network conditions. Note
that our model uses packet error rate (PER). The error rate
presented in the figures and tables in the next section denotes the
PER during the “ON” phase and not the PER of the entire
connection.

We developed another x-kernel protocol VREAL, configured on
top of TCP, to simulate a playback-based application with data
rate 1Mbps. We present here results with a playback time interval
of 40ms. That is, our application attempts to read and consume
5KB each time, 25 times a second. Because of the sending
window fluctuation and transmission gaps of TCP, there are
playback instances when the data is unavailable to the application.
The percentage of the application successful attempts to read 5KB
from the playback buffer is used to measure the protocol’s real-
time performance. Playback time interval of 100ms was also
tested.

In order to reveal the dynamics of TCPs with real time traffic, we
also simulate a token bucket at the sender side, with a depth of
20KB and a rate of 20 tokens per 30ms. Each token corresponds
to a packet of 1 KB. The token consumption rate every RTT is
measured to see the source’s capability to fully utilize the
transmission speed the token bucket allows. The token
consumption rate per RTT was contrasted to the permitted rate in
order to demonstrate the protocol’s capability to exploit the
available bandwidth.

4. RESULTS AND ANALYSIS

4.1 Goodput Performances

Our experiments first demonstrate that the Goodput is improved
over heterogeneous networks with a short one-way propagation
delay of 15 ms. With dropping rate of state ON varying from 0.0
to 0.5, the goodput comparison of TCP Real/Reno/Tahoe is
shown in Table 1 and Figure 2. As we can see, TCP-Real
outperforms both Tahoe and Reno. Even with random transient
errors, Reno and Tahoe’s congestion control mechanism

unnecessarily reduce the congestion window and adjust the
timeout value. In TCP Real, in case the receiving rate does not
justify a drop due to congestion, the congestion window is not
adjusted3. This behavior of TCP-Real also results in improved
goodput given the time constraints set for the experiment.

It can be observed from Figure 3 and Table 2 that when the virtual
protocol is only configured in the reverse direction in order to
represent an asymmetric path, TCP-Real prevails again: It
outperforms Tahoe and Reno, since the sender’s congestion
window is now controlled by the congestion level of the forward
path estimated by the receiver.

Parameters were also set to reflect the impact of bursty or handoff
conditions on protocol and application performance. The mean
sojourn time was set to 5 seconds for state OFF and to 0.5 for
state ON. The dropping rate for state ON was always 0.99, and
50M bytes original data was sent during each session. Data size is
now selected larger due to the significant standard deviation
observed with the previous setting. The results in Table 3 show

3 In the event of a timeout the window is, in fact, adjusted as in
Tahoe and readjusts appropriately when the conditions do not call
for congestion control.

that goodput for TCP Real, Reno and Tahoe is 594.67KBps,
310.98KBps and 308.75KBps, respectively. This confirms the
allegation that TCP-Real has enhanced re-adapting capability after
a bursty error condition is over, compared to Tahoe and Reno. In
TCP-Real, the receiver can estimate the congestion-
level/disconnection more precisely within one RTT. Tahoe and
Reno require more RTTs for recovery even though the network
conditions might not justify a conservative behavior.

4.2 Application Success Percentage

The application success percentage comparison under the
different scenarios described above is shown in Table 4, Table 5,
Table 6 and Figures 4 and 5. The result for playback time interval
of 100ms is about the same, as shown in Figure 11 and 12 in the
appendix. As expected, not only the goodput of TCP is improved,
but also the time-constrained application performs significantly
better: TCP-Real reduces unnecessary transmission gaps that
dominate the application’s performance. TCP-Real’s congestion
avoidance mechanism enables the sender to adjust the sending
window before a packet loss due to congestion occurs. Since the
fluctuation of the transmission rate is smaller, the transmission

Figure 5. Application Success Percentage over Asymmetric Links

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800

Packet Error Rate

TCP-Real

TCP-Reno

TCP-Tahoe

Figure 4. Application Success Percentage with Link Errors

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0.00 0.10 0.20 0.30 0.40 0.50 0.60
Packet Error Rate

TCP-Real

TCP-Reno

TCP-Tahoe

Fig ure 3 TC P G ood put w ith A sym m etric Links

0 .00

50 .00

100 .00

150 .00

200 .00

250 .00

0 .000 0.100 0.200 0 .300 0.400 0.500 0.600 0.700 0.800

P acket E rror R ate

T CP -R ea l

T CP -R eno

T CP -Tahoe

Figure 2 TCP Goodput with Link Error

0.00

50.00

100.00

150.00

200.00

250.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60

Packet Error Rate

TCP-Real

TCP-Reno

TCP-Tahoe

gaps are reduced and the real time application experiences better
performance.

4.3 Impact of Propagation Delay

The above experiments are repeated with a longer one-way
propagation delay of 50 ms to simulate WANs or wireless link
with high propagation delay. Such conditions highlight further
Reno’s and Tahoe’s inappropriate recovery strategy. With longer
propagation delay, the relative performance gain of TCP-Real is
amplified, as shown in Table 7-12 and Figure 6-9.

4.4 Token Consumption

We also present the token bucket test as described in section 3,
with the 15ms delay and 20% packet dropping rate. Recall that
this is the error rate during the “ON” phase. Traces of token
consumption every RTT are plotted in Figure 10. Whenever a link
error occurs, Reno and Tahoe rapidly reduce the window size and
hence the token consumption rates. Instead, with TCP-Real, the
token consumption is relatively stable. Furthermore, the average
of consumed tokens per RTT (11.12Kbytes) is significantly higher
compared to Reno (5.82 Kbytes) and Tahoe (3.65 Kbytes).

Figure 8. Application Success Percentage with Link Error and High
Propagation Delay

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0.00 0.10 0.20 0.30 0.40 0.50 0.60

Packet Error Rate

TCP-Real

TCP-Reno

TCP-Tahoe

Figure 6. TCP Goodput with Link Error and High Propagation Delay

0.00

100.00

200.00

300.00

400.00

500.00

600.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60

Packet Error Rate

TCP-Real

TCP-Reno

TCP-Tahoe

Figure 7. TCP G oodput with Asym m etric Link and High Propagation Delay

0.00

100.00

200.00

300.00

400.00

500.00

600.00

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800

Packet Error Rate

TCP-Real

TCP-Reno

TCP-Tahoe

Figure 10. Token Consumption

0

5000

10000

15000

20000

25000

time (s)

TCP-Real

TCP-Reno

TCP-Tahoe

Figure 9. Application Success Percentage w ith Asym m etric L ink and H igh
Propagation Delay

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0.000 0.100 0.200 0.300 0 .400 0.500 0.600 0.700 0.800

Packet E rror Rate

TCP-Re al

TCP-Re no

TCP-Ta hoe

5. CONCLUSIONS AND FUTURE WORK

We have presented a receiver-oriented TCP that remedies major
shortfalls of standard TCP for multimedia services over
heterogeneous networks. The protocol attempts to avoid
congestion and RTT-based window adjustments. It applies an
efficient error recovery whenever packet drops are not due to
congestion and decouples the RTT and the timeout from the size
of congestion window. Under congestion, the protocol exhibits a
conservative behavior respecting the established standards of
fairness and stability. TCP-Real’s predetermined communication
patterns are well suited to reservation mechanisms. Our future
work will attempt to demonstrate this argument with RSVP.
Furthermore, we plan to investigate the protocol’s behavior in
collaboration with other network components or devices that
attempt to avoid/control congestion.

6. ACKNOWLEDGEMENTS

We acknowledge Ge Xin for her initial work on TCP-Wave.

7. REFERENCES

1. M. Allman, V. Paxson, W. Stevens, “TCP Congestion
Control”, RFC2581, April 1999

2. W. Feng, D. Kandlur, S. Saha and K. Shin, “Understanding

TCP Dynamics in an Integrated Service Internet”,
NOSSDAV '97, May 1997.

3. L.S. Brakmo and L.L. Peterson, “TCP Vegas: End to End

Congestion Avoidance on a Global Internet”, IEEE Journal
on Selected Areas in Communications, 13(8):1465-1480, Oct
1995

4. V. Tsaoussidis, H. Badr, R. Verma, “Wave and Wait

Protocol: An energy-saving Transport Protocol for Mobile
IP-Devices”, In Proceedings of the 7th IEEE International
Conference on Network Protocols, 1999, Toronto, Canada.

5. V. Tsaoussidis, A. Lahanas and C. Zhang, “The Wave &

Probe Communication Mechanisms”, Journal of
Supercomputing, Kluwer Academic Publishers, Vol. 20, No
2, September 2001.

6. H. Balakrishnan, V. Padmanabhan, and R. Katz, “The Effects

of Asymmetry in TCP Performance”, Proceedings of the 3rd
ACM/IEEE Mobicom Conference, September 1997.

7. S. Gorinsky and H. Vin, “Additive Increase Appears

Inferior”, Technical Report TR2000-18, Department of
Computer Sciences, The University of Texas at Austin, May
2000.

8. The X-Kernel: http://www.princeton.edu/xkernel

9. S. Floyd, and T. Henderson, “The NewReno Modification to
 TCP's Fast Recovery Algorithm”, RFC2582, April 1999

APPENDIX

F ig u re 1 1 . A p p lic a t io n S u c c e s s P e rc e n ta g e w ith L in k E rro r (w ith
p la y b a c k in te rv a l o f 1 0 0 m s)

0 .0 %

2 0 .0 %

4 0 .0 %

6 0 .0 %

8 0 .0 %

1 0 0 .0 %

1 2 0 .0 %

0 .0 0 0 .1 0 0 .2 0 0 .3 0 0 .4 0 0 .5 0 0 .6 0

E rro r R a te

T C P -W a v e

T C P -R e n o

T C P -T a h o e

Figure 12. Application Success Percentage over Asymmetric Link (with playback interval
100ms)

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800

Error Rate

TCP-Wave

TCP-Reno

TCP-Tahoe

Test
Settings

P rotocol
D ropping

Rate
Transm iss ion

Tim e (s)
G oodput
(Kbps)

TC P-Real 22.06 237.65
TCP-Reno 23.06 227.36
TCP-Tahoe 24.46 214.35
TC P-Real 26.39 198.68
TCP-Reno 27.49 190.73
TCP-Tahoe 28.71 182.62
TC P-Real 31.68 165.51
TCP-Reno 33.80 155.11
TCP-Tahoe 38.69 135.51
TC P-Real 41.39 126.66
TCP-Reno 56.85 92.23
TCP-Tahoe 41.14 127.45
TC P-Real 51.42 101.96
TCP-Reno 73.49 71.34
TCP-Tahoe 84.73 61.88
TC P-Real 112.96 46.41
TCP-Reno 198.48 26.42
TCP-Tahoe 160.54 32.66
TC P-Real 204.45 25.64
TCP-Reno 312.58 16.77
TCP-Tahoe 328.35 15.97

Tabel 1 TC P G oodput w ith L ink E rror

5

6

7

0.20

0.33

0.50

1

2

3

4

0.00

0.01

0.05

0.10

Test
Settings

Protocol
Reverse Path
Dropping Rate

Transmission
Time (s)

Goodput
(KBps)

TCP-Real 22.42 233.87
TCP-Reno 22.41 233.91
TCP-Tahoe 23.19 226.08
TCP-Real 24.13 217.29
TCP-Reno 23.70 221.26
TCP-Tahoe 25.10 208.90
TCP-Real 28.02 187.09
TCP-Reno 28.19 186.00
TCP-Tahoe 30.37 172.62
TCP-Real 32.39 161.87
TCP-Reno 30.48 171.99
TCP-Tahoe 30.81 170.15
TCP-Real 45.87 114.30
TCP-Reno 46.20 113.49
TCP-Tahoe 52.63 99.62
TCP-Real 51.16 102.47
TCP-Reno 72.87 71.95
TCP-Tahoe 68.94 76.05
TCP-Real 75.30 69.62
TCP-Reno 213.42 24.57
TCP-Tahoe 120.53 43.50

Table 2. TCP Goodput over Asymmetric Links

0.000

0.019

0.098

0.190

1

2

3

4

5

6

7

0.360

0.555

0.750

Test Settings Protocol Dropping Rate Transmission Time (s) Goodput (KBps)
TCP-Real 95.38 549.67
TCP-Reno 168.59 310.98
TCP-Tahoe 169.81 308.75

1 0.99

Table 3. TCP Goodput with Handoff

Test Settings Protocol Dropping Rate
Application

TCP-Real 100.0%
TCP-Reno 99.6%
TCP-Tahoe 99.7%
TCP-Real 91.9%
TCP-Reno 90.9%
TCP-Tahoe 93.4%
TCP-Real 79.0%
TCP-Reno 75.7%
TCP-Tahoe 80.6%
TCP-Real 76.7%
TCP-Reno 71.7%
TCP-Tahoe 71.9%
TCP-Real 51.0%
TCP-Reno 43.1%
TCP-Tahoe 43.6%
TCP-Real 36.3%
TCP-Reno 24.9%
TCP-Tahoe 25.6%
TCP-Real 23.4%
TCP-Reno 13.7%
TCP-Tahoe 13.9%

4

0.00

0.01

0.05

0.10

Table 4. Application Success Percentage with Link Errors

5

6

7

0.20

0.33

0.50

1

2

3

Test S ettings P rotocol
R everse

P athD ropping R ate
Application
Percentage

TC P-Real 99.4%
TCP-Reno 98.7%
TCP-Tahoe 99.0%
TC P-Real 97.6%
TCP-Reno 97.6%
TCP-Tahoe 97.7%
TC P-Real 88.6%
TCP-Reno 89.7%
TCP-Tahoe 89.7%
TC P-Real 78.6%
TCP-Reno 76.1%
TCP-Tahoe 79.9%
TC P-Real 64.9%
TCP-Reno 65.1%
TCP-Tahoe 56.7%
TC P-Real 51.3%
TCP-Reno 34.3%
TCP-Tahoe 34.9%
TC P-Real 36.3%
TCP-Reno 27.3%
TCP-Tahoe 22.6%

4

0.000

0.019

0.098

0.190

Table 5. Application S uccess P ercentage over Assym m etric
L inks

5

6

7

0.360

0.555

0.750

1

2

3

Test Settings Protocol Dropping Rate Application Percentage
Real 72.57%

TCP-Reno 57.29%
TCP-Tahoe 62.57%

1 0.99

Table 6. Application Success Percentage with Handoff

Test
Settings

Protocol
Dropping

Rate
Transmission

Time (s)
Goodput
(KBps)

TCP-Real 16.61 315.61
TCP-Reno 11.59 452.44
TCP-Tahoe 10.36 506.26
TCP-Real 15.61 335.91
TCP-Reno 14.50 361.68
TCP-Tahoe 16.50 317.67
TCP-Real 20.21 259.42
TCP-Reno 40.76 128.63
TCP-Tahoe 41.19 127.30
TCP-Real 23.21 225.87
TCP-Reno 69.30 75.66
TCP-Tahoe 58.92 88.98
TCP-Real 34.72 151.00
TCP-Reno 148.44 35.32
TCP-Tahoe 160.30 32.71
TCP-Real 152.11 34.47
TCP-Reno 430.43 12.18
TCP-Tahoe 324.40 16.16
TCP-Real 152.71 34.33
TCP-Reno 1635.26 3.21
TCP-Tahoe 1431.15 3.66

Table 7. TCP Goodput over WAN with Link Error

5

6

7

0.20

0.33

0.50

1

2

3

4

0.00

0.01

0.05

0.10

Test Settings Protocol
Reverse Path Transmission Goodput

TCP-Real 16.96 309.10
TCP-Reno 9.93 528.20
TCP-Tahoe 9.93 528.20
TCP-Real 16.00 327.64
TCP-Reno 10.31 508.52
TCP-Tahoe 10.03 522.51
TCP-Real 14.80 354.25
TCP-Reno 11.15 470.30
TCP-Tahoe 13.73 381.91
TCP-Real 17.51 299.46
TCP-Reno 25.29 207.29
TCP-Tahoe 23.47 223.39
TCP-Real 29.13 179.97
TCP-Reno 75.23 69.69
TCP-Tahoe 43.78 119.74
TCP-Real 42.76 122.62
TCP-Reno 113.32 46.27
TCP-Tahoe 152.22 34.44
TCP-Real 65.15 80.47
TCP-Reno 250.34 20.94
TCP-Tahoe 250.84 20.90

Table 8. TCP Goodput over WAN with Asymmetric Link Errors

5

6

7

0.360

0.555

0.750

1

2

3

4

0.000

0.019

0.098

0.190

Test Settings Protocol Dropping Rate Connection Time (s) Goodput (KBps)
TCP-Real 208.75 251.16
TCP-Reno 461.62 113.58
TCP-Tahoe 508.79 103.05

1 0.99

Table 9. TCP Goodput with Handoff over WAN

Test Settings Protocol Dropping Rate
Application
Percentage

TCP-Real 98.8%
TCP-Reno 92.0%
TCP-Tahoe 93.8%
TCP-Real 88.3%
TCP-Reno 88.0%
TCP-Tahoe 83.0%
TCP-Real 72.8%
TCP-Reno 56.8%
TCP-Tahoe 59.0%
TCP-Real 63.8%
TCP-Reno 38.3%
TCP-Tahoe 48.0%
TCP-Real 52.5%
TCP-Reno 19.0%
TCP-Tahoe 19.3%
TCP-Real 17.5%
TCP-Reno 5.3%
TCP-Tahoe 8.5%
TCP-Real 15.3%
TCP-Reno 1.3%
TCP-Tahoe 1.3%

Table 10. Application Success Percentage over WAN with Link

0.00

0.01

0.05

0.10

1

2

3

4

5

6

7

0.20

0.33

0.50

Test Settings Protocol Dropping Rate
Application
Percentage

TCP-Real 98.8%
TCP-Reno 93.6%
TCP-Tahoe 93.6%
TCP-Real 98.8%
TCP-Reno 93.0%
TCP-Tahoe 93.4%
TCP-Real 92.2%
TCP-Reno 92.0%
TCP-Tahoe 87.2%
TCP-Real 82.2%
TCP-Reno 69.4%
TCP-Tahoe 73.4%
TCP-Real 53.6%
TCP-Reno 37.2%
TCP-Tahoe 58.4%
TCP-Real 50.8%
TCP-Reno 24.0%
TCP-Tahoe 19.8%
TCP-Real 31.6%
TCP-Reno 9.4%
TCP-Tahoe 12.2%

Table 11. Application Success Percentage over WAN with
Asymmetric Link Erros

5

6

7

0.360

0.555

0.750

1

2

3

4

0.000

0.019

0.098

0.190

Test Settings Protocol Dropping Rate Application Percentage
TCP-Real 64.71%
TCP-Reno 45.00%
TCP-Tahoe 43.29%

1 0.99

Table 12. Application Success Percentage over WAN with Handoff

