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TCP Smoothness and Window Adjustment Strategy
Chi Zhang, Member, IEEE, and Vassilis Tsaoussidis, Senior Member, IEEE

Abstract—We observe that even when the system throughput
is relatively stable, end users of media-streaming applications do
not necessarily experience smooth throughput, due to the unsyn-
chronized window adjustments triggered by random congestion
indications. We analyze and evaluate the negative impact of
random window adjustments on smoothness, short-term fairness,
and long-term fairness. We further propose an experimental
congestion avoidance mechanism, namely TCP( , , , ), based
on coordinated window adjustments. The flow-level smoothness is
enhanced significantly for media-streaming applications, without
a cost on fairness and responsiveness. Responsiveness is even
boosted when bandwidth is underutilized.

Index Terms—Congestion control, fairness, multimedia commu-
nication, smoothness, transport protocols.

I. INTRODUCTION

TRANSMISSION control of standard TCP [1] is based
on the additive increase/multiplicative decrease (AIMD)

window adjustment strategy [2] that exploits available band-
width, avoids persistent congestion, and achieves system
fairness. Traditional AIMD is a somewhat “blind” mechanism,
in the sense that the congestion window increases steadily
until congestive packet loss is detected, which necessitates the
subsequent error recovery. In contrast, window adjustments
of TCP Vegas [3] take a congestion avoidance approach. The
congestion window increases linearly if the sampled RTT is
relatively low, or decreases linearly if the RTT is relatively high.
Although Vegas may achieve higher throughput than standard
TCP [3], it cannot guarantee fairness [4].

While TCP congestion control is basically appropriate
for bulk data transfers, some real-time applications such as
media-streaming find the standard multiplicative decrease by
a factor of 2 upon congestion to be unnecessarily severe, as it
can cause throughput oscillations and even transmission gaps
[5]. Throughput smoothness is crucial to the subjective perfor-
mance of media-streaming. TCP-friendly protocols [6]–[10]
therefore have been proposed with two fundamental goals:
i) to achieve smooth downward adjustments; this is done by
increasing the window decrease ratio during congestion and
ii) to compete fairly with TCP flows; this is accomplished by
reducing the window increase step according to a steady-state
TCP throughput equation [11]. That is, TCP friendly protocols
favor smoothness for multimedia applications by using a gentle
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downward adjustment upon congestion, at the cost of lesser
responsiveness—through moderated upward adjustments.

Rate adaptation protocol (RAP) [9] is an AIMD-based pro-
tocol friendly to TCP. While it decouples congestion control
from application reliability, smoothness is not a design criterion
for RAP. TCP friendly rate control (TFRC) is an equation-based
TCP-friendly congestion control protocol for unicast applica-
tions [7]. The sender explicitly adjusts its sending rate as a func-
tion of the measured rate of loss events, to compete fairly with
TCP. The benefit of TFRC is its “gentle” rate regression upon
congestion.

GAIMD [8] is a TCP-friendly protocol that generalizes
AIMD congestion control by parameterizing the additive in-
crease value and multiplicative decrease ratio . For the
family of TCP protocols, [8] derives a simple relation-
ship between and to be friendly to standard TCP ( ,

). They propose a as an appropriate smooth
decrease ratio, and a moderated increase value to
achieve TCP friendliness. In [12], we uncovered undesirable
behaviors of TCP(0.31, 0.875) with dynamic traffics. For
example, moderated upward adjustments (as a result of the
tradeoff for smoothness) confine the protocol’s capability to
exploit bandwidth that become available rapidly, when re-
sponsiveness is the dominant factor. Also, smooth downward
adjustments of existing flows embarrass the fair and efficient
growth of new incoming flows.

Therefore, the challenge does not lie in simply achieving
smooth transmission control, but rather in providing smooth-
ness along with bandwidth efficiency, fairness, responsiveness,
as well as controlled queue lengths [12], [13]. Unfairness
means lower throughputs for some sacrificed flows when the
bandwidth is a scarce resource. Responsiveness to changes
of bandwidth availability facilitates quick adjustments for
rate-adaptive media-streaming. Queuing delay affects the sub-
jective performance of delay-sensitive applications.

In this paper, we observe that previous theoretical analysis
on congestion control [2], [11], [14] ignores some basic fac-
tors essential to the understanding of smoothness. We also
realize that although multiplicative decrease is necessary to
accomplish fairness, it does not necessarily sacrifice the system
throughput, since window decreases can be balanced by the
queue dynamics. However, in real systems multiplicative de-
creases are often unsynchronized among competing TCP flows,
due to random congestive drops. We argue that even when
the system throughput is relatively stable, individual users
of media-streaming applications do not experience smooth
throughputs, mainly due to the unsynchronized window ad-
justments. Random window adjustments also hurt short-term,
and even long-term fairness. Based on these observations, we
propose an measurement-based adaptive congestion avoidance
mechanism, TCP( , , , ), to improve flow-level throughput

1520-9210/$20.00 © 2006 IEEE



ZHANG AND TSAOUSSIDIS: TCP SMOOTHNESS AND WINDOW ADJUSTMENT STRATEGY 601

smoothness. The mechanism coordinates the upward and
downward window adjustments to abolish the damage of
unsynchronized and random window control on throughput
smoothness. While the smoothness of TCP Vegas is achieved
at the expense of fairness, our new mechanism enhances
significantly both smoothness and fairness, without compro-
mising responsiveness. Responsiveness can be even boosted
when bandwidth underutilization is detected. Notably, our
window-adjustment strategy can be easily adapted and incor-
porated into unreliable or rate-based transport protocols (such
as RAP [9]) designed for media-streaming applications.

The rest of this paper is organized as follows: In Section II we
discuss the dynamics of congestion control and the smoothness
of TCP “sending rate.” In Section III, we describe and justify
the experimental congestion avoidance mechanism. Simulation
results are presented in Section IV and our conclusion is sum-
marized in Section V.

II. DISCUSSION ON TCP SMOOTHNESS

A. Dynamics of Congestion Control

[2] gives the general dynamics of throughput of a network
as the network load increases. The concepts of “knee” and
“cliff” were first defined in [2] under the context of generic
networks. We now give an analytical and intuitive explana-
tion to this dynamics by concentrating on the window-based
transmission control of TCP, and by taking into account the
role of bottleneck queue. Consider a simple network topology
shown in Fig. 1, in which the link bandwidth and propaga-
tion delay are labeled. TCP flows share a bottleneck link
with capacity of , and the round trip propagation delay is

. Since our first
focus is the overall system behavior, we define the aggregated
congestion window of the system at time as

(1)

where is the window size of the flow. Conse-
quently, the system throughput at time should be

(2)

where is the queuing delay at the bottleneck router
. Thus, throughput is not only a function of the congestion

window, but also a function of the dynamic queuing delay,
which was not incorporated into the analyzes of [2], [11].

Assume all flows are in the additive increase stage. If
is below the point :

(3)

Fig. 1. Simple network topology.

Then there is no queue buildup (i.e. .
There could be temporary queue buildup due to the traffic bursti-
ness. This is neglected to simplify our analysis) in , and ac-
cording to (2), the throughput grows in proportion to ,
since the bottleneck capacity is not fully utilized until
increases to . If increases further beyond

, however, the system displays different dynamics.
The bottleneck queue starts to build up, after the bottleneck ca-
pacity is saturated. Rewrite as

(4)

Since the bottleneck link can send at most packets in
one [see (3)], packets will linger in the bottleneck
queue. Hence the steady queuing delay will be

(5)

Intuitively, the system throughput is bounded by the physical ca-
pacity , in spite of the increase of beyond the knee,
because in the denominator of (2) grows as well. This
can be validated by (6):

(6)

The system dynamics can be continuously described by (4)–(6),
until the queue length reaches the maximum buffer size,
i.e., when touches the point

(7)

TCP senders multiplicatively decrease their windows, after
packet losses due to buffer overflow are detected.

Equation (6) shows that increasing beyond
does not enhance further the system throughput,

but only results in high queuing delay. However, although
multiplicative decrease is necessary to accomplish fairness dy-
namically [2], [12], it does not sacrifice the system throughput,
as long as operates between and .
In order to prevent from operating below
where bandwidth is underutilized, and meanwhile maintain
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adequate AIMD oscillation (for fast convergence to fairness
[12]), an efficient window decreasing ratio would be

(8)

With set by (8), will decrease from the cliff down to
the knee (for sufficient fairness-oriented AIMD oscillation), but
not below the knee (where bandwidth is underutilized). When
the bottleneck buffer size equals delay-bandwidth product,

and . Equation (8) implies that an efficient decrease
ratio depends on the network settings.

B. Observations on Improving TCP Smoothness

Assume that operates between the knee and the cliff in
equilibrium, where the overall system throughput is maximum
and thus relatively stable. However, this does NOT mean that
each flow will observe a smooth throughput. The analysis of
[2] assumed a synchronized model, i.e., all flows synchronously
adjust downward upon congestion. However, our simulations
(see Section IV-C4) confirms the early findings [15] that packet
losses do not always occur to all competing flows when the
buffer overflows, even with drop-tail buffer. Some flows expe-
riencing early drops may reduce their windows quickly, which
leads to partial queue draining. This could leave sufficient space
for additive increase afterwards, and hence the remaining flows
keep growing. Due to this partial window decrease upon con-
gestion, the decrease ratio of can be higher than the ratio

an individual flow adopts. The selection of which flows to drop
is random by nature. With AQM such as RED [16], random con-
gestion indications are explicitly performed.

Although the work based on the fluid model [14], which takes
into account both the random window decreases and the role of
bottleneck buffer, shows that the system still converges to fair-
ness, our simulations (see Section IV) reveal that the conver-
gence speed is slow. We are particularly interested in the impact
of random window adjustments on the flow smoothness of each
flow. Similar to (2), the throughput of the flow at time is

(9)

Obviously, unsynchronized multiplicative decrease degrades
the short-term fairness (measured in several RTTs), due to
random congestive drops that permit some flows to grow
beyond their fair shares while the other flows are forced to
decrease, in a short period of time. Assume an adequate level
of long-term fairness (measured in the connection time) is
achieved, since there is no bias in randomly selecting flows
to drop. Flows consuming extra bandwidth at one time period
must pay back the credit to the flows consuming less bandwidth,
at some other time period. As a result of the long-term fairness
accomplished without short-term guarantees, individual flows
unavoidably see throughput oscillations, even when the system

throughput is stable. Thus, we argue that the major obstacle for
achieving smoothness with individual flows is the unsynchro-
nized and random window adjustments.

If upward and downward window adjustments are syn-
chronized in equilibrium, however, short-term fairness is not
damaged. With a stable system throughput, the bandwidth
allocated to each end user will be also smooth over time.
Therefore, smoothness can be achieved along with bandwidth
efficiency and fairness. From the perspective of an individual
flow, multiplicative decrease of in (9) does not
necessarily affect the flow throughput, if in the
denominator decreases correspondingly due to synchronized
window adjustments of all flows. Traditional wisdom might
argue that global synchronization is more likely to cause
to operate below where bandwidth is underutilized.
However, as shown by (8), this can be avoided by setting the
window decrease ratio adaptively.

III. AN EXPERIMENTAL PROTOCOL

Based on Section II, we propose a novel congestion avoid-
ance mechanism to improve the TCP smoothness. The sender
measures the fine-grained RTT. Our fine-grained RTT mea-
surement differs from that of TCP Vegas, in that it considers
delayed ACKs and utilizes duplicate ACKs. The details can
be found in [13, Sec. 3.2]. The sampled RTT measurements
are smoothed by exponential weighted moving average, in
order to eliminate temporary delay spikes due to unstable links.
The sender records the minimum RTT and the maximum RTT
perceived. The queuing delay can be derived by deducting

(which corresponds to the roundtrip propagation
delay) from the current RTT. The slow start mechanism of
TCP is not modified, to allow the queue length to fully grow to
overflow during initialization. Therefore, achieved
with could be observed before the congestion
avoidance stage takes over.

In the congestion avoidance stage, the additive increase speed
of standard TCP is untouched, and the sender halves

the congestion window upon packet losses . However,
the standard congestion control is complemented with the fol-
lowing congestion avoidance mechanism. Upon the detection of
the following condition:

(10)

where the threshold is currently set to 0.5, the conges-
tion window is decreased after one RTT, with window decrease
ratio set to be

(11)

where is defined in (8). That is, multiplicative decrease is
triggered when is halfway between and



ZHANG AND TSAOUSSIDIS: TCP SMOOTHNESS AND WINDOW ADJUSTMENT STRATEGY 603

, and decreases down to . Note
that -based decrease is carried out one RTT after the condition
of inequality (10) is detected, in order to assure that no sender
adjusts downward before the condition is observed by all the
other senders. Equation (11) bears some similarities with (8).
However, (8) presumes that drop-tail buffer synchronously
feeds back congestion indications (i.e., packet drops) to all
flows, which is not true in reality. In contrast, downward
adjustments based on (11) are triggered by a threshold on the
queuing delay, which can be observed by all senders.

Another optional control parameter is introduced, in order
to enhance the additive increase speed when operates
below the knee. When the following condition persists:

(12)

the queue is relatively close to empty and very likely the band-
width is underutilized. The additive increase adopts a faster
speed: . The threshold is currently set to 0.1.
Once the threshold is exceeded, hands over the control to .

The threshold in (10) provides an upper bound on
the queue length. In our simulations, is set to 0.5,
and the upper-bound will be half the buffer size. The threshold

defines whether the queue is to close to idle and
should be used. Although a high makes the system
converge faster [12], it can make the senders easily overshoot
the queue upper-bound set by , when is well
above the knee. Currently is set to 0.1, and is
used when the queue is more than 10% of the buffer size.

One concern with RTT-based congestion avoidance is the
accuracy of . While should reflect the
round-trip propagation delay , it can be overestimated,
for example, if a new flow joins a network with a persistent
queue. This will lead to a higher computed by (11) and unfair-
ness to other flows. overestimation is a well-known
problem for TCP Vegas, as it stabilizes at a nonempty queue [3].
With our protocol, however, periodically adjusts down-
ward to where can be accurately measured.
This is verified by our simulations with dynamic traffic in Sec-
tion IV-C4. Here we theoretically analyze the system conver-
gence. Assume when the flow joins the system, its
is overestimated by , due to a bottleneck queue with

bytes. According to (11), the next -based window
decrease will be triggered when .
After that, the expected in the next RTT will be

(13)

where (according to (11))

(14)

The window decrease ratio for the flow is higher than the
for the other flows, due to the overestimation of .

Based on (5), (13), (14) and (9), the queue size right after the
coordinated window decreases will be

(15)

where is the throughput of the flow before
congestion avoidance is triggered;
is the corresponding bandwidth share, in percentage, of the
flow. That is, after each coordinated window decrease, the min-
imum queue observed by the flow will decrease by a factor
of . Notably the bandwidth share of an incoming new
flow is often less than its fair share , due to the small ini-
tial window size. Hence (15) implies that a flow overestimating

initially will quickly converge to an accurate estima-
tion.

To summarize, TCP( , , , ) has a number of features.
a) It relies on fine-grained RTT measurements to estimate net-
work conditions, beyond congestive packet drops. b) It follows
a synchronized model by coordinating upward and downward
window adjustments to enhance TCP smoothness, without com-
promising efficiency, fairness and responsiveness. c) It avoids
congestion by scheduling window decreases well before the oc-
currence of congestion, to reduce packet drops. d) It introduces
new control parameters and adaptable to the current network
condition. e) It is an end-to-end solution that controls the av-
erage queue length through and , without de-
ploying AQM in routers. Above all, these features do not violate
the established fairness-oriented AIMD. Although, TCP Vegas
also has (a), (c), and (e), its congestion avoidance uses Additive
Increase/Additive Decrease (AIAD), which does not guarantee
fairness [2]. This unfairness is amplified by the worst-case fair-
ness defined in Section IV-B and analyzed in the Appendix.

IV. EVALUATION AND ANALYSIS

A. Testing Plan and Methodology

The protocol is evaluated on the ns-2 network simulator [18],
with the network topology shown in Fig. 1. By default,

and . Simulations
with diverse propagation delays are also conducted. varies
from 10 Mbps to 100 Mbps. The buffer size at is set to
the delay-bandwidth product. The deployment of RED at is
also tested, in order to investigate the effect of random drops
explicitly enforced by RED, in comparison with the implicit
random decrease with drop-tail buffer. The settings for RED
are , ,

and [19].
Protocol behaviors are also tested with multiple bottlenecks

and cross traffic shown Fig. 2. The router R1 is the bottleneck
for the main traffic ( flows from “source” nodes to “sink”
nodes), while the router R3 is the bottleneck for the cross traffic
( flows from “peripheral source” nodes to “peripheral sink”
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Fig. 2. Network topology with multiple bottlenecks and cross traffic.

nodes). The router R2 is the bottleneck for the competing main
traffic and cross traffic.

To evaluate the protocol’s responsiveness to the rapid
changes of available bandwidth, we create a scenario of tem-
porary “blackouts” due to mobile handoffs, during which all
transmitted packets are lost. An error model is inserted into the
access links to the receivers (assumed in the wireless domain),
with 100% packet dropping rate.

We select seven protocol configurations: Reno ( ,
), Reno with RED, TCP Vegas, Reno plus , Reno plus and

, smooth TCP ( , ) [8], and TFRC [7].
In contrast to the adaptive , TCP(0.31, 0.875)’s smoothness is
achieved by increasing the window decrease ratio, at the cost of
lesser responsiveness, due to its static control parameters. TCP
Vegas is selected to demonstrate the unfairness of AIAD. Since
TFRC is a rate-based unreliable protocol, it’s somewhat unrea-
sonable to compare its performance with window-based reliable
TCP protocols. Nonetheless, TFRC is included as a reference
for smoothness. Notably, our mechanism can be easily adapted
for unreliable media-streaming.

B. Performance Metrics

Long-term fairness is measured by the , de-
fined by [2]:

where is the throughput of the ith flow during the
entire connection. This index provides a sort of “average-case”
analysis. For a “worst-case” analysis and a tighter bound on fair-
ness, we propose to use :

The motivation for introducing the worst-case fairness is to cap-
ture unfairness to a very small fraction of flows (see [13, Sec.
4.2]).

Fig. 3. Fairness index.

To investigate the performance smoothness observed by end
users, allotted throughput for the ith flow is
sampled at a time scale of several RTTs (in our simulations, the
sampling period is 0.5 s). Following the metric in [17], we use

to gauge the throughput
smoothness experienced by flow :

where denotes the computation of the mean along the
entire connection time. For a system with multiple flows, the
system CoV is the average of CoVs of all flows. Allotted
throughput is also used to compute the short-term fairness,
derived from the traditional Fairness Index:

Allotted throughput, and hence CoV and short-term fairness, are
measured 15 s after the simulation starts, in order to just cap-
ture the system behaviors after it enters equilibrium. Bottleneck
queue lengths are also traced.

C. Results and Analysis

1) Fairness and Smoothness: We first conduct ten simula-
tions for 100–s connection time, with the number of flows varied
from 10 to 100 (Figs. 3–6). The bottleneck bandwidth scales cor-
respondingly, such that the fair share for each flow is 1 Mbps.
If assessed by traditional fairness index (Fig. 3), all protocols
achieve high level of fairness, except Vegas. However, random
multiplicative decrease can not guarantee worst-case fairness
(Fig. 4), compared to the synchronized window adjustments of

. The overall fairness of Vegas is the worst.
As shown in Figs. 5 and 6, also achieves higher

short-term fairness and lower CoV (i.e. higher smoothness) than
the protocols based on random window adjustments, including
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Fig. 4. Worst case fairness.

Fig. 5. Short-term fairness.

Fig. 6. CoV.

Reno, , TCP(0.31, 0.875) and even TFRC. Al-
though achieves higher smoothness, its window de-
crease ratio ( is around 2/3 with the simulation settings) is even
lower than that of TCP(0.31, 0.875). The lowest CoV is achieved
by TCP Vegas because of its AIAD strategy to stabilize at any
unfair state, as long as each flow has a couple of packets in the
buffer and the bottleneck bandwidth is fully utilized. In the Ap-
pendix, we will analyze why the worst-case fairness of Vegas
can be as low as 1/3.

The unfairness of Vegas can be further demonstrated by a set
of tests shown in Fig. 5 of our early publication [13]. The result

Fig. 7. Worst case fairness with diverse RTTs.

Fig. 8. CoV with diverse RTTs.

is striking: the worst-case fairness with uncoordinated window
adjustments grows slowly as the connection time increases to
1000 s, reflecting the inherent characteristics of randomness.
However, the fairness of Vegas stays low, no matter how long
the connection time is. The highest throughput achieved by in-
dividual flows is 75% higher than the lowest one throughout the
simulation.

Queue lengths traces with 10 flows can also be found in [13].
Vegas and do control adequately the bottleneck
queue length, while standard TCP Reno periodically causes
buffer overflow. Without deploying AQM, TCP-friendly proto-
cols (TCP(0.31, 0.875) and TFRC) force the bottleneck queue
to stay at a position close to the cliff, due to their “gentle”
regression upon buffer overflow.

2) Diverse RTTs and Multiple Bottlenecks: We repeat the
tests in Section IV-A with diverse RTTs. The propagation de-
lays of access links to sink nodes are uniformly distributed be-
tween 5 ms to 15 ms. The buffer size is set to the product of
the bottleneck capacity and the minimum round-trip propaga-
tion delay. The worst-case fairness and CoV are demonstrated
in Figs. 7 and 8. still outperforms the other protocols,
and its synchronized window adjustments are not disrupted by
the diverse RTTs. Protocols are further tested with multiple bot-
tlenecks and cross traffic (see Fig. 2). Half of the flows form the
main traffic, while the other half form the cross traffic. The re-
sult shown in Figs. 9 and 10 demonstrate that achieves
higher worst-case fairness and smoothness than uncoordinated
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Fig. 9. Worst case fairness with multiple bottlenecks.

Fig. 10. CoV with multiple bottlenecks.

Fig. 11. Allotted thoughput with 1.0 s handoff.

AIMD. Noticeably the worst-case fairness of Vegas fluctuates
as the number of flows changes, and can go as low as 0.31.

3) Responsiveness With Dynamic Traffic: Our next simu-
lation over heterogeneous (wires/wireless) networks indicates
that the high smoothness of coordinated window adjustments is
achieved not at the cost of responsiveness. A single flow tra-
verses a 10 Mbps bottleneck link. At time 20 s, the wireless
access link is interrupted by a 1 second handoff period, during
which all packets are lost. Since bandwidth becomes available
immediately after the handoff, a high sending rate increase is the
desired behavior. The protocols’ aggressiveness with allotted
throughputs after the handoff is shown in Fig. 11. Due to the
lesser responsiveness , it takes 57 s for TCP(0.31,

Fig. 12. Allotted throughput with Reno + Gamma.

Fig. 13. Allotted throughput with TCP(0.31, 0.875).

Fig. 14. Allotted throughput with Reno.

0.875) to fully recover the transmission speed, while the re-
covery time for Reno or is 19 s, with . If the
optional parameter is enabled, the recovery time can be
further reduced to 10 s, since an idle bottleneck queue can be
detected right after the handoff is over. The recovery speed of
Vegas is slightly below that of Reno.

4) Microscopic Behaviors:
Microscopic behaviors in a static environment: We have

also tracked the allotted throughputs of three flows competing
at a 3 Mbps bottleneck link for 100 s, in order to observe the
microscopic behaviors of protocols. The number of flows (3) is
selected to ease the analysis. We trace the allotted throughput
of each flow as well as the aggregated system throughput, with
a 200 ms sampling period. It can be seen from Figs. 12–16 that
after the initial slow start stage that leads to retransmission time-
outs and subsequent minimum congestion windows, the senders
rely mostly on additive increase to reach the equilibrium.



ZHANG AND TSAOUSSIDIS: TCP SMOOTHNESS AND WINDOW ADJUSTMENT STRATEGY 607

Fig. 15. Allotted throughput with Reno + RED.

Fig. 16. Allotted throughput with Vegas.

The results confirm the analysis in Section II-A that magni-
tude of system throughput fluctuations is much smaller than the
multiplicative decrease ratio, due to the queue dynamics. How-
ever, although the overall system throughput is relatively stable
with all protocols (Figs. 12–16), individual flows do not experi-
ence smooth throughputs and the system is unfair in short-term,
with TCP(0.31, 0.875), Reno, and . In contrast,

provides relatively smooth throughputs to individual
flows in steady-state, due to its coordinated window adjustments
and the reduced congestive drops. Deploying RED can slightly
improve smoothness and short-term fairness of Reno, as evident
from Figs. 5, 6, 14 and 15. With packet drops prior to buffer over-
flow, the length of congestion epoch is reduced, which prevents a
single flow from increasing its congestion window too far beyond
its fair-share. We also observe that TCP(0.31, 0.875) may extend
the time to converge to fairness. At time 58 s, a severe congestion
causes the retransmission timeout and slow start of flow 1. Al-
though this event almost does not affect the system throughput,
it takes very long time for flow 1 to recover from the extreme un-
fairness afterwards, due to the low . Although similar event also
occurs to Reno (see the deep throughput gap of flow 1 around 25
s), its large window oscillations do not extend the convergence
time.Vegasalsoprovidessmooththroughputforindividualflows.
However, itsAIADcongestionavoidancecanstabilizeatanunfair
state. If thebottleneckbandwidth isoriginallydesigned toaccom-
modate, for example, three concurrent 1 Mbps video-streaming
flows, with Vegas, flow 1 constantly achieves an unnecessarily
higher throughput, at the expense of flow 0.

Microscopic behaviors with long RTT: We repeat the static
simulations with longer bottleneck propagation delay (100 ms),

Fig. 17. Allotted throughput of Reno + Gamma with long RTT.

Fig. 18. Allotted throughput of TCP(0.31, 0.875) with long RTT.

Fig. 19. Allotted throughput of Reno with long RTT.

shown in Figs. 17–21. Since the bottleneck buffer size is not ad-
justed accordingly, the buffer size (30 packets) is much smaller
than the delay-bandwidth product: the defined in (8) is around
36%. According to (8) and (11), a higher (0.73) or (0.85)
is indicated for this network condition. The simulation is de-
signed to investigate the impact of disproportionally long prop-
agation delay (relative to the small buffer size) on the perfor-
mance of the static congestion control parameters.

Conventional wisdom might argue that synchronized multi-
plicative decrease is more likely to cause the system to operate
below the knee right after multiplicative decreases. However,
results shown in Fig. 17 demonstrate that since is set adap-
tively according to the measured network conditions, the system
throughput is high and the flow-level throughput is smooth with

. Although a static of Reno can prevent the
system from operating below the knee when defined in (8)
is around 100% (see results in Fig. 14), the same static ratio
can even cause system-level throughput oscillations (Figs. 19
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Fig. 20. Allotted throughput of Reno + RED with long RTT.

Fig. 21. Author: ADD TEXT CITE FOR FIG. 21Allotted throughput of
Vegas with long RTT.

Fig. 22. Allotted throughput of Reno + Gamma with increasing number of
flows.

and 20), let alone the throughputs of individual flows, when
is around 36%. The high of TCP(0.31, 0.875) seems basi-
cally fitting for this specific long-RTT scenario, since its is
greater than the 0.73 suggested by (8). Even so, at around 73.5
second, an unusual dip of system throughput (from 2.92 Mbps
to 2.31 Mbps, see Fig. 18) occurs to TCP(0.31, 0.875). This co-
incides with consecutive window decreases of flow 2, due to se-
vere packet losses. This confirms again that blind window con-
trol based on packet losses can hurt the performance.

Microscopic behaviors in a dynamic environment: In the
next simulations of dynamic traffic (Figs. 22–26), both flow 1
and flow 2 start at time 0. Flow 0 joins competition at time
50 s, which causes a sudden increase in contention. The initial
slow start of flow 0 leads to severe packet losses and significant
window decreases of some flows. With , after the ini-
tial stage, the coordinated AIMD window adjustment takes over,

Fig. 23. Allotted throughput of TCP(0.31, 0.875) with increasing number of
flows.

Fig. 24. Allotted throughput of Reno with increasing number of flows.

Fig. 25. Allotted throughput ofReno+REDwith increasing number of flows.

Fig. 26. Allotted throughput of Vegas with increasing number of flows.

and the system quickly converges to a smooth equilibrium, with
a lower fair-share for each flow. The synchronized window ad-
justment is not disrupted by the incoming new flow. In line with
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the analysis on Vegas in the Appendix, flow 0 achieves an un-
fair high throughput, since the incoming Vegas flow overesti-
mates after the system stabilizes at a nonempty queue,.
In contrast, our scheme periodically adjusts downward to the
knee where can be accurately measured.

V. CONCLUSION AND FUTURE WORK

We argued that the major obstacle for achieving smoothness
is the unsynchronized and random window adjustments. In deed,
synchronized window adjustments may avoid bandwidth under-
utilization by adapting the control parameters to the network con-
ditions. Based on these observations, we proposed an adaptive
congestion avoidance mechanism to coordinate window adjust-
ments. Flow-level throughput smoothness is enhanced, without
compromisingefficiency, fairnessandresponsiveness.Currently,
themechanismis integrated intoTCP.Weplan to further incorpo-
rate and adapt this mechanism into unreliable or rate-based trans-
portprotocols (suchasRAP[9]).Furthermore, sinceDiffServhas
been introduced, flows may have different utility functions and
equal sharing is not always fair allocation. We will investigate
how to adjust the parameters , , , and for different flows, in
order to achieve proportional fairness.

APPENDIX

Analyzing the Worst-Case Fairness of TCP Vegas:

Using the scenario and the notations in Section II, we analyze
TCP Vegas as follows. The control objective of Vegas is to keep
each flow’s congestion window in a range given by

(A.1)

Note that the parameters and of Vegas are defined com-
pletely different from the parameters of TCP . With

and (9), we have

(A.2)

In the original paper of TCP Vegas [3], . That is,
can stabilize anywhere within

(A.3)

Therefore, the worst-case fairness can be anywhere between 1/3
and 1, assuming that is approximately the same for all
flows. [10] points out that Vegas can be unfair to incoming new
flows due to their over-estimations of , since the system
stabilizes at a nonempty queue. Our analysis further reveals that
the unfairness is also caused by the fact that, as long as (A.3)
holds, the windows can stabilize at an unfair state forever, as
substantiated by the simulations described in Section IV.
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