Introduction

Outline
Statistical Multiplexing
Inter-Process Communication
Network Architecture
Performance Metrics
Implementation Issues

Building Blocks
* Nodes: PC, special-purpose hardware...
— hosts
— switches

* Links: coax cable, optical fiber...

— point-to-point @

— multiple access

b)) £ — —

Switched Networks

* A network can be defined recursively as...

— two or more nodes — two or more networks
connected by a link, or connected by a node

Strategies

* Circuit switching: carry bit streams
— original telephone network

» Packet switching: store-and-forward messages
— Internet

Addressing and Routing

* Address: byte-string that identifies a node
— usually unique

* Routing: process of forwarding messages to the
destination node based on its address

* Types of addresses
— unicast: node-specific
— broadcast: all nodes on the network

— multicast: some subset of nodes on the network

Multiplexing

* Time-Division Multiplexing (TDM)
* Frequency-Division Multiplexing (FDM)

L1 [
I]
L1 R1
[s Z []
[} - _— —]
L2 *7 i* R2
— Switch 1 Switch 2 =
[[]

L3 R3

Statistical Multiplexing

On-demand time-division

Schedule link on a per-packet basis

Packets from different sources interleaved on link
Buffer packets that are contending for the link
Buffer (queue) overflow is called congestion

Xy

000

Inter-Process Communication

Turn host-to-host connectivity into process-to-process
communication.

Fill gap between what applications expect and what the
underlying technology provides.

IPC Abstractions

« Request/Reply * Stream-Based
— distributed file systems — video: sequence of frames
* 1/4 NTSC = 352x240 pixels
* (352 x 240 x 24)/8=247.5KB
* 30 fps = 7500KBps = 60Mbps
— video applications

» on-demand video

— digital libraries (web)
— Based on TCP

* video conferencing

— Based on UDP

What Goes Wrong in the Network?

 Bit-level errors (electrical interference)
» Packet-level errors (congestion)
* Link and node failures

* Packets are delayed

» Packets are deliver out-of-order
* Third parties eavesdrop

10

Layering

» Use abstractions to hide complexity
» Abstraction naturally lead to layering

» Alternative abstractions at each layer
(extensible)

Application programs

Request/reply| Message stream
channel channel

Host-to-host connectivity

Hardware

11

Protocols

* Building blocks of a network architecture
» Each protocol object has two different interfaces
— serviceinterface: operations on this protocol
— peer-to-peer interface: messages exchanged with peer
* Term “protocol” is overloaded

— specification of peer-to-peer interface
— module that implements this interface

12

Interfaces

Host 1 Host 2

Service
interface

Peer-to-peer
interface

13

Protocol Machinery
* Protocol Graph

— most peer-to-peer communication is indirect
— peer-to-peer is direct only at hardware level

Host 1

Host 2

14

Machinery (cont)

* Multiplexing and Demultiplexing (demux key)
* Encapsulation (header/body)

Host Host

15

Internet Architecture

* Defined by Internet Engineering Task Force (IETF)
* Hourglass Design
» Application vs Application Protocol (FTP, HTTP)

16

ISO Architecture

End host

One or more nodes
within the network

End host

17

Performance Metrics
* Bandwidth (throughput)

— data transmitted per time unit
— link versus end-to-end
— notation

* KB =210bytes

* Mbps = 10 bits per second

» Latency (delay)
— time to send message from point A to point B
— one-way versus round-trip time (RTT)
— components
Latency = Propagation + Transmit + Queue
Propagation = Distance / ¢
Transmit = Size / Bandwidth

18

Bandwidth versus Latency

Latency-Bound
— l-byte request / reply with 100ms RTT
— 1Mbps Channel: transmit time 8 ps.
— 100Mbps Channel: transmit time 0.08 ps.

Bandwidth-Bound
— 25MB transfer
— 10Mbps Channel: transmit time 20 seconds
— The effect of RTT is neglegible.

Throughput = TransferSize / TransferTime
TransferTime = RTT + 1/Bandwidth x TransferSize

19

Delay x Bandwidth Product

* Amount of data “in flight” or “in the pipe”
¢ Usually relative to RTT
* Example: 100ms x 45Mbps = 560KB

Delay

Bandwidth ‘ . >

20

10

Socket API

* Creating a socket
int socket(int domain, int type, int protocol)
» domain = PF_INET, PF_UNIX

. type = SOCK_STREAM, SOCK_DGRAM,
SOCK_RAW

* Passive Open (on server)
int bind(int socket, struct sockaddr *addr, int addr_len)
int listen(int socket, int backlog)
int accept(int socket, struct sockaddr *addr, int addr_len)

21

Sockets (cont)

 Active Open (on client)
int connect(int socket, struct sockaddr *addr,
int addr_len)

* Sending/Receiving Messages
int send(int socket, char *msg, int mlen, int flags)
int recv(int socket, char *buf, int blen, int flags)

22

11

