
1

1

Outline
Encoding (bits)
Framing (frames)
Error Detection
Sliding Window Algorithm

Point-to-Point Links

2

Encoding

• Signals propagate over a physical medium
– modulate electromagnetic waves
– e.g., vary voltage

• Encode binary data onto signals
– e.g., 0 as low signal and 1 as high signal
– known as Non-Return to zero (NRZ)

Bits

NRZ

0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

2

3

Problem: Consecutive 1s or 0s

• Low signal (0) may be interpreted as no signal
• High signal (1) leads to baseline wander

– Attenuation: the receiver uses the average to distinguish
between low and high signals.

• Unable to recover clock
– The clocks of the sender and the receiver must be

synchronized
– The receiver derives the signal from the signal

transistions

4

Alternative Encodings
• Non-return to Zero Inverted (NRZI)

– make a transition from current signal to encode a one;
stay at current signal to encode a zero

– solves the problem of consecutive ones

• Manchester
– transmit XOR of the NRZ encoded data and the clock
– only 50% efficient (bit rate = 1/2 baud rate)

• Or requires higher bandwidth for higher baud rate

3

5

Encodings (cont)

Bits

NRZ

Clock

Manchester

NRZI

0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

6

Encodings (cont)

• 4B/5B
– every 4 bits of data encoded in a 5-bit code (p.79)
– 5-bit codes selected to have no more than one leading 0

and no more than two trailing 0s
– thus, never get more than three consecutive 0s
– resulting 5-bit codes are transmitted using NRZI (for

consecutive 1s)
– achieves 80% efficiency

4

7

Framing

• Break sequence of bits into a frame
– The beginning and the end of a frame?

• Typically implemented by network adaptor

Frames

Bits
Node A Node BAdaptor Adaptor

8

Approaches

• Santinel-based
• Bit-Oriented

– e.g., HDLC
– delineate frame with special pattern: 01111110
– problem: special pattern appears in the payload
– solution: bit stuffing

• sender: insert 0 after five consecutive 1s
• receiver: delete 0 that follows five consecutive 1s

• Byte-Oriented
– e.g. PPP
– Escape 01111110 by adding another 01111110

5

9

Approaches (cont)
• Clock-based

– SONET (Synchronous Optical Network) STS-1frame:
90 bytes * 9

– The first byte of each frame contain a special bit pattern
– The receiver looks for the bit patterns that occurs every

810 bytes. Overhead Payload

90 columns

9 rows

10

Error Detection

• Sending two copies of data is inefficient
• Detect more errors with less overhead
• Two-Dimensional Parity

– Even number of 1s

• Catches all 1- 2- 3- bit errors
– and most 4 bit errors

1011110 1

1101001 0

0101001 1

1011111 0

0110100 1

0001110 1

1111011 0

Parity
bits

Parity
byte

Data

6

11

Internet Checksum Algorithm
• View message as a sequence of 16-bit integers; sum using

16-bit ones-complement arithmetic
• Simple to implement in software; Relies on complicated in

layer CRC
– E.g. word A LSB 1 to 0; Word B LSB 0 to 1

u_short cksum(u_short *buf, int count)
{

register u_long sum = 0;
while (count--)
{

sum += *buf++;
if (sum & 0xFFFF0000)
{

/* carry occurred, so wrap around */
sum &= 0xFFFF;
sum++;

}
}
return ~(sum & 0xFFFF);

}

12

Cyclic Redundancy Check

• Add k bits of redundant data to an n-bit message
– want k << n
– e.g., k = 32 and n = 12,000 (1500 bytes)

• Represent n-bit message as n-1 degree polynomial
– e.g., MSG=10011010 as M(x) = x7 + x4 + x3 + x1

• Let k be the degree of some divisor polynomial
– e.g., C(x) = x3 + x2 + 1 (with degree k)

• Easy to implement in hardware

7

13

CRC (cont)
• Transmit polynomial P(x) that is evenly divisible

by C(x)
– shift left k bits, i.e., M(x)xk

– Remainder E(x): M(x)xk = C(x)•? + E(X)
– Transmit P(x) = M(x)xk + E(x)

• Receiver receives P′(x)
– P′(x) = P(x) + ∆(x) = C(x) •? + ∆(x) = C(x) •?? + e(x)
– e(x) = 0 implies no errors, or ∆(x) happens to be

divisible by C(x)
– If no errors, (P(x) – E(x))/xk is the original message

14

CRC (cont)
Generator 1101

11111001
10011010000 Message
1101

1001
1101
1000
1101

1011
1101
1100
1101

1000
1101

101 Remainder

• XOR division!
• Message 10011010

– ⇒ 10011010000
• Divisor:1101
• Reminder: 100
• Transmit: 10011010100

8

15

Selecting C(x)
• To detect all single-bit errors (∆(x)=xi)

– the xk and x0 terms have non-zero coefficients.
• To detect all double-bit errors

– C(x) contains a factor with at least three terms
• To detect any odd number of errors

– C(x) contains the factor (x + 1)
• To detect any ‘burst’ error (i.e., sequence of consecutive

error bits) with a length less than k bits.
– Most burst errors of larger than k bits can also be detected

• See Table 2.6 on page 102 for common C(x)

16

Acknowledgements & Timeouts
Sender Receiver

Frame

ACK

Sender Receiver

Frame

ACK

Frame

ACK

Sender Receiver

Frame

ACK

Frame

ACK

Sender Receiver

Frame

Frame

ACK

(a) (c)

(b) (d)

Detect duplicate
ACKs!

9

17

Stop-and-Wait

• Problem: keeping the pipe
full

• Example
– 1.5Mbps link x 45ms RTT

= 67.5Kb (8KB)
– 1KB frames implies 1/8th

link utilization

Sender Receive

Frame 0

ACK 0

Frame 1

ACK 1

Frame 0

ACK 0

18

Sliding Window
• Allow multiple outstanding (un-ACKed) frames
• Upper bound on un-ACKed frames, called window

Sender Receiver

10

19

SW: Sender
• Assign sequence number to each frame (SeqNum)
• Maintain three state variables:

– send window size (SWS)
– last acknowledgment received (LAR)
– last frame sent (LFS)

• Maintain invariant: LFS - LAR <= SWS

• Advance LAR when ACK ≥ LAR arrives
• Buffer up to SWS frames

< SWS

LAR LFS

■ ■ ■ ■ ■ ■

─

20

SW: Receiver
• Maintain three state variables

– receive window size (RWS)
– largest frame acceptable (LFA)
– last frame received i.e. received in order ! (LFR)

• Maintain invariant: LFA - LFR <= RWS

• Frame SeqNum arrives:
– if LFR < SeqNum < = LFA accept
– if SeqNum < = LFR or SeqNum > LFA discarded

• Send cumulative ACKs
• Advance LFR and deliver data to the application when LFR +

1 arrives

RWS

LFR LAF

■ ■ ■ ■ ■ ■

<
─

11

21

Sequence Number Space
• SeqNum field is finite; sequence numbers wrap around
• Sequence number space must be larger then number of

outstanding frames
• SWS <= MaxSeqNum-1 is not sufficient

– suppose 3-bit SeqNum field (0..7)
– SWS=RWS=7

– sender transmit frames 0..6
– arrive successfully, but ACKs lost
– sender retransmits 0..6
– receiver expecting 7, 0..5, but receives second incarnation of 0..5

• SWS < (MaxSeqNum+1)/2 ! (similar to Stop&Wait)
• Intuitively, SeqNum “slides” between two halves of

sequence number space

