
1

Synchronization

Chi Zhang

czhang@cs.fiu.edu

COP 6611 Advanced Operating System

2

Outline
! Physical Clock Synchronization

! Logical Clocks

! Global State

! Election Algorithms

! Mutual Exclusion

! Distributed Transactions

2

3

Clock Synchronization Algorithms

The relation between clock time and UTC when clocks tick at
different rates.

4

Cristian's Algorithm

Getting the current time from a time server.
If one machine is synchronized with the standard time

3

5

The Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values

b) The machines answer

c) The time daemon tells everyone how to adjust their clock

6

At-Most-Once Message Delivary
based on Synchronized Clock

! Even in the face of crashes.
! How long to maintain the state?
! Every message carries a connection ID and a time stamp

(unique message ID).
! The same time stamp for retransmitted messages.

! Messages older than G (p.251) is removed.
! Younger than G? in the table.

! Table entries older than G are removed.
! Every ∆T, CurrentTime is written to disk. After

recovery, G=max(tstored + ∆T, G)
! All states are lost.
! Before crash, rejects messages with t.s. > G.latest =

CurrentTime + ∆T

4

7

Lamport Timestamps (1)
0

6

12

18

24

30

36

42

48

54

60

0

6

12

18

24

30

36

42

48

70

76

0

8

16

24

32

40

48

56

64

72

80

0

8

16

24

32

40

48

61

69

77

85

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

A A

B B

C C

D D

(a) (b)

a → b: a happens before b. (transitive relation!), otherwise concurrent.

(i) within a process (ii) between process: Message passing

Lamport’s algorithm to assign C(a) and C(b)

8

Lamport Timestamps (2)

a) Three processes, each with its own clock. The clocks run at
different rates.

b) Lamport's algorithm corrects the clocks.

5

9

Example: Totally-Ordered Multicasting

Updating a replicated database and leaving it in an inconsistent state.

10

Vector Time Stamps
! For each process i:

! Vi[i] is the number messages sent by Pi

! Vi[j]=k: Pi “knows” k messages sent by Pj (j≠i)

! When Pi sends a message r to Pj , Vi[i] ++l, and
attaches the vector timestamp to r

! Message r is accepted by Pj iff
! vt(r)[i] = Vj[i]+1
! vt(r)[m] ≤ Vj[m] (m≠i)

! Update Vj after r is delivered.
! a happens before b ⇒ vt(a) < vt(b)
! vt(a) < vt(b) ⇒ a happens before b

6

11

Global State (1)

a) A consistent cut
b) An inconsistent cut

12

Global State (2)

a) Organization of a process and channels for a distributed
snapshot

7

13

Global State (3)

b) Process Q receives a marker for the first time and records its local
state

c) Q records all incoming message
d) Q receives a marker for its incoming channel and finishes recording

the state of the incoming channel

14

Election Algorithms

! Each process has a unique process number.

! The process with the highest number should be
elected as the coordinator

! Every process knows the process numbers of all
the other processes

! It does not know whether they are currently up or
down.

8

15

The Bully Algorithm (1)

The bully election algorithm
• Process 4 holds an election
• Process 5 and 6 respond, telling 4 to stop
• Now 5 and 6 each hold an election

16

The Bully Algorithm (2)

d) Process 6 tells 5 to stop
e) Process 6 wins and tells everyone

9

17

A Ring Algorithm

Election algorithm using a ring.

18

Mutual Exclusion:
A Centralized Algorithm

a) Process 1 asks the coordinator for permission to enter a critical region.
Permission is granted

b) Process 2 then asks permission to enter the same critical region. The
coordinator does not reply.

c) When process 1 exits the critical region, it tells the coordinator, which
then replies to 2

10

19

A Distributed Algorithm

a) Two processes want to enter the same critical region at the same
moment.

b) Process 0 has the lowest timestamp, so it wins.
c) When process 0 is done, it sends an OK also, so 2 can now enter

the critical region.

20

A Toke Ring Algorithm

a) An unordered group of processes on a network.

b) A logical ring constructed in software.

11

21

Comparison

A comparison of three mutual exclusion algorithms.

Lost token,
process crash

0 to n – 11 to ∞Token ring

Crash of any
process

2 (n – 1)2 (n – 1)Distributed

Coordinator crash23Centralized

Problems
Delay before entry
(in message times)

Messages per
entry/exit

Algorithm

22

The Transaction Model (1)

Examples of primitives for transactions.

Write data to a file, a table, or otherwiseWRITE

Read data from a file, a table, or otherwiseREAD

Kill the transaction and restore the old valuesABORT_TRANSACTION

Terminate the transaction and try to commitEND_TRANSACTION

Make the start of a transactionBEGIN_TRANSACTION

DescriptionPrimitive

12

23

The Transaction Model (2)

a) Transaction to reserve three flights commits
b) Transaction aborts when third flight is unavailable

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi full =>

ABORT_TRANSACTION
(b)

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi;

END_TRANSACTION

(a)

24

The Transaction Model (3)

ACID

! Atomic
! Operations in the transaction happens indivisibly

! Consistent
! E.g. the law of conservation of money

! Isolated (Serializable)
! Concurrent transactions appear as if one after

another.

! Durable
! Once commits, the data are there forever

13

25

Distributed Transactions

a) A nested transaction
b) A distributed transaction

26

Private Workspace

a) The file index and disk blocks for a three-block file
b) The situation after a transaction has modified block 0 and

appended block 3
c) After committing

14

27

Writeahead Log

a) A transaction
b) – d) The log before each statement is executed

Log

[x = 0 / 1]
[y = 0/2]
[x = 1/4]

(d)

Log

[x = 0 / 1]
[y = 0/2]

(c)

Log

[x = 0 / 1]

(b)

x = 0;
y = 0;
BEGIN_TRANSACTION;

x = x + 1;
y = y + 2
x = y * y;

END_TRANSACTION;
(a)

28

Concurrency Control (1)

General organization of managers for handling transactions.

15

29

Concurrency Control (2)

General organization of
managers for handling
distributed transactions.

30

Serializability

a) – c) Three transactions T1, T2, and T3

d) Possible schedules
Read/write conflict; write/write conflict
Pessimistic approaches; Optimistic approaches

BEGIN_TRANSACTION
x = 0;
x = x + 3;

END_TRANSACTION

(c)

BEGIN_TRANSACTION
x = 0;
x = x + 2;

END_TRANSACTION

(b)

BEGIN_TRANSACTION
x = 0;
x = x + 1;

END_TRANSACTION

(a)

Illegalx = 0; x = 0; x = x + 1; x = 0; x = x + 2; x = x + 3;Schedule 3

Legalx = 0; x = 0; x = x + 1; x = x + 2; x = 0; x = x + 3;Schedule 2

Legalx = 0; x = x + 1; x = 0; x = x + 2; x = 0; x = x + 3Schedule 1

(d)

16

31

Two-Phase Locking (1)

! Request the lock before accessing the data
! Delay the request if already used by another

process
! Release the lock if no longer used
! Never grant a lock to a process if it has released

another lock.
! Deadlock may occur

! Request locks in order
! Detect and kill
! Timeout and release

32

Two-Phase Locking (2)

Two-phase locking.

17

33

Two-Phase Locking (3)

Strict two-phase locking.

34

Pessimistic Timestamp Ordering (1)
! Assign each transaction T a unique timestamp

ts(T). when it starts
! Serialized as if T commits at ts(T)

! Every data x has a tsRD(x) and a tsWR(x)
! Tentative t.s., becomes permanent after the

transaction commits

! For read(T, x) request
! Abort if ts(T) < tsWR(x)
! If tsWR(x) tentative, wait until it commits

! For write(T, x) request
! Abort if ts(T) < tsWR(x) or ts(T) < tsRD(x)

18

35

Pessimistic Timestamp Ordering (2)

Concurrency control using timestamps.

Abort rather than wait if requests conflict ⇒Deadlock free!

36

Optimistic Timestamp Ordering
! Check conflicts at the end of the transaction

! Check private work space

! If so, abort

! Allows maximum parallelism if no conflict

! With heavy load and frequent conflicts, a bad
choice.

