
SBLAST: Structural Basic Local Alignment Searching Tools
 using Geometric Hashing

Tom Milledge1*, Gaolin Zheng2*, Tim Mullins3, Giri Narasimhan1
1BioRG, School of Computing and Information Science, Florida International University
2Department of Mathematics and Computer Science, North Carolina Central University

3IBM Systems and Technology Group, Rochester, MN 55901, *Joint first authors
tmille01@cs.fiu.edu, gzheng@nccu.edu, mullinst@us.ibm.com, giri@cs.fiu.edu

Abstract

While much research has been done on finding
similarities between protein sequences, there has not
been the same progress on finding similarities between
protein structures. Here we report a new algorithm
(SBLAST) which discovers the largest common
substructures between two proteins using a triangle-
based variant of the geometric hashing of protein
structures algorithm. The algorithm selects triples
(triangles) of selected Cα atoms from all proteins in a
protein structure database and creates a hash table
using a key based on the three inter-atomic distances.
Hash table hits from the triangles of a query protein
are extended recursively to determine the largest
common substructures less than a threshold deviation
level (rmsd). Comparisons between a query protein
and a preprocessed protein database can be performed
in parallel. Because SBLAST does not rely on protein
sequence alignment, common substructures can be
detected in the absence of sequence conservation.
SBLAST has been tested using the ASTRAL subset of
the PDB.

1. Introduction

Determining structural similarity is one of the most
important tasks in proteomics. Numerous 3D structure
alignment tools have been developed for comparing
protein structures, such as CE [1], DALI [2], ProSup
[3], and VAST [4]. So far, however, there is no
universally accepted algorithm for determining the
structural similarity of two proteins. This contrasts
with the situation regarding protein sequence
comparison where the sequence alignment program
BLAST (basic local alignment search tool) [5] is the
most frequently used and most widely accepted method
for calculating sequence similarity. The BLAST
program performs local alignment of sequences and
finds short stretches of sequence similarity. While
doing local alignment at the sequence level is not an

easy task, it is considerably more difficult to perform a
similar task at the three-dimensional structure level.
And the challenge is further magnified when there are
a large number of entries in the database against which
good alignments are sought. The number of structures
in the Protein Data Bank (www.pdb.org) have
increased rapidly with more than 44,000 structures
have been deposited by the end of June, 2007. Despite
the existence of a number of 3D protein structure
alignment tools, there is still a need for the
development of new approaches for solving the
problem from a slightly different angle. Inspired by the
success of BLAST at sequence level, we have
developed the program SBLAST (BLAST for
structures) to perform BLAST-like search for 3D
proteins. In this paper, we will discuss our approach for
discovering structurally similar regions in proteins
using a variation of the geometric hashing method.

The original geometric hashing concept was introduced
in the field of machine vision to solve the object
recognition problem [6]. Geometric hashing concept is
predicated on the idea that the simplest invariant
associated with any set of three points in space under
any rigid transformation is the set of the three inter-
point distances. These distances can thus be used as a
“hash value” of the triple of points. In one
implementation of geometric hashing, every choice of
a basis of a set of two or three points corresponds to a
transformation, and the other points are subjected to
the same geometric transformation and indexed into
the corresponding hash table bins [7]. Since, in this
implementation, all combinations of the bases are
selected, the resulting hash table records the locations
of all points through all possible basis transformations.
For searching with a query image of m points and
target image of n points, the time complexity is O(n2m)
if a two-point basis is used, and the time complexity is
O(n3m) if a three-point basis (triangles) is used. While
this technique is widely used in computer vision, it is
not really suitable to analyze protein structures, which

contain in the order of thousands of atoms. A triangle-
based approach will be discussed in this paper to
approach local protein structure alignment problem.
However the details of the method are considerably
different from that of earlier techniques. In particular
we discuss how this algorithm is adapted for massively
parallel machines.

2. Methods

As mentioned earlier, every triple of points consisting
of the 3-D coordinates of selected Cα atoms
(henceforth referred to as a “triangle”) is hashed to a
set of three inter-point distances, giving a 3-
dimensional hash value. The algorithm consists of
three phases: 1) the preprocessing phase, 2) the hit
search phase, and 3) the hit extension phase. The
source code was implemented using a mixture of C,
C++ and Message Passing Interface (MPI).

2.1 Preprocessing phase

During the preprocessing phase, all proteins in the
database of potential database proteins are hashed. In
other words, triangle information is extracted from
each of the PDB files and is stored in a 3-D hash table
with user-defined bin sizes. The hash key is generated
using the lengths of each triangle. In practice, this hash
function has been found to provide a good balance
between hash table size, hash key computation and
clustering (collisions). The size of the hash bin
determines the granularity of the search. The larger the
bin size, the more likely it will be that comparable
triangles will hash to the same bin. However, if the bin
size is too large, then many unrelated triangles will
need to be evaluated during the extension phase. After
preprocessing, a list of relevant triangles will be stored
in a large hash table that can be used later in the hit
search and the hit extension phases.

2.2 Hit Search Phase

Given a query protein structure, we first extract
triangles from the query protein and search the
matching triangles in the hash table generated at
preprocessing phase. To accommodate the situation
that a triangle in the border of a neighboring bin might
be closer to the query triangle than some triangles in
the hash bin that the query triangle is hashed into, we
also implemented a neighbor search routine to find
matches in neighboring hash bins.

2.3 Hit Extension Phase

As in sequence BLAST, once a hit is found (by
matching a triangle from the query structure with a
triangle of a database protein), we need to extend the
hit to find locally maximal structure segment pairs, one
in the query and one in the database protein. A
recursive routine is used to extend the triangle hits. The
goal is to find a pair of longest common substructures
such that when they are structurally aligned, the root
mean square deviation (RMSD) is below a user-
defined threshold. To facilitate this process, an
adjacency list of triangles is constructed and a depth-
first search is simulated on it. Note that the triangles
are considered to be adjacent if they share an edge.

The extension phase is implemented using a query-
driven search that recursively extends the hits until the
maximum allowable RMSD is reached. Details of the
algorithm are given in Figure 1. A standard procedure
is used to find the RMSD between two 3-D protein
structures based on a matrix computation approach by
Schonemann [8].

3. Parallel Design and Implementation

We used a “Master-Worker” paradigm to implement
the parallel algorithm for SBLAST using MPI
(message passing interface) routines on the IBM Blue
Gene/L massively parallel supercomputer. The Blue
Gene/L architecture is designed to scale to 65,536
dual-processor nodes (131,072 processors) with a peak
performance of 360 teraflops [9]. The three phases of
the algorithm described above were broken into two
modules: 1) the preprocessing module and 2) the
search module. Both modules were implemented in
serial and parallel versions. In the SBLAST
preprocessing module, a master processor listens for
the requests of idle worker processors and sends a new
PDB file for each worker to parse. The parsed results
are the sent to an output master processor that outputs
the results into four different files: 1) The hash table
database stores the hash tables for all the proteins in
the database; 2) The hash index file stores the
beginning and ending bytes in the hash table for each
protein; 3) The attribute database stores the attributes
(coordinates, residue type, atom type, etc.) for all the
proteins in the database; and 4) The attribute index file
stores the beginning and ending bytes in the attribute
table for each protein. The SBLAST search module
uses the four files generated from preprocessing
module. The master processor operates as a job-
scheduler servicing requests from worker processors.

Input
 Q1, Q2, … Qi,… //Qi is the ith triangle in query that has at least one hit
 Qi:{Ti1, Ti2, …, Tia, …} //Associative map for query triangle Qi, Tia is the ath

matching triangle in target T that matches with Qi
 Q is the union of all query triangles with hits
 T is the union of all target triangles
 maxDev: the maximum root mean square deviation allowed
 minSize: the minimum substructure size allowed

Output:
 A list of matching common substructure pairs (local alignments)

search(Q, T)
 int k;
 VQ = number of triangles in Q
 VT = number of triangles in T
 for (k=0; k<VQ; k++)
 valQ[k] = unseen;
 for(k=0; k<VT; k++)
 valT[k] = unseen;
 Initialize subgraphQ_1 to subgraphQ_n as empty set
 Initialize subgraphT_ij as empty set
 for i=1 to VQ
 Qi is the ith triangle in query
 for j=1 to number of target triangles that match with Qi
 subgraphT_ij = Tij
 if Qi is not visited

 doubleExtendTriangle(subgraphQ_i, subgraphT_ij, Qi, Tij)
 if maxDev and minSize constraints satisfied

 Output subgraph Q_i and subgraph T_ij as matching common substructure

adjlist(Q)
 for i=1 to VQ
 for j=1 to VQ
 if (Triangle_j shares an edge with Triangle_i)
 adj[i].push_back(triangle_j)

doubleExtendTriangle(subgraphQ, subgraphT, TQ, TT)
 mark triangle TQ as visited
 mark triangle TT as visited
 append unshared point of TQ into subgraphQ
 append unshared point of TT into subgraphT
 if appended subgraphQ is similar to appended subgraphT
 extend subgraphQ and subgraphT and do the following
 for i = 1 to number of neighbors of TQ
 TQ_i is the ith neighbor of TQ
 for j = 1 to number of target triangles that matches with TQ_i
 TT_ij is the jth target triangle that matches with TQ_i
 doubleExtendTriangle(subgraphQ, subgraphT, TQ_i, TT_ij)
 else do not extend

Figure 1. Pseudo code for the search and extension phase.

When the SBLAST search is initiated, the names of the
query file, hash table database and attribute database
are broadcasted to all the worker processors. The
master processor then reads the index file for the hash
table and the index file attribute table and determines
the offsets of hash table and attribute table for each
individual worker processor. A pair of offsets (the
beginning byte and ending byte) for a particular hash
table in the hash table database is sent to each worker
processor. A pair of offsets for the corresponding
attribute table is sent as well. Every worker will read
the chunk of characters determined by the pair of
offsets from the respective hash table and attribute
table and subsequently parse the tables into data
structures. A pair of proteins, consisting of a query and
a database protein constitutes a job. A worker
processor works on one job at a time and makes a new
request to the master processor as soon as it finishes its
job. The master works as a server and send the next
pair of offsets to the requesting worker processors as
soon as it receives the request. Output of the results is
done in parallel by the worker processors. A post-
processing routine merges the results generated by
each individual worker processor. The output files
contain matching common substructures and the
corresponding RMSD between the superimposed
common substructures.

4. Performance Evaluation of SBLAST

We used Message Passing Interface (MPI) to
implement the parallel version of our algorithm. Our
benchmark database consisted of 2898 proteins from
ASTRAL40. The performance for preprocessing
module is shown in Figure 2(a) and the performance of
search module is shown in Figure 2(b).

Parallel performance of preprocessing module

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

Number of Processors

Sp
ee

du
p

Speedup Linear Speedup
(a)

Parallel performance of search module

0

100

200

300

400

500

600

0 100 200 300 400 500 600

Number of Processors

Sp
ee

du
p

Speedup Linear Speedup
(b)

Figure 2. Parallel performance of SBLAST on
Blue Gene. (a) Preprocessing module, (b) Search
module. A test database containing 2898 proteins
was used. The scaling limit in both cases was the
time to process the largest database proteins.
Close to linear scaling is expected when
preprocessing and searching the PDB as a whole.

5. Experiments

We performed our experiments on a smaller version of
the PDB based on the ASTRAL Compendium of
protein structures and sequences [10]. The version of
the ASTRAL Compendium we used was one in which
no two proteins share more than 40% sequence identity
(ASTRAL40 in the sequel) (http://astral.berkeley.edu).
We first tested if SBLAST program was able to find
the common protein domain shared by several proteins.
We queried trypsin (ASTRAL ID: d1s83a_) against
ASTRAL40 and looked for proteins that shared some
common substructure with the trypsin. We chose
Trypsin because it is a relatively large protein. Eighty
two local alignments with RMSD ranging from 0.098
to 0.669 were identified. We also chose the zinc finger
domain for our experiments. A zinc finger is a DNA-
binding domain typically consisting of two antiparallel
β strands, and an α helix. Many regulatory proteins
(e.g., transcription factors) contain zinc fingers.
Alkaline phosphatase (ASTRAL ID: d1a1ia_) is a zinc
finger protein. We queried d1aliia_ against the
ASTRAL40 database to look for common
substructures in other proteins in the database. Figure
3 shows a local alignment between d1s83a_ and
d1p57b_, and another local alignment between d1a1ia_
and d1p7a_.

d1s83a_

d1p57b_ RMSD: 0.1692

Size: 11
(a)

d1a1ia_

d1p7a_

RMSD: 0.3285
Size: 6

(b)

Figure 3. SBLAST search for common
substructures in ASTRAL40. In (a), the query
protein d1s83a_ is found to share a large
common substructure of high similarity with the
protein d1p57b_. In (b), the query protein d1a1ia_
is found to share a common substructural region
with the protein d1p7a_. Note although d1p7a_
does not have the characteristic secondary
structure topology of zinc finger proteins, the zinc
binding residues are structurally well conserved.

6. Results and Discussion

Preliminary experiments show that SBLAST was able
to identify common substructures in a large set of
proteins. In Figure 2, above, the preprocessing module
and the search module show effective speedups of 70%
and 60% for 1000 and 500 processors respectively. An
improvement in parallel efficiency is expected when
the ratio between the number of database proteins and
the number of processors increases for larger
databases. Improvement in the absolute performance
of the search function would require that the current
parallel algorithm be rewritten to allow more than one
processor per database protein. Currently SBLAST
provides alignment measures using length and RMSD
of the common substructures. Future work will be to
explore the distribution of structural alignments so as
to better determine the statistical significance of an
alignment.

7. Acknowledgements

This work was supported by the IBM Systems
Technology Group at Rochester, Minnesota. Zheng
and Milledge, who worked as IBM Co-ops, would like
to express deep gratitude to all the members involved

with Blue Gene/L’s software and development team.
Special thanks to our manager Carl Obert, our mentors,
Carlos Sosa, Brian Smith, Amanda Peters, and Jeffrey
McAlister. We would like to express our gratitude to
IBM Capacity on Demand Center at Rochester,
Minnesota. IBM, Power PC, and Blue Gene are
registered trademark of IBM Corporation. The work of
G.N. was supported in part by NIH Grants P01
DA15027-01 and NIH/NIGMS S06 GM008205.

8. References

[1] Shindyalov, I.N. and P.E. Bourne, Protein structure
alignment by incremental combinatorial extension (CH) of
the optimal path. Protein Eng., 1998. 11: p. 739–747.

[2] Holm, L. and C. Sander, Protein structure comparison by
alignment of distance matrices. J. Mol. Biol., 1993. 233: p.
123–138.

[3] Lackner, P., W.A. Koppensteiner, M.J. Sippl, and F.S.
Domingues, ProSup: a refined tool for protein structure
alignment. Protein Eng., 2000. 13: p. 745–752.

[4] Yang, A.-S. and B. Honig, An integrated approach to the
analysis and modeling of protein sequences and structures. I.
protein structural alignment and a quantitative measure for
protein structural distance. J. Mol. Biol., 2000. 301: p.
665–678.

[5] Altschul, S., W. Gish, W. Miller, M. EW, and L. DJ,
Basic local alignment search tool. Journal of Molecular
Biology, 1990. 215(3): p. 403-410.

[6] Lamdan, Y., J.T. Schwartz, and H.J. Wolfson. Object
Recognition by Affine Invariant Matching. in Proceedings of
Computer Vision and Pattern Recognition. 1988.

[7] Lamdan, Y. and H. Wolfson. Geometric hashing: A
general and efficient model-based recognition scheme. in
Proceedings of the International Conference on Computer
Vision. 1988. Los Alamitos: Computer Society Press.

[8] Schonemann, P., A generalized solution of the orthogonal
procrustes problem. Psychometrika, 1966. 31: p. 1-10.

[9] Gara, M.A., D. Blumrich, D. Chen, G.L.-T. Chiu, P.
Coteus, M.E. Giampapa, R.A. Haring, P. Heidelberger, D.
Hoenicke, G.V. Kopcsay, T.A. Liebsch, M. Ohmacht, B.D.
Steinmacher-Burow, T. Takken, and P. Vranas, Overview of
the Blue Gene/L System Architecture. IBM Journal of
Research and Development, 2005. 49(2/3): p. 195-212.

[10] Brenner, S., P. Koehl, and M. Levitt, The ASTRAL
compendium for sequence and structure analysis. Nucleic
Acids Research, 2000. 28: p. 254-256.

