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ABSTRACT 

Clustering of gene expression data is a stan-
dard technique used to identify closely related 
genes. In this paper, we develop a new clustering 
algorithm, MSC (Multi-Source Clustering), to 
perform exploratory analysis using two or more 
diverse sources of data. In particular, we investi-
gate the problem of improving the clustering by 
integrating information obtained from gene ex-
pression data with knowledge extracted from 
biomedical text literature. In each iteration of al-
gorithm MSC, an EM-type procedure is employed 
to bootstrap the model obtained from one data 
source by starting with the cluster assignments 
obtained in the previous iteration using the other 
data sources. Upon convergence, the two individ-
ual models are used to construct the final cluster 
assignment. We compare the results of algorithm 
MSC for two data sources with the results ob-
tained when the clustering is applied on the two 
sources of data separately. We also compare it 
with that obtained using the feature level integra-
tion method that performs the clustering after 
simply concatenating the features obtained from 
the two data sources. We show that the z-scores of 
the clustering results from MSC are better than 
that from the other methods. To evaluate our clus-
ters better, function enrichment results are pre-
sented using terms from the Gene Ontology data-
base. Finally, by investigating the success of motif 
detection programs that use the clusters, we show 
that our approach integrating gene expression 
data and text data reveals clusters that are bio-
logically more meaningful than those identified 
using gene expression data alone.  
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1 INTRODUCTION  
DNA microarray technology offers an oppor-

tunity to simultaneously measure the expression 
of all the genes in a given sample, at a given time, 
and under specific conditions. Recently, large 
scale microarray experiments performed under a 
variety of conditions or at various stages during a 
biological process has resulted in huge amounts of 
gene expression data,  and has presented big chal-
lenges for the field of data mining (Ball et al., 
2004; Bozdech et al., 2003; Spellman et al., 
1998). Challenges include rapidly analyzing and 
interpreting data on thousands of genes measured 
under hundreds of different conditions, and as-
sessing the biological significance of the results. 
Clustering is the exploratory, unsupervised proc-
ess of partitioning the expression data into groups 
(or clusters) of genes sharing similar expression 
patterns. Such co-expressed genes may suggest 
co-regulation and may be possibly sharing com-
mon biological function (Eisen et al., 1998; Sher-
lock, 2000). Popular clustering methods used to 
analyze gene expression data include hierarchical 
clustering (Eisen et al., 1998), K-means (Herwig 
et al., 1999), and self-organizing maps (Tamayo 
et al., 1999), among others. However, the quality 
of clusters can vary greatly, as can the ability to 
infer biologically meaningful conclusions.  

On a different note, the biological and medical 
literature databases are information warehouses 
with a store of useful knowledge. They can be 
used in many ways. For example, they can be 
used to cross-reference experimental and analyti-
cal results with previously known biological facts, 
theories, and results. On the other hand, they can 
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also be used to identify functional commonalities 
of genes and to help drive the interpretation and 
organization of the expression data (Altman and 
Raychaudhuri, 2001).  In fact, text analysis has 
been applied successfully to many interesting bio-
logical problems (Shatkay et al., 2000; Yandell 
and Majoros, 2002). As shown in several papers, 
article abstracts can successfully predict gene 
function (Fleischmann et al., 1999; Raychaudhuri 
et al., 2002; Tamames et al., 1998) and genes can 
be clustered into functionally related groups based 
on the text in the scientific literature databases 
(Chaussabel and Sher, 2002). Hence, including 
the literature in the analysis of gene expression 
data offers an opportunity to incorporate addi-
tional functional information about the genes 
when defining expression clusters. In more gen-
eral terms, with the availability of multiple infor-
mation sources, it is a challenging problem to 
conduct integrated exploratory analyses with the 
aim of extracting more information than what is 
possible from only a single source.  

Ihmels et al. (Ihmels et al., 2002) presented a 
new algorithm that used additional biological in-
formation in the form of sequence data and/or 
functional annotation to generate an initial gene 
set. The algorithm then iteratively refined the set 
of experimental conditions and the set of genes 
until stopping criteria was met, which signified 
the discovery of a tightly-connected cluster of 
genes. In a recent paper (Segal et al., 2003), a 
generative probabilistic model for combining 
promoter sequence data and gene expression data 
was developed to extract biologically meaningful 
clusters (transcriptional modules) on a genome-
wide scale in S. cerevisiae. Broadly speaking, 
there are two existing clustering approaches for 
combining gene expression data and text litera-
ture. These are exemplified by the two software 
packages called  MedMiner (Tanabe et al., 1999) 
and PubGene (Jenssen et al., 2001). MedMiner 
first performed clustering on expression data and 
then interpreted textually while PubGene first per-
formed clustering on textual data and then inter-
preted numerically. In another recent publication, 
Raychaudhuri et al., first applied hierarchical 

clustering to gene expression data, and then used 
text from abstracts to resolve hierarchical cluster 
boundaries to identify clusters that are function-
ally more coherent (Raychaudhuri et al., 2003).  

While previous approaches made use of both 
data types, they tended to ignore the correlation 
structure between different sources (Wu et al., 
1999). Our MSC algorithm implicitly learns the 
correlation structure among different data sources 
and provides a semantic scheme to analyze data 
from heterogeneous data sources. 

In this paper, more specifically, we investigate 
the problem of integrating gene expression data 
and biological text literature to produce more bio-
logically significant clusters. The problem of 
learning from multiple information sources has 
been extensively studied by the machine learning 
community. In computer vision this problem is 
referred to as multi-modal learning. In general, 
there are two approaches to multi-modal learning: 
feature level integration and semantic integration 
(Wu et al., 1999). Methods that use feature level 
integration combine the information at the feature 
level and then perform the analysis in the joint 
feature space. The correlation structure between 
different sources can be discovered via learning 
(Glenisson et al., 2004). On the other hand, the 
semantic level integration methods first build in-
dividual models based on separate information 
sources and then combine these models via tech-
niques such as mutual information maximization 
(Becker, 1996). 

In this work, we present a new clustering algo-
rithm: MSC. The algorithm is a generalized ver-
sion of the standard K-means in the sense that it 
allows a stochastic exploration of data obtained 
from multiple sources (Zhong and Ghosh, 2003). 
The algorithm can be also thought of as a kind of 
“semantic” integration of data from multiple 
sources. Semantic integration has several advan-
tages over feature-level integration. First, even 
though the joint feature space is often more in-
formative than that available from each of the in-
dividual sources, naïve feature integration tends to 
generalize poorly (Wu et al., 1999). Second, the 
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semantic integration implicitly learns the correla-
tion structure between different sets of features. 
Our experiments show that our approach performs 
better than methods that use feature-level integra-
tion.  

This work also explores the problem of estab-
lishing good representations for literature-based 
information 

The rest of the paper is organized as follows. 
In Section 2, we describe our new approach of 
integrating by presenting a more general algo-
rithm applicable for multiple data sources. Section 
3 introduces the information sources used in this 
paper and presents a novel keyword-based vector 
representation of literature. In Section 4, we show 
the performance of our new clustering approach 
through a typical example and comparison with 
other integration approaches. We conclude with 
some discussions in Section 5.  

2 METHODS 

In this section we describe our new approach. 
We first briefly introduce the clustering problem 
and then present our new clustering algorithm for 
combining different data types. 

2.1 Clustering Fundamentals 
The problem of clustering data arises in many 

disciplines and has a wide range of applications.  
Intuitively, clustering is the problem of partition-
ing a finite set of points in a multi-dimensional 
space into classes (called clusters) so that (i) the 
points belonging to the same class are similar and 
(ii) the points belonging to different classes are 
dissimilar (Jain and Dubes, 1988). In this paper, 
our goal is to identify clusters of related gene us-
ing the available datasets. The notation used in the 
paper is listed below in Table 1. 

2.3 The MSC algorithm 
Here we describe the algorithm in detail. The 

method extends the model-based K-means cluster 
algorithm to allow for combined learning of dif-
ferent data types. The algorithm assumes that 
there are m parameterized models, one for each 

cluster. The set of parameters for the i-th model is 
denoted by λi. Typically, all the models are as-
sumed to be from the same family, e.g., Gaussian 
or multinomial distribution. In the sample re-
assignment step, a data point could be assigned to 
a cluster using three possible approaches: maxi-
mum likelihood (ML), soft, or stochastic (Zhong 
and Ghosh, 2003).  

The MSC algorithm, shown in Table 2, is a 
variant of the EM method (Dempster et al., 1977; 
Neal and Hinton, 1998). It stochastically builds 
the models for each data source by boosting the 
models using the cluster assignments from the 
other models. Let )( jλ be the set of parameters for 
the models of data source j. In each iteration, we 
first randomly select a data source j based on the 
weight vector P. We then perform the following 
steps: (i) find the model parameters 

),...,,( )j(
m

)j(
2

)j(
1 λλλ     that maximize the likelihood of 

the data given the current cluster assignment 
(shown in step 2b of the algorithm); (ii) assign the 
data points to the cluster that maximizes the pos-
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terior probability (shown in step 2c of the algo-
rithm).  Our experiments show that the MSC algo-
rithm implicitly learns the correlation structure 
among the multiple data sources. 

 
2.4 Cluster Assignment 

In order to obtain the final clustering, we de-
velop a new approach to combine the clustering 
results from each data source. Note that in each 
iteration, one data source is randomly picked and 
every data point (i.e., gene) is reassigned to one of 
the k clusters based on information from that data 
source and on its previous assignment. After all 
the iterations are completed, each data point has to 
be given a final assignment to one of the k differ-
ent clusters based on some criteria that depends 
on its cluster assignment for each of the m data 

sources. Note that the cluster assignments for each 
of the data sources may be different. 

One approach is to assign each data point to 
the maximum probability cluster, as suggested in 
(Kasturi and Acharya, 2004 ). This approach has 
the underlying assumption that cluster assign-
ments for the m data sources are correlated. How-
ever, this need not be true. Another approach is to 
compute a consensus mean of the cluster assign-
ments obtained from the m data sources. This ap-
proach may not always be successful especially 
when the number, variability and reliability of the 
data sources are large (Bickel and Tobias, 2004). 

We introduce a new method of assigning clus-
ter membership to data points by taking into ac-
count the cluster assignment obtained from each 
data source. The cluster assignment for each 
point, for each data source, can be thought as a k-
dimensional vector in which only one entry (cor-
responding to the assigned cluster) is equal to 1 
and all the others are zero. By combining the re-
sults obtained from the m data sources, the cluster 
assignment for each data point now constitutes a 
km-dimensional vector. Thus we obtain a n× km 
matrix whose entries are as follows: 

 i),δ(CpC (j)
sj1)s1)ki((j ⋅=−+−  

where pj is the prior probability of data type j, (j)
sC  

is a cluster s in data type j and  

 




 ∈=

otherwise       
i gene   

0
C1)i,C(

)j(
s)j(

sδ  

The above matrix is used to cluster using one 
of standard clustering algorithms, such as K-
means. Clearly, genes with similar cluster as-
signments across all data sources will be assigned 
to the same cluster. 

3 DATA SOURCES AND 
REPRESENTATION 
Currently, many techniques have been devel-

oped to analyze high-throughput numeric data 
(Ben-Dor et al., 1999; Eisen et al., 1998; Getz et 

Table 2. The MSC Algorithm 

Input: Data samples O, model structure Λ, and 
weight vector P . 

Output: Trained models Λ and a partition of 
the data samples given by the cluster identity 
vector Y  

1. Initialization: initialize the cluster identity 
vector Y 

2. while stopping criterion is not met 
a. Randomly pick a data source j according 

to P 
b. Model re-estimation for source j: for each 

cluster i, let i}y|{oO s
(j)
s

(j)
i == . The pa-

rameters of the model for cluster i, (j)
iλ , 

are re-estimated as  
 

∑
∈

=
)()(

)|(logmaxarg )()()(

j
i

j Oo

jjj
i oP λλ

λ
 

c. Sample re-assignment: for each data 
sample s, set  

                     )|(logmaxarg )()( j
i

j
s

i
s oPy λ=  

3. Return Λ and Y. 
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al., 2000; Tamayo et al., 1999). However, it is 
difficult to incorporate the wealth of information 
contained in existing domain knowledgebases, 
most of which is present in free-text form. In or-
der to efficiently extract and use this information 
in a homogeneous way with other numeric data, 
textual domain knowledge needs to be trans-
formed into numeric data.  

Our goal is to cluster a set of genes in a bio-
logically meaningful manner. Gene expression 
data is clearly numeric data and can be analyzed 
using well-established techniques. However, there 
is an enormous volume of biomedical literature 
containing useful knowledge that needs to be ex-
tracted and utilized to enhance the quality of the 
analysis (Glenisson et al., 2003; Masys, 2001). 
Starting from a biomedical literature repository, a 
document index is computed based on the vector 
space model which results in a document-term 
matrix, i.e., a matrix that provides information 
about which term appears in which document and 
with what frequency (Baeza-Yates and Ribeiro-
Neto, 1999; Raghavan and Wong, 1986). Informa-
tion on all documents linked to each gene is used 
to compute a gene-term matrix, as described later 
in Section 3.2. Note that this gene-term matrix 
now contains numeric data. This is the representa-
tion we use for text-based information. Later we 
will describe how to pick the terms of interest for 
this representation.  

The goal is to have numeric vectors from each 
data source for each gene for further analysis. In 
our analysis, all genes of interest have two repre-
sentations: term vector space from literature re-
pository and expression vector space from the 
gene expression data. After obtaining the repre-
sentations, the issue left is how to combine these 
two representations. As discussed in Section 1,  
one natural approach to combine the two repre-
sentations is feature level integration (i.e., to sim-
ply concatenate the feature vectors from the ex-
pression and text spaces), which has the effect of 
combining the corresponding distance matrices 
(Glenisson et al., 2004). Our clustering approach 

provides a semantic scheme to learn from the two 
representations.  

In what follows we will specify the data 
sources used in this work and discuss the gene-
term construction from literature repository. 

3.1 Expression and Literature Data Sources 
For text information, a literature index for 

yeast genes was constructed from 31924 yeast-
related MEDLINE abstracts, which were 
downloaded using Entrez/Pubmed search engine 
based on text matching in an entry’s fields 
(Roberts, 2001). The abstract-gene relation infor-
mation was constructed from the curated literature 
references available from the Saccharomyces Ge-
nome Database (SGD) [ftp://genome-
ftp.stanford.edu/pub/yeast/data_download/literatu
re_curation/] (Dolinski et al., 2004). Gene expres-
sion data set was generated from cultures syn-
chronized in cell cycle by three independent 
methods and consisted of measurements of 6206 
genes over 77 experimental conditions (Spellman 
et al., 1998). After removing those having no lit-
erature references, the remaining 5473 genes were 
retained for further analysis. 

3.2 Gene-Term Matrix Construction 
Each document from the data source was rep-

resented by a vector in which each component of 
the vector corresponds to a single term from the 
entire set of terms, i.e., the vocabulary (Gravano 
et al., 1999; Raghavan and Wong, 1986). The 
value of each component was calculated using the 
term weight indexing as follows: 

 









=×=

j
ijiijij df

Nlogtfidftfw  

where term frequency tfij measures the occur-
rences of a term j in a document i, and idf is in-
verse document frequency, which is equal to the 
logarithm of the ratio of the total number of 
documents (N) divided by the number of docu-
ments containing term j in the collection (dfj). 

All MEDLINE abstracts referred to in SGD’s 
literature database were considered as acceptable, 
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noise-free, domain-specific source of information 
for the yeast genes being considered (Stephens et 
al., 2001). A restricted vocabulary is suggested in 
several recent papers (Chiang and Yu, 2003; 
Glenisson et al., 2004; Stephens et al., 2001). Of-
ten these restricted vocabularies involve terms 
from the GO database. In this work, we chose to 
eliminate such constraints and have resorted to 
generic text mining methods to extract the terms. 
Our reasoning was as follows. Since GO terms 
were used in the validation of the clusters, it 
would be inappropriate to bias the text mining 
part of the process by allowing only terms that 
would validate positively.  

To integrate with the gene expression data, 
text data was represented as a gene-term matrix, 
which is obtained by combining the document-
term matrix with the gene-document matrix. The 
textual profile of a gene i, a vector of terms j, was 
obtained by taking the average over the Ni docu-
ments containing gene i:  

 
j

N

1k kg

ki

i
jii

i

N
w

N
1}g{g













== ∑
=

 

Here Nkg denotes the number of genes linking to 
document k. We added this factor to consider the 
distribution of number of genes associated with 
each document and this factor was not considered 
by Glenisson et al. (Glenisson et al., 2004). After 
considering this factor, the weight indexing was 
first averaged over the number of genes in a spe-
cific document before being averaged over all 
documents linking gene i. 

4 EXPERIMENTAL RESULTS 
 Four algorithms were implemented in Java. 

These included model-based K-means algorithm 
on the individual data sources (text and gene ex-
pression), model-based K-means algorithm on 
feature-level integration of the multi-source data, 
and the MSC algorithm.  

 

Figure 1. Clustering results from expression, text, expression-text feature level integration, and multi-source clustering. 
The horizontal axis shows the number of clusters desired, and the vertical axis shows z-scores. 
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4.1 Evaluating Clusterings 
A figure of merit called z-score was devised 

by Gibbons et al. and was used to measure the 
quality of a clustering (Gibbons and Roth, 2002). 
The z-score is defined as follows: 

random

randomreal

S
MIMI

score-z
−

=  

where MIreal is the mutual information between 
the clustered data and the SGD gene annotation 
data, MIrandom is measured for a clustering ob-
tained by randomly assigning genes to clusters, 
and Srandom is the standard deviation. Thus, higher 
z-scores suggest that the clustering results are 
more significantly related to gene function.  

We compared the performance of the four 
clustering methods: K-means clustering of expres-
sion data, K-means clustering of text data, K-
means clustering of the feature-level integrated 
expression and text data, and the MSC algorithm 
applied to expression and text data. Equal weights 
were used for the expression and text data in both 
the two multi-source algorithms, although the 
weights could be specified using expert knowl-
edge to specify the importance of each data 
source. The expression data consisted of 5473 
genes under 77 experimental conditions and the 
text data consisted of 5473 genes and 250 terms. 
The z-scores were plotted against the number of 
clusters, k, for all values of k from 2 to 100. The 
results are shown in Figure 1. Using z-score as a 
criterion, the results from the multi-source data 
clustering exhibited the best performance for over 
80% of values of k and were better than the 
method that only used text data. Surprisingly, the 
results from the feature-level integration were 
worse than the methods that used only a single 
data source. It suggests that a simple combination 
of features and distance functions may not be the 
best approach to improve the quality of clustering. 
Figure 1 shows that z-scores decay as k grows 
over 70, indicating that clustering with k greater 
than 70 is not appropriate since a decrease in z-
scores implies that clustering results are less sig-
nificantly related to gene function. In the next two 

subsections, we explore other ways to evaluate the 
quality of the resulting clusters.  

 

4.2 Function Enrichment 
To assess the classification capability of the 

clustering algorithms, gene ontology information 
was used to evaluate whether the clusters have 
significant enrichment of one or more terms from 
the gene ontology (GO) database; this was done 
using FuncAssociate (Berriz et al., 2003), a pro-
gram that takes a list of genes as input and pro-
duces a ranked (by P-values) list of the GO attrib-
utes for which the input gene list is enriched 
(Ashburner et al., 2000). Each query gene set is 
composed of the genes from each cluster in a clus-
tering, and the output gives the terms significantly 
enriched in each cluster among all genes (in this 
case, the number of all genes is 5473 which is the 
total number of genes for clustering). Table 2 
shows details of 8 typical clusters with enriched 
functional groups.  

For example, cluster 1 in Table 2 contains 254 
genes, 9 of which are annotated with the GO term 
“nucleosome”. Since only 12 genes belong to this 
category in the whole genome, this is significant, 
as suggested by its P-value of 10-13. These P-
values reflect the statistical significance of the 
function enrichment by taking into account the 
ratio of the number of genes within a cluster in 
comparison to that in the whole genome. Consider 
the “RNA binding” ontology category in cluster 7, 
which contains only 18 out of the 382 genes from 
this category. However, the P-value is 10-11, sug-
gesting a significant enrichment for this category. 
This is because the 18 RNA binding genes consti-
tute nearly 25% of the genes in cluster 7. As can 
be seen in the examples in Table 2, there are sev-
eral functions significantly enriched in a cluster. 
(Details of all clusters are provided in a supple-
mental website [http://biorg.cs.fiu.edu/MSC].)  

Function enrichment analysis also reveals that 
within a given cluster, often the enriched func-
tions are closely related. For instance, in cluster 3, 
which has 277 genes, 101 ontology categories are 
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enriched. These categories include, but not limited 
to, DNA replication and chromosome cycle, cell 
proliferation, helicase activity, mitotic recombina-
tion, and so on. All the 101 enriched ontology 

categories in this cluster are involved in cell pro-
liferation and DNA replication, which is biologi-
cally meaningful because when cell occurs, DNA 
replication and regulation must also occur. Similar 

Table 3. Function enrichment of clusters generated from Multi-Data clustering. 

Cluster # of Genes 
in Cluster Enriched Functional Category(Total genes) Clustered 

Genes 
-log10 

(p-value) 

1 254 

Nucleosome(12) 
external encapsulating structure(109) 

glycoprotein biosynthesis(66) 
protein amino acid glycosylation(66) 

9 
11 
23 
23 

13 
5 
22 
22 

2 70 Sterol biosynthesis(29) 
sterol metabolism(34) 

4 
4 

5 
5 

3 277 

DNA helicase activity(27) 
base-excision repair(10) 

postreplication repair(10) 
spindle pole body(49) 

DNA replication and chromosome cycle(238) 

9 
5 
5 
9 
45 

9 
6 
6 
6 
28 

4 39 cytosolic ribosome(167) 
eukaryotic 48S initiation complex(63) 

36 
19 

65 
34 

5 624 

regulation of physiological process(376) 
regulation of metabolism(376) 

regulation of biological process/regulation(426)
regulation of transcription, DNA-

dependent(297) 
protein modification(398) 

57 
57 
61 
 

49 
59 

13 
13 
13 
 

13 
13 

6 179 

snoRNA binding(30) 
rRNA processing(166) 
rRNA metabolism(235) 

processing of 20S pre-rRNA(51) 
small nucleolar ribonucleoprotein complex(32)

11 
52 
52 
20 
14 

13 
56 
47 
24 
18 

7 74 

RNA binding(382) 
RNA-dependent ATPase activity(25) 

ATP-dependent RNA helicase activity(25) 
ribosome assembly(62) 

18 
7 
7 
8 

11 
10 
10 
9 

8 53 
cell proliferation(588) 

acid phosphatase activity(5) 
cell cycle/cell-division cycle(516) 

21 
4 
15 

9 
8 
5 
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observations can be made about other clusters. 
For example, the genes in cluster 5 are predomi-
nantly involved in regulation, genes in cluster 6 
perform RNA processing and RNA metabolism, 
and so on. 
 
4.3 Transcription Factor Binding Motifs 

Next we decided to perform further explora-
tory analysis of some of the clusters obtained by 
the MSC algorithm. For the purpose of compari-
son, we examined the clusters obtained using the 
MSC algorithm and those obtained using only 
gene expression data. Upon further examination, 
we found that cluster 8 (with a total of 53 genes) 
from the MSC clustering shared 41 of the 43 
genes in cluster 14 from the expression clustering. 
The genes contained in these two clusters are 
shown in Table 4, with the common ones not 
shown in bold font. Gene function enrichment 
tests showed that the significant categories were 
metabolism, cell growth, cell division, and DNA 
synthesis (as cluster 8 shown in table 3). Most 
genes in cluster 8 that were not in cluster 14 also 
belonged to these same categories, implying that 
text data can enrich genes with similar functions. 
Our new approach takes into account both expres-
sion and function, giving it increased ability to 
capture more biologically meaningful features. 
For instance, YBR093C is an ORF whose product 
is involved in acid phosphatase activity and 
YAR071W, YBR092C, and YHR215W in cluster 
14 are involved in the same function. YBR093C is 
present in cluster 8, but not in cluster 14. As 
shown in table 3, there are only total 5 genes be-
long to this category in whole genome. With inte-
grating literature data by MSC algorithm, one 
more gene is enriched.  

Further exploratory analysis was performed 
from the point of view of shared motifs. One un-
derlying assumption in clustering is that genes in 
a cluster are functionally related, implying that 
there is a strong possibility that many of them are 
also co-regulated, and co-regulated genes share 
transcription factor binding motifs (i.e., regulatory 
elements) in their upstream sequences. Motif de-

tection is often performed on clusters obtained by 
clustering gene expression data. Thus clustering 
schemes can be evaluated by looking for the pres-
ence of motifs in gene clusters. 

Towards this end, we applied the motif dis-
covery tool, AlignACE (Roth et al., 1998) to find 
shared motifs in the two clusters. Results revealed 
a motif, GGCACTCACACGTGGG, located in the 
upstream sequence of YBR093C, which, accord-
ing to TRANSFAC (Matys et al., 2003), is known 
to be the binding site for the transcription factor 
PHO4 and has been reported previously in the lit-
erature (Barbaric et al., 1992; Vogel et al., 1989). 
Genes that shared this motif are YBR093C, 
YAR0183, YDR055W, YHR215W, YML034W, 
and YOR313C. In particular, YBR093C and 
YHR215W are two of three repressible acid phos-
phatases (SGD). Thus, clustering obtained by in-
tegrating information from the literature data-
bases, as performed by the MSC algorithm was 
able to better detect motifs. 

Table 4. ORFs contained in clusters generated from  
expression data and multi-source clustering. 

Cluster14 from expression 
data 

Cluster 8 from MSC 

YAL022C YAR018C 
YAR071W YBL043W 
YBR038W YBR054W 
YBR092C YBR202W 
YDR033W YDR146C 
YEL065W YGL008C 
YGL021W YGL116W 
YGR092W YGR108W 
YGR143W YHL028W 
YHR023W YHR215W 
YIL158W YJL157C 
YJR092W YKR093W 
YLR131C YLR190W 
YML034W YML119W 
YMR001C YMR032W 
YMR189W YNL058C 
YNL160W YOL158C 
YOR025W YOR313C 
YOR315W YPL061W 
YPL242C YPR019W 
YPR119W YPR149W 
YPR156C 

YAR018C YAR071W 
YBL043W YBR038W 
YBR054W YBR092C 
YBR093C YBR202W 
YDL117W YDR033W 
YDR055W YDR146C 
YEL065W YGL008C 
YGL021W YGR092W 
YGR108W YGR143W 
YHL028W YHR023W 
YHR152W YHR215W 
YIL158W YJL157C 
YJL159W YJR092W 
YKL163W YKL164C 
YKL185W YKR093W 
YLR131C YLR190W 
YLR274W YML034W 
YML119W YMR001C 
YMR032W YMR145C 
YMR189W YNL058C 
YNL078W YNL160W 
YOL070C YOL158C 
YOR025W YOR313C 
YOR315W YPL061W 
YPL242C YPR019W 
YPR119W YPR149W 
YPR156C 
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5 DISCUSSION 
Clusters obtained from microarray data analy-

sis must correlate to the existing knowledge. Min-
ing on gene expression alone may not be able to 
reveal the biological information related to the 
gene expressions. Most biologists focus their re-
search on a small select set of genes, which they 
know to be functionally related. Consequently, 
their publications focus on these genes. Therefore 
publications stored in medical literature databases, 
such as PubMed, can provide valuable additional 
information. In this paper, we use text literature as 
a guide for microarray data analysis. In particular, 
we want to identify subgroups of genes with 
commonalities in gene expression and in biologi-
cal function.  

We have developed a new clustering algo-
rithm (MSC) for multi-source data. We applied 
the MSC algorithm to gene expression and litera-
ture data related to the Saccharomyces genome. 
Using the z-score measure, we showed that the 
MSC algorithm performed significantly better 
than the feature-level integration approach. Also, 
the clusters from the MSC algorithm shared regu-
latory elements which were not found using gene 
expression data alone. The software is available 
from the authors upon request.  

There are several natural avenues for future 
research. First, one obvious research direction is 
to include more sources of biological data for our 
experiments with the MSC algorithm, such as 
phylogenetic profiles and DNA sequence informa-
tion. Second, since genes could be different actors 
at different conditions, genes may belong to mul-
tiple clusters. The MSC algorithm needs to be 
modified to accommodate this possibility. Third, 
it would also be interesting to extend the MSC 
algorithm by incorporating statistical inference 
techniques to adaptively weight different data 
sources during the clustering process. 

Supplemental Website: 
http://biorg.cs.fiu.edu/MSC 
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