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ABSTRACT

Traditional exploratory analysis of gene expression data involves the application of
clustering algorithms to obtain clusters of related genes. Recent research has focused on
improving such analyses using additional biological information. It has been demonstrated
that biological literature can complement the information extracted from gene expression
data to obtain better gene clusters. The Multi-Source Clustering (MSC) algorithm, which
was recently proposed by the authors, performs semantic integration of information ob-
tained from gene expression data and biomedical text literature. To address the challenge
of evaluating clustering results, a new knowledge-driven approach is proposed based on
information extracted from a database of published binding sites of known transcription
factors (TF). Thus a new data source is used as a basis for evaluation. We propose the
use of a measure called C-index for an objective, quantitative evaluation. We compare the
results of algorithm MSC for the integrated data sources with the results obtained (a) & (b)
by clustering applied to the two sources of data separately, and (c) by clustering after us-
ing a feature-level integration (i.e., after concatenating the features obtained from the two
data sources). We show that the C-index measurements of the clustering results from
MSC are better than that from the other three approaches. We also identify TFs whose

binding sites are significantly over-represented in promoter regions of clustered genes.
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1 INTRODUCTION

Clustering genes based on gene expression data is now a routine method to parti-
tion genes into groups (or clusters) sharing similar expression patterns (Eisen, Spellman et
al. 1998; Sherlock 2000; Sharan, Elkon et al. 2002). Two critical questions have been pur-
sued by researchers: (a) How to improve the clustering by combining information from dif-

ferent biological data sources? (b) How to validate or evaluate the resulting clusters?

The large (and growing) biological literature database has been considered as an
important source of additional information for any exploratory analysis of biological data. It
was shown to be useful for identifying functional commonalities of genes and to help drive
the interpretation and organization of the expression data (Altman and Raychaudhuri
2001). Several algorithms have been proposed to combine gene expression data and text
literature data sources to perform clustering (Shatkay, Edwards et al. 2000; Stephens,
Palakal et al. 2001; Chiang and Yu 2003; Raychaudhuri, Chang et al. 2003; Glenisson,
Mathys et al. 2004; Yang, Zeng et al. 2005). Many other sources of data have also been
successfully used to perform exploratory analysis. These sources include annotations form
biological databases, protein interactions, transcription factor binding, etc. (lhmels,
Friedlander et al. 2002; Adryan and Schuh 2004; Tanay, Sharan et al. 2004).

In general, there are two existing clustering approaches for combining multiple
sources of data: semantic integration and feature-level integration. Methods that use fea-
ture-level integration combine the features and then perform the analysis in the joint fea-
ture space (Glenisson, Mathys et al. 2004). On the other hand, the semantic level integra-
tion methods first build individual models based on separate information sources and then
combine these models via techniques such as mutual information maximization (Becker
1996). In a recent paper, a generative probabilistic model for combining promoter se-
quence data and gene expression data was developed to extract biologically meaningful
clusters (transcriptional modules) on a genome-wide scale in S. cerevisiae (Segal, Yelen-
sky et al. 2003). The MSC algorithm, which was recently devised by the authors, is an ex-

ample of the semantic integration method (Yang, Zeng et al. 2005). It implicitly learns the



correlation structure among heterogeneous data sources and provides a semantic scheme
to analyze data from them. Using a measure called z-score (Gibbons and Roth 2002), it
was shown that the MSC clustering outperformed those using single data source only or

multiple sources combined at the feature level (Yang, Zeng et al. 2005).

To address the question of validating or evaluating clustering outcomes, research-
ers have used annotations from the Gene Ontology (GO) database. The Gene Ontology
(GO) represents an important knowledge resource to describe the function of genes, and
the GO database contains annotations for a large number of genes from a variety of or-
ganisms (Ashburner, Ball et al. 2000). The z-score evaluation measure is based on mutual
information between cluster membership and GO annotations, and was used to judge the
quality of clustering methods (Gibbons and Roth 2002; Yang, Zeng et al. 2005). A different
approach based on similarity information extracted from GO annotations has also been
proposed (Bolshakova, Azuaje et al. 2005). An important point to note is that if GO annota-
tions are to be used for evaluation purposes, then it should not be used as a data source in
the clustering algorithm, since this would bias the evaluation. By the same token, it would
be inappropriate to use GO terms and attributes to perform text mining of biological litera-

ture databases.

This raises some general questions: what other sources of data can be used for the
purpose of evaluating clustering outcomes? And what evaluation measures are appropri-
ate for these data sources? In this paper, we explore new data sources and measures for
evaluating clusters. The idea is to use databases containing information about transcription
factors (TF), which are involved in gene regulation, and their binding sites (i.e., the regula-

tory elements, or TFBS).

The remainder of the paper is organized as follows. In Section 2, we briefly review
the previously described MSC algorithm, describe our new gene cluster assessment using
information about TF binding sites in the promoter regions of the genes, and then intro-

duce the evaluation measures used in our experiments. In Section 3, we show the per-
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formance of different clustering approaches through a typical example and present TF en-

richment results. We conclude with a discussion in Section 4.

2 METHODS

2.1 The MSC algorithm

Intuitively, clustering is the problem of partitioning a set of points in a multi-
dimensional space into clusters such that the points belonging to the same cluster are
similar while the points belonging to different clusters are dissimilar (Jain and Dubes
1988). For our purposes, the goal is to identify clusters of related genes using the available
datasets. The MSC algorithm, a variant of the EM method (Dempster, Laird et al. 1977),
stochastically builds the models for each data source by boosting the models using the
cluster assignments from the other models. In each iteration, we first randomly select a
data source based on the weight vector. We then perform the following steps: (i) find the
model parameters that maximize the likelihood of the data given the current cluster as-
signment; (ii) assign the data points to the cluster that maximizes the posterior probability.
Our previously reported experimental results show that the MSC algorithm implicitly learns

the correlation structure among the multiple data sources (Yang, Zeng et al. 2005).

In order to obtain the final clustering, the cluster assignment for each point, for each
data source, can be thought of as a k-dimensional vector in which only one entry (corre-
sponding to the assigned cluster) is equal to 1 and all the others are zero. By combining
the results obtained from the m data sources, the cluster assignment for each data point
now constitutes a km-dimensional vector and the whole data set corresponds to an n x km
matrix, which is used to cluster using one of standard clustering algorithms, such as K-
means. Detailed descriptions of the MSC algorithm can be found in (Yang, Zeng et al.
2005).

2.2 Cluster validity assessment

Here we propose a method to use a new source of knowledge — gene regulatory



information — to evaluate the validity of clusters. A key source of information used is
TRANSFAC, which is a database containing information on eukaryotic transcription factors
and profiles of their genomic binding sites (Wingender, Chen et al. 2000).

Similar to the approach used for other data sources, we propose a binary matrix M,
such that its j-th entry, m; = 1 if there is at least one TFBS for TF; in the promoter region of
gene G;, and 0 otherwise. The matrix provides a basis for defining a distance function be-
tween the genes. Using the cosine distance measure (other distance measures could also

have been used), we define the distance between gene j and gene j as:
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The above distance measure can be used to compute the C-index, a cluster validity

estimator (Hubert and Schultz 1976), which was recently used in a different context
(Bolshakova, Azuaje et al. 2005). It is defined as follows:

Here S is the sum of distances over all pairs of genes from the same cluster (over
all clusters). Let / be the number of those pairs, then Sy, is the sum of the / smallest dis-
tances between all pairs of genes and S, is the sum of the / largest distances. It is easy
to see that the numerator in the above formula will be small for pairs of genes with a small

distance. Hence, a small value of C-index indicates a good clustering.

2.3 Data sources and representation

Briefly, the goal is to build numeric vectors from each data source for each gene for
further analysis. In our analysis, all genes of interest have two representations: Term Vec-
tor based on information from the literature repository, and Expression Vector from the

gene expression data (obtained from microarray data).

To represent information from text data, the Document-Term matrix was constructed

from a biomedical literature repository (MEDLINE abstracts) using tf-idf indexing (Baeza-
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Yates and Ribeiro-Neto 1999). Then a Gene-Term matrix was obtained by combining the
Document-Term matrix with the Gene-Document matrix from the SGD database

[ftp://genomeftp.stanford.edu/pub/yeast/data_ download/literature_curation/].

Data sources and representations are similar to that in our previous study (Yang,
Zeng et al. 2005). One difference from the previous study was in the way the tf-idf indexing
was constructed, for which several papers have recommended a restricted vocabulary
(Stephens, Palakal et al. 2001; Chiang and Yu 2003; Glenisson, Mathys et al. 2004). In
this work, only GO terms were used for the indexing. Specifically, an index for yeast genes
was constructed from 31,924 yeast-related MEDLINE abstracts. Gene expression data set
was generated from cultures synchronized in cell cycle by three independent methods and
consisted of measurements of 720 genes over 77 experimental conditions (Spellman,
Sherlock et al. 1998).

3 EXPERIMENTAL RESULTS

3.1 Evaluating Clustering Outcomes

We used the C-index to compare the performance of the four clustering methods: K-
means clustering of expression data, K-means clustering of text data, K-means clustering
of the feature-level integrated expression and text data, and the MSC algorithm applied to
expression and text data. Equal weights were used for the expression and text data in both
the two multi-source algorithms, although the weights could be specified using expert
knowledge to specify the importance of each data source. The expression data consisted
of 720 genes under 77 experimental conditions and the text data consisted of 720 genes
and 213 GO related terms. The C-indices were plotted against the number of clusters, k,
for all values of k from 2 to 50. The results are shown in Figure 1. Using C-index as a crite-
rion, the results from the multi-source data clustering exhibited the best performance for
about 70% of values of k, implying that for a range of cluster sizes, the MSC algorithm has
superior performance. The results from the feature-level integration were comparable to
the methods that used only a single data source, suggesting that a simple combination of

features and distance functions may not be the best approach to improve the quality of



clustering, and that the semantic level integration does add value to the clustering out-

comes.

C-index could also be used to choose the optimal number of clusters. Figure 1 indi-
cates that C-index with k equal to 17 is smallest for MSC clusters. In the next subsection,

we will explore transcription factor enrichment analysis on those 17 clusters.
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Figure 1. Clustering results from expression, text (using Go Terms), expres-
sion-text feature level integration, and multi-source clustering. The horizontal

axis shows the number of clusters desired. and the vertical axis shows C-index.

3.2 Transcription Factor Enrichment

To assess the classification capability of the clustering algorithms, known informa-
tion on binding sites (TFBSs) were used to evaluate whether the clusters have significant
enrichment of being regulated by one or more TFs. A software package written in Java
takes a list of genes as input and produces a ranked (by P-values) list of the TFs whose

TFBSs are significantly over-represented in promoter regions of the genes in the list. Such
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significant TFs could be candidates regulating the corresponding set of genes. Each query
gene set is composed of the genes from each cluster in a clustering (in this case, 17 clus-
ters from MSC clustering were used). Table 1 shows details of 5 typical clusters with en-

riched transcription factors.

For example, cluster 1 in Table 2 contains 61 genes, 31 of which share TFBSs
regulated by TF SWI4. Since only 115 genes are known to be regulated by this TF, this is
considered statistically significant (P-value = 10%"). These P-values take into account the
ratio of the number of genes within a cluster in comparison to that in the whole genome. As
can be seen in the examples in Table 1, there are several transcription factors significantly
enriched in a cluster. (Details of all clusters from our experiments are provided in a sup-

plemental website [http://biorg.cs.fiu.edu/TFF].)

Table 1. TF enrichment of clusters generated from Multi-Source Clustering.

# of Genes Enriched TF Clustered -log1o
Cluster
in Cluster (Total genes) Genes (p-value)
SWI4(115) 31 27
1 61 STB1(88) 23 17
SWI6(125) 24 13
HAP1(49) 11
2 36
HAP2/3/4(38) 4
MBP1(69) 25 24
3 76 SWI6(125) 35 18
MAT1(54) 13 7
MET31(11) 6 11
4 18 CBF1(41) 9 41
PHOA4(46) 7 13
SWI6(125) 31 20
5 58 MBP1(69) 23 19

SWI4(115) 19 8




4 DISCUSSION

The repositories of biomedical literature are increasing at a dramatic rate and
should play an increasingly important role in exploratory analyses of genes. Vector space
models were used to convert textual domain knowledge into numeric data (term vector
space). Tailored term vocabulary (GO terms), which reflects the knowledge of this domain,

was used to reduce the noise in the information.

A new approach based on knowledge extracted from TRANSFAC (a database of
gene regulatory information) is used to assess the quality of clustering. Effectively, a new
data source is used for evaluation. The C-index was used to compare results from four dif-
ferent clustering approaches and showed that MSC algorithm (with semantic integration of
gene expression and biomedical text data) outperformed three other approaches. Also, the
clusters from the MSC algorithm (with 17 clusters) were used to explore significant TFBSs,
which could be potentially responsible for regulating the genes in that cluster. The software

is available from the authors upon request.
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