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ABSTRACT

Given a set of clonal sequences, the Probe Selection Problem is
that of designing the smallest set of oligonucleotide probes so
that every pair of clones (or at least a maximum number of the
pairs) can be differentiated by at least one probe. We have
implemented several algorithms that give an optimal or near-
optimal solution to the problem. The quality of the results is
measured using quantities such as entropy, number of
differentiated sets of clones, size of largest differentiated set of
clones, and number of differentiated pairs of clones. Our
heuristic methods take advantage of the characteristics of the
problem instances. An empirical approach is used to select the
most efficient techniques as well as to better understand the
structure of the problem. Many of our methods are modifications
of existing algorithms or are based on commonly used
combinatorial optimization techniques. In many cases, the
results are better than those presented in the literature.
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INTRODUCTION

A short sequence of nucleotides (probe) will hybridize to a
given cloned DNA sequence (clone) if the reverse complement
of the probe is present as a subsequence in the clonal sequence.
For this paper, we relax this definition and make the model more
realistic by assuming that the hybridization can occur even if the
reverse complement of the probe is present as a subsequence
with one mismatched nucleotide. Given two clonal sequences, a
probe is said to differentiate the two clones if the probe
hybridizes to one, but not the other.

Since hybridization tests are easily implemented in a
laboratory, the method of hybridizing short synthetic
oligonucleotide probes to cloned DNA sequences is commonly
used for many purposes, such as oligonucleotide fingerprinting,
and cDNA gene expression analysis. Each of these problems
start with the design of a probe set for a given clone set. In order
to reduce the cost and effort, the number and length of probes
need to be small. In practice, the set of clonal sequences often
have similar characteristics.

The probe selection problem is NP-hard, and is therefore
well suited for solution by heuristic methods. Ideally, the
selected set of probes should be able to differentiate all the
clones, in the sense that all clones should have different sets of
vectors (“fingerprints”) that characterize the hybridization
relationships between the clones and the set of probes. We say
that two clones are indistinguishable by a set of probes when
they have the same fingerprint. In that case, we also say that
they belong to the same cluster. Roughly speaking, a set of
probes is informative if it distinguishes most clones by

generating a distribution with many clusters, each with at most a
small number of elements.

A number of heuristic methods have been previously
proposed for probe selection. The GC-content in relation with
the expected frequency in a training database was used to select
probes by Cuticchia et al. [1], Fu et al. [2] and Drmanac et al.
[3]. This approach for the selection of probes gives results that
show an improvement over random selection. However these
frequency-based methods lead to the selection of many highly
similar probes without a significant gain in information.

The method of Meier et al. [4] is based on a greedy
algorithm and was shown to give better results than the random-
and frequency-based selection methods by Herwig et al. [5].
Borneman et al. [6] showed that sophisticated optimization
techniques such as Simulated Annealing and Lagrangian
Relaxation give marginally better probe set selections than the
greedy algorithm.

We propose, implement and compare a wide range of
algorithms that give approximate solutions to the probe selection
problem for an input set of clones in a fair and uniform
framework. In Rash and Gusfield [7], a method with a near-
optimal guarantee was proposed for selecting the smallest set of
probes that provided a unique signature, or “barcode”, for viral
sized genomes. Their method used suffix-trees to identify the
critical substrings and integer-linear programming to solve the
minimization problem. We do not implement this suffix-tree
method for several reasons: they use probes of variable lengths,
from 15 to as many as 40 bases (and, thus, makes it difficult to
compare with our results). The selection of a proper subset of
probes is the core of this method, but we concentrate on the
algorithms applied to the set of probes not on the selection of
them and we work with a more common length of 8 bases. They
argue that this length constraint is itself a form of pre-selection,
however our fixed-length probe sets are not derived from the
clones in the study, whereas the suffix-tree method samples the
genome sequence in order to generate candidate subsequences.

PROBLEM FORMULATION

There are two basic formulations of the probe selection
problem:
1. Find a set of probes of a specified length that distinguish all
given clones, and
2. Find a set of k probes of a specified length that distinguish
as many clones as possible.
In this paper, we address only the second formulation. A more
precise mathematical formulation of the probe selection problem
is given below.

Maximum Distinguishing Probe Set Problem (MDPS):
Given a set of clonal sequences, C ={c,,C,,...C,,}, and a



set of probes P ={p,, P,,...p,} over the alphabet {A, C,

G, T}, find a set of probes, S P,|S|=k  that

maximizes dm(S, C), a measure of the set of clonal pairs that are
distinguished by the probes in S.

Set C is, in general, a collection of long nucleotide sequences.
On the other hand, set P consists of short nucleotide sequences
typically of the same length (8 to 16 nucleotides long); the

length k is usually chosen as K ~ log,(m), and a typical

problem may have about 1000 clones of different lengths, with
8-12 probes each of length 8 to be selected from a large

selection of over 2'® probes. Note that log,(m) is a

theoretical lower bound on the number of probes needed to
differentiate all the clones.

THEORETICAL BACKGROUND

Combinatorial Optimization deals with finding an
optimal solution set over a discrete, finite solution space. For
many optimization problems, finding the exact solution is only
feasible for instances of relatively small size, and the complexity
of finding an exact solution is NP-Hard. As is well known, NP-
hard problems differ widely in the number of hard instances that
occur in practice and also in the existence of near-optimal
solutions. Some difficult problems can be solved exactly for real
life instances; for others, the approximate solution is sufficiently
good for all practical purposes. For many others, even the
computable approximate solutions are infeasible. The MDPS
problem is an NP-hard problem [6]. Are the instances of NP-
hard problems that we encounter in computational biology
science too difficult for heuristics and approximation algorithms
to provide reasonably good solutions most of the time? What
approaches best solve these problems? Are any of the heuristics
better than others all the time?

In practice, the probe selection problem appears to be
tractable by heuristic methods. However, only extensive testing
and evaluation can find definitive answers to these questions.
There are several reasons why this problem is tractable: 1) The
probes are typically short (8-12 bases), 2) The number of probes
to be selected is small in comparison to the number of clones (5-
10 probes to distinguish thousands of clones), and 3) The DNA
clonal sequences are not completely random, but are statistically
biased with presumably meaningful patterns.

GOODNESS MEASURES

There are several measures of the goodness of a
designed probe set. The main property of a goodness measure is
that it must be optimal for any probe set that distinguishes all
clones. For example, we can ask ourselves which of two probe
sets, A and B, better distinguishes a set of 10 clones. Suppose
that probe set A distinguishes 5 sets of 2 clones each, while B
distinguishes 6 sets with 1 clone each and one set with 4. From
probe set A, the largest undistinguished set of clones has size 2,
which is smaller than that for B. On the other hand, probe set B
has 6 clones perfectly distinguished, while probe set A has no
clone perfectly distinguished.

Here we propose four different goodness measures.
The four measures are (a) entropy of the distinguished clone
sets, (b) number of distinguished clone sets, (c) the size of the
largest distinguished clone set, and (d) the number of
distinguished pairs of clones. However, among the four, we

favor the entropy measure as being the most comprehensive and
general measure.

Entropy (E)
This is given by the formula,

k
E = _Zl C| | |092(| C| |j
i M m
where C;,C,,...,Cy are k sets of undistinguishable clones for the
given probe set. In other words, clones in two different sets are
distinguished by the probe set.

This measure has several advantages: it is fairly easy
to calculate; it takes into consideration the number and sizes of
the sets; it is used in many algorithms; its range of values is
limited; and its value gives you an idea of how good the solution
is in relation to the optimal.

Number of sets (NS)

This measures the number of sets of undistinguishable
clones. In general, the larger this measure, the better is the probe
set. The disadvantage is that if we have at least one set with a
large number of clones, then the largeness of this value could be
misleading.

Largest set (LS)

This is a measure that complements the number of
sets. It too can be misleading if there are many sets with the
largest value. It only takes into consideration the cardinality of
one set ignoring all the other sets. It is clear that two different
distributions with the same largest set may give completely
different values when using other measures. For example, using
this measure, 8 clone sets with size distribution of {1,1,1, 1, 1,
1, 2} will be judged to be of the same quality as 4 clone sets
with a size distribution of {2, 2, 2, 2} even though the latter is a
worse solution.

Number of pairs (NP)

This measure over the set CxC is important
because it tells you how many clones can be distinguished by
the selected set of probes. The range of this measure grows
without bound and is dominated by the size of the largest set.

All the above measures have a unique optimal value
for the optimal solution in which all clones are distinguishable
by the selected set of probes. Thus, for the optimal solution, NP
is 0, LS is 1, NS equals m, the number of clones, and finally,
entropy E equals log,m.

LOCAL OPTIMIZATION TECHNIQUES
The type of algorithms we study here start with an

initial solution set SO (the empty set or a randomly generated
set of probes), which is changed by a heuristically-guided

S

iterative process, to a final solution set which represents a

local optimum. Sf is obtained when there is no neighbor
solution with a better measure of goodness. Two kinds of
neighborhood relationships are used in most of the algorithms
presented here: augmented neighborhoods and pivot



neighborhoods. We say that S' ! S”l are augmented neighbors

iff | Si |+1] S”l | S SN =1 This is the kind of

neighbor used by the so- called Greedy algorlthm, in which a
solution is built by successively adding probes.

A pivot neighbor is built by substituting a probe in the
solution set by a probe that was not in the set. We say that

S\ Sy o |S S, =k

i+l are pivot neighbors iff

NS Fk-1 . N
| S' S':l | , i.e., the sets differ in exactly one
element. Figure 1 below shows a schematic of the neighborhood
relationship among solution sets.

and

ALGORITHMS IMPLEMENTED

Affinity-based Algorithm
A pairwise relation between the probes is used to
devise a heuristic for a steepest descent algorithm.
Given a symmetric matrix A[n,n] find a set of index P={ p1, p2,
p3...} given by the property vector xp={xi=1 iff i€ P, 0
otherwise} so that:
DAL T DX, (x, Alil)
€N i,jeP —i+l.n
is maximal
A greedy algorithm will select the probe with higher

pairwise value with the previous set off probes until k sets are
selected.

1. Build a square matrix of the affinity for every pair of

probes in P from the {1,-1}-matrix PxP.

2. Select the 2 probes with the best affinity.

3. Select a probe that together with the former ones generates
a better sum over the affinity matrix until the size equals k.

Augmented

k=1

v

<+—>

Pivot

Figure 1: Solution Set Neighborhood

Greedy Algorithm

In the greedy algorithm, once a probe has been selected it
stays in the solution set. A major disadvantage of this heuristic is
that initial steps are taken when there are not many elements to
validate the option. It only moves from a solution set to its
augmented neighbors. No pivot neighbor solutions are
considered.

1. Select a probe that best partitions the set of clones.

2. Select a probe that together with the previously selected
ones partition the set better (with respect to the goodness
measure).

3. If number of probes selected is less than k, go to 2.

Pivot Last Algorithm

In pivot last, the idea is to find a local minimum using pivot
neighbor iteration after stopping from a greedy process. This
sometimes improves the value of the final greedy solution but
many times the final solution stays the same.

1. Apply the greedy algorithm first.

2. For every probe in the solution and for every probe not in
the solution, exchange the probes if the resulting solution
displays an improvement (pivot step).

3. If the goodness measure improves, change the selection and
goto 2.

Pivot Greedy Algorithm

This is a cross between the greedy algorithm and the pivot
algorithm. Every time we take an augmented step we look for a
local minimum by repeated pivot steps. Selected probes may be
removed in the pivot step but only if it leads to a better-valued
solution.

1. Select a probe that best partitions the clone set

2. Select a probe that together with the previously selected
ones partitions the clone set better.

3. For every probe selected for the solution, and for every
probe not selected for the solution, exchange them and
measure its goodness.

4. If the goodness measure improves, select the best
improvement and go to 3.

5. If the number of probes is less than k, go to 2.

The algorithm stops because the loop must end for any of the

proposed measures.

Genetic Algorithm

Start with a population of probe sets with k probes. In each
generation, combine them to obtain many new probe sets, and
select the best for survival in the next generation while
eliminating the rest. Repeat for a large number of generations.

1. Randomly select a population of 1000 probes.

2. Let a small population with the highest goodness measures
survive with no change.

3. Randomly combine pairs of probes in the population to
make new recombined solutions until a large population is
produced.

4. Kill the worst probes until a small population size is
reached.

5. Repeat for a given number of generations



Random Pivot Algorithm

RP is a very simple algorithm that only takes random pivot
steps and gives surprisingly good results. Take an initial random
solution and select a random element from the solution set and
one that is not in the solution set, pivot if the goodness measure
improves, else keep trying until stopping condition is reached.
We stop if many pivots result in no improvements.

Select a random set of k probes

Do a random pivot, and measure the goodness.

If improvement results, change the set.

If no improvement is seen in more than k*(size of set of
probes) iterations, then exit; otherwise go to 2.

N

Simulated Annealing (Simula)

A temperature parameter oversees the algorithm. Random
pivot steps that do not result in an improvement in the goodness
measure may be taken when the temperature is still high in order
to get out of local minima. At low temperatures it behaves like
the greedy algorithm.

Select a random set of k probes.

Set the initial temperature.

Do a random pivot, (set)=>newset.

Change to the new pivot with the probability
Min{1, exp( (dm(newset)-dm(set))/t)

5. Diminish the temperature by a constant factor.

bl .

EXPERIMENTATION

We tested the above suite of algorithms on both real
and synthetic data. All algorithms were applied to a set of 536
viral genomes we obtained from Rash and Gusfield from their
string barcoding study [7]. We also tested the set of 579 Gyrase
A sequences from Genbank, as well as to 1800 randomly
Gyrase B sequences. The Gyrase data sets were interesting
because the clones had much higher similarity than the viral
sequences, making the design of a probe set a difficult problem.
For the real data sets, the number of probes was varied from 10
through 14. For synthetic data we randomly constructed 20
problems with 128 clones and 300 probes and applied all the
algorithms to each input data set. We generated all possible
probes of length eight, of which there were 32896 we then
selected 2000, and applied our algorithms to this dataset. All our
results on the real and synthetic datasets were done with a fixed
probe length of seven, eight, and nine we confined our search to
all probes that appear in at least one clone accepting one missed.
The results are as shown in the graphs and the table below.

RESULTS AND CONCLUSIONS

The objectives of this study were to compare and
evaluate different heuristic algorithms for the probe selection
problem using fixed length probes. The results from synthetic
data sets and real data sets were consistent in the sense that the
same algorithms performed comparably. For the real data sets,
the running time varied considerably, since a relatively large
number of probes (of the order of 2000) were generated for
them. The number of iteration for the Genetic and Random Pivot
algorithms were set to give similar running times than Greedy
Pivot the slowest one, Greedy runs was faster than all of them
and Pivot Last runs in top of Greedy with only one or two Pivot
steps.

All algorithms use entropy as the goodness measure,
but results using other measures of quality are given for
comparison (Table 1).

In general good solutions also have neighboring good
solutions for both augmented and pivot neighbors. Changing
many elements of the solution did not seem to be particularly
helpful. The inferior performance of the genetic algorithm
corroborates this claim.

The pure Greedy method easily gets stuck in local
minima. The Pivot Last algorithm is marginally better than pure
greedy in this sense. But in many cases it is incapable of
improving a solution just by pivoting. Pivot Last improved the
Greedy algorithm solutions only when it was in a “small” local
minimum. This happened in less than 50% of the cases and the
improvement obtained by Pivot Last was relatively minor
(Figure 1).

The alternation of Augmented Neighbor and Pivot
Neighbor used in the Pivot algorithm consistently gives the best
results with both synthetic and real data (Figure 2). In the
synthetic datasets, Random Pivot performed better than
Simulating Annealing which seems to suggest that the results
obtained by S.A. are due more to the improving pivot steps in
the low temperature section than to the worsening pivot steps in
the high temperature section (Figure 1).
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Figure 1: Overall results of 20 experiments of synthetic data: 128 clones, 300 probes.
Results for Real Data ( Length, Missed)
PS Gyrase B (8,1) Gyrase A (7,1) Viral Sequences (9,1)
Algorithm
Entropy NS | LS Entropy NS | LS Entropy NS | LS
Genetic 6.51681 138 | 20 7.17872 | 240 | 92 7.24911 | 212 | 9
9
Greedy Pivot | 7.60498 8.60101 | 606 | 37 | 8.32861 |413 | 6 |
11

Greedy
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8.60109
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Table 1: Results on Data sets for Viral Sequences, Gyrase A and Gyrase B ( PS — probes selected, NS — number
of sets, LS — largest set).
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Figure 2: Overall results for three data sets.
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