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ABSTRACT 

Given a set of clonal sequences, the Probe Selection Problem is 
that of designing the smallest set of oligonucleotide probes so 
that every pair of clones (or at least a maximum number of the 
pairs) can be differentiated by at least one probe. We have 
implemented several algorithms that give an optimal or near-
optimal solution to the problem. The quality of the results is 
measured using quantities such as entropy, number of 
differentiated sets of clones, size of largest differentiated set of 
clones, and number of differentiated pairs of clones. Our 
heuristic methods take advantage of the characteristics of the 
problem instances. An empirical approach is used to select the 
most efficient techniques as well as to better understand the 
structure of the problem. Many of our methods are modifications 
of existing algorithms or are based on commonly used 
combinatorial optimization techniques. In many cases, the 
results are better than those presented in the literature. 
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INTRODUCTION 

A short sequence of nucleotides (probe) will hybridize to a 
given cloned DNA sequence (clone) if the reverse complement 
of the probe is present as a subsequence in the clonal sequence. 
For this paper, we relax this definition and make the model more 
realistic by assuming that the hybridization can occur even if the 
reverse complement of the probe is present as a subsequence 
with one mismatched nucleotide. Given two clonal sequences, a 
probe is said to differentiate the two clones if the probe 
hybridizes to one, but not the other.  

Since hybridization tests are easily implemented in a 
laboratory, the method of hybridizing short synthetic 
oligonucleotide probes to cloned DNA sequences is commonly 
used for many purposes, such as oligonucleotide fingerprinting, 
and cDNA gene expression analysis. Each of these problems 
start with the design of a probe set for a given clone set. In order 
to reduce the cost and effort, the number and length of probes 
need to be small. In practice, the set of clonal sequences often 
have similar characteristics.  

The probe selection problem is NP-hard, and is therefore 
well suited for solution by heuristic methods. Ideally, the 
selected set of probes should be able to differentiate all the 
clones, in the sense that all clones should have different sets of 
vectors (“fingerprints”) that characterize the hybridization 
relationships between the clones and the set of probes. We say 
that two clones are indistinguishable by a set of probes when 
they have the same fingerprint. In that case, we also say that 
they belong to the same cluster. Roughly speaking, a set of 
probes is informative if it distinguishes most clones by 

generating a distribution with many clusters, each with at most a 
small number of elements. 

A number of heuristic methods have been previously 
proposed for probe selection. The GC-content in relation with 
the expected frequency in a training database was used to select 
probes by Cuticchia et al. [1], Fu et al. [2] and Drmanac et al. 
[3]. This approach for the selection of probes gives results that 
show an improvement over random selection. However these 
frequency-based methods lead to the selection of many highly 
similar probes without a significant gain in information. 

The method of Meier et al. [4] is based on a greedy 
algorithm and was shown to give better results than the random- 
and frequency-based selection methods by Herwig et al. [5]. 
Borneman et al. [6] showed that sophisticated optimization 
techniques such as Simulated Annealing and Lagrangian 
Relaxation give marginally better probe set selections than the 
greedy algorithm. 

We propose, implement and compare a wide range of 
algorithms that give approximate solutions to the probe selection 
problem for an input set of clones in a fair and uniform 
framework. In Rash and Gusfield [7], a method with a near-
optimal guarantee was proposed for selecting the smallest set of 
probes that provided a unique signature, or “barcode”, for viral 
sized genomes.  Their method used suffix-trees to identify the 
critical substrings and integer-linear programming to solve the 
minimization problem. We do not implement this suffix-tree 
method for several reasons: they use probes of variable lengths, 
from 15 to as many as 40 bases (and, thus, makes it difficult to 
compare with our results). The selection of a proper subset of 
probes is the core of this method, but we concentrate on the 
algorithms applied to the set of probes not on the selection of 
them and we work with a more common length of 8 bases. They 
argue that this length constraint is itself a form of pre-selection, 
however our fixed-length probe sets are not derived from the 
clones in the study, whereas the suffix-tree method samples the 
genome sequence in order to generate candidate subsequences.  
 

PROBLEM FORMULATION 

There are two basic formulations of the probe selection 
problem:  
1. Find a set of probes of a specified length that distinguish all 

given clones, and  
2. Find a set of k probes of a specified length that distinguish 

as many clones as possible.  
In this paper, we address only the second formulation. A more 
precise mathematical formulation of the probe selection problem 
is given below.  
 
Maximum Distinguishing Probe Set Problem (MDPS):  
Given a set of clonal sequences, , and a },...,{ 21 mcccC =

 1 



set of probes  over the alphabet {A, C, 

G, T}, find a set of probes,  that 
maximizes dm(S, C), a measure of the set of clonal pairs that are 
distinguished by the probes in S. 
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Set C is, in general, a collection of long nucleotide sequences. 
On the other hand, set P consists of short nucleotide sequences 
typically of the same length (8 to 16 nucleotides long); the 
length k is usually chosen as , and a typical 
problem may have about 1000 clones of different lengths, with 
8-12 probes each of length 8 to be selected from a large 
selection of over 2

)(log2 mk ≈

16 probes. Note that  is a 
theoretical lower bound on the number of probes needed to 
differentiate all the clones. 

)(log2 m

   
THEORETICAL BACKGROUND  

Combinatorial Optimization deals with finding an 
optimal solution set over a discrete, finite solution space. For 
many optimization problems, finding the exact solution is only 
feasible for instances of relatively small size, and the complexity 
of finding an exact solution is NP-Hard. As is well known, NP-
hard problems differ widely in the number of hard instances that 
occur in practice and also in the existence of near-optimal 
solutions. Some difficult problems can be solved exactly for real 
life instances; for others, the approximate solution is sufficiently 
good for all practical purposes. For many others, even the 
computable approximate solutions are infeasible. The MDPS 
problem is an NP-hard problem [6]. Are the instances of NP-
hard problems that we encounter in computational biology 
science too difficult for heuristics and approximation algorithms 
to provide reasonably good solutions most of the time? What 
approaches best solve these problems? Are any of the heuristics 
better than others all the time? 

In practice, the probe selection problem appears to be 
tractable by heuristic methods. However, only extensive testing 
and evaluation can find definitive answers to these questions. 
There are several reasons why this problem is tractable:  1) The 
probes are typically short (8-12 bases), 2) The number of probes 
to be selected is small in comparison to the number of clones (5-
10 probes to distinguish thousands of clones), and 3) The DNA 
clonal sequences are not completely random, but are statistically 
biased with presumably meaningful patterns. 

                
GOODNESS MEASURES 

There are several measures of the goodness of a 
designed probe set. The main property of a goodness measure is 
that it must be optimal for any probe set that distinguishes all 
clones. For example, we can ask ourselves which of two probe 
sets, A and B, better distinguishes a set of 10 clones. Suppose 
that probe set A distinguishes 5 sets of 2 clones each, while B 
distinguishes 6 sets with 1 clone each and one set with 4. From 
probe set A, the largest undistinguished set of clones has size 2, 
which is smaller than that for B. On the other hand, probe set B 
has 6 clones perfectly distinguished, while probe set A has no 
clone perfectly distinguished.  

Here we propose four different goodness measures. 
The four measures are (a) entropy of the distinguished clone 
sets, (b) number of distinguished clone sets, (c) the size of the 
largest distinguished clone set, and (d) the number of 
distinguished pairs of clones. However, among the four, we 

favor the entropy measure as being the most comprehensive and 
general measure. 

 
Entropy (E) 

This is given by the formula,  
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where C1,C2,…,Ck are k sets of undistinguishable clones for the 
given probe set. In other words, clones in two different sets are 
distinguished by the probe set. 

This measure has several advantages: it is fairly easy 
to calculate; it takes into consideration the number and sizes of 
the sets; it is used in many algorithms; its range of values is 
limited; and its value gives you an idea of how good the solution 
is in relation to the optimal. 
 
Number of sets (NS) 

This measures the number of sets of undistinguishable 
clones. In general, the larger this measure, the better is the probe 
set. The disadvantage is that if we have at least one set with a 
large number of clones, then the largeness of this value could be 
misleading. 

 
Largest set (LS) 

This is a measure that complements the number of 
sets. It too can be misleading if there are many sets with the 
largest value. It only takes into consideration the cardinality of 
one set ignoring all the other sets. It is clear that two different 
distributions with the same largest set may give completely 
different values when using other measures. For example, using 
this measure, 8 clone sets with size distribution of  {1, 1, 1, 1, 1, 
1, 2} will be judged to be of the same quality as 4 clone sets 
with a size distribution of {2, 2, 2, 2} even though the latter is a 
worse solution. 

  
Number of pairs (NP) 

This measure over the set  is important 
because it tells you how many clones can be distinguished by 
the selected set of probes. The range of this measure grows 
without bound and is dominated by the size of the largest set. 

CC ×

 
All the above measures have a unique optimal value 

for the optimal solution in which all clones are distinguishable 
by the selected set of probes. Thus, for the optimal solution, NP 
is 0, LS is 1, NS equals m, the number of clones, and finally, 
entropy E equals log2m.  

   
LOCAL OPTIMIZATION TECHNIQUES 

The type of algorithms we study here start with an 

initial solution set  (the empty set or a randomly generated 
set of probes), which is changed by a heuristically-guided 

iterative process, to a final solution set  which represents a 

local optimum.  is obtained when there is no neighbor 
solution with a better measure of goodness. Two kinds of 
neighborhood relationships are used in most of the algorithms 
presented here: augmented neighborhoods and pivot 
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neighborhoods. We say that  are augmented neighbors 

iff   and . This is the kind of 
neighbor used by the so-called Greedy algorithm, in which a 
solution is built by successively adding probes. 

1, +ii SS
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A pivot neighbor is built by substituting a probe in the 
solution set by a probe that was not in the set. We say that 

 are pivot neighbors iff 1, +ii SS kSS ii == + |||| 1  and 

, i.e., the sets differ in exactly one 
element. Figure 1 below shows a schematic of the neighborhood 
relationship among solution sets. 

1|| 1 −=∩ = kSS ii

 
ALGORITHMS IMPLEMENTED 

Affinity-based Algorithm 
A pairwise relation between the probes is used to 

devise a heuristic for a steepest descent algorithm.    
Given a symmetric matrix A[n,n] find a set of index P={ p1, p2, 

p3…} given by the property vector xp={xi=1 iff i P∈ , 0 
otherwise} so that: 
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  A greedy algorithm will select the probe with higher 
pairwise value with the previous set off probes until k sets are 
selected. 
 
1. Build a square matrix of the affinity for every pair of 

probes in P  from the {1,-1}-matrix PP× . 
2. Select the 2 probes with the best affinity.  
3. Select a probe that together with the former ones generates 

a better sum over the affinity matrix until the size equals k. 

 
Figure 1: Solution Set Neighborhood 

 
Greedy Algorithm 

In the greedy algorithm, once a probe has been selected it 
stays in the solution set. A major disadvantage of this heuristic is 
that initial steps are taken when there are not many elements to 
validate the option. It only moves from a solution set to its 
augmented neighbors. No pivot neighbor solutions are 
considered. 
   
1. Select a probe that best partitions the set of clones. 
2. Select a probe that together with the previously selected 

ones partition the set better (with respect to the goodness 
measure). 

3. If number of probes selected is less than k, go to 2. 
 
Pivot Last Algorithm 

In pivot last, the idea is to find a local minimum using pivot 
neighbor iteration after stopping from a greedy process. This 
sometimes improves the value of the final greedy solution but 
many times the final solution stays the same. 
 
1. Apply the greedy algorithm first. 
2. For every probe in the solution and for every probe not in 

the solution, exchange the probes if the resulting solution 
displays an improvement (pivot step). 

3. If the goodness measure improves, change the selection and 
go to 2. 

 
Pivot Greedy Algorithm 

This is a cross between the greedy algorithm and the pivot 
algorithm. Every time we take an augmented step we look for a 
local minimum by repeated pivot steps. Selected probes may be 
removed in the pivot step but only if it leads to a better-valued 
solution. 
 
1. Select a probe that best partitions the clone set  
2. Select a probe that together with the previously selected 

ones partitions the clone set better. 
3. For every probe selected for the solution, and for every 

probe not selected for the solution, exchange them and 
measure its goodness.  

4. If the goodness measure improves, select the best 
improvement and go to 3. 

5. If the number of probes is less than k, go to 2. 
The algorithm stops because the loop must end for any of the 
proposed measures. 

 
Genetic Algorithm 

Start with a population of probe sets with k probes. In each 
generation, combine them to obtain many new probe sets, and 
select the best for survival in the next generation while 
eliminating the rest. Repeat for a large number of generations.  
 
1. Randomly select a population of 1000 probes. 
2. Let a small population with the highest goodness measures 

survive with no change. 
3. Randomly combine pairs of probes in the population to 

make new recombined solutions until a large population is 
produced. 

4. Kill the worst probes until a small population size is 
reached. 

5. Repeat for a given number of generations  
 
 

Empt

Augmented 

k=1 k=1 

k=6 k=6 
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Random Pivot Algorithm 
RP is a very simple algorithm that only takes random pivot 

steps and gives surprisingly good results. Take an initial random 
solution and select a random element from the solution set and 
one that is not in the solution set, pivot if the goodness measure 
improves, else keep trying until stopping condition is reached. 
We stop if many pivots result in no improvements. 
 
1. Select a random set of k probes 
2. Do a random pivot, and measure the goodness. 
3. If improvement results, change the set. 
4. If no improvement is seen in more than k*(size of set of 

probes) iterations, then exit; otherwise go to 2. 
 

Simulated Annealing (Simula) 
A temperature parameter oversees the algorithm. Random 

pivot steps that do not result in an improvement in the goodness 
measure may be taken when the temperature is still high in order 
to get out of local minima. At low temperatures it behaves like 
the greedy algorithm. 
 
1. Select a random set of k probes. 
2. Set the initial temperature. 
3. Do a random pivot, (set)=>newset. 
4. Change to the new pivot with the probability  

Min{1, exp( (dm(newset)-dm(set))/t) 
5. Diminish the temperature by a constant factor. 
 

EXPERIMENTATION 

We tested the above suite of algorithms on both real 
and synthetic data. All algorithms were applied to a set of 536 
viral genomes we obtained from Rash and Gusfield from their 
string barcoding study [7].  We also tested the set of 579 Gyrase 
A sequences from Genbank, as well as to 1800 randomly  
Gyrase B sequences. The Gyrase data sets were interesting 
because the clones had much higher similarity than the viral 
sequences, making the design of a probe set a difficult problem. 
For the real data sets, the number of probes was varied from 10 
through 14. For synthetic data we randomly constructed 20 
problems with 128 clones and 300 probes and applied all the 
algorithms to each input data set.  We generated all possible 
probes of length eight, of which there were 32896 we then 
selected 2000, and applied our algorithms to this dataset. All our 
results on the real and synthetic datasets were done with a fixed 
probe length of seven, eight, and nine we confined our search to 
all probes that appear in at least one clone accepting one missed. 
The results are as shown in the graphs and the table below. 
 

RESULTS AND CONCLUSIONS 

The objectives of this study were to compare and 
evaluate different heuristic algorithms for the probe selection 
problem using fixed length probes. The results from synthetic 
data sets and real data sets were consistent in the sense that the 
same algorithms performed comparably. For the real data sets, 
the running time varied considerably, since a relatively large 
number of probes (of the order of 2000) were generated for 
them. The number of iteration for the Genetic and Random Pivot 
algorithms were set to give similar running times than Greedy 
Pivot the slowest one, Greedy runs was faster than all of them 
and Pivot Last runs in top of Greedy with only one or two Pivot 
steps.  

All algorithms use entropy as the goodness measure, 
but results using other measures of quality are given for 
comparison (Table 1). 
  In general good solutions also have neighboring good 
solutions for both augmented and pivot neighbors. Changing 
many elements of the solution did not seem to be particularly 
helpful. The inferior performance of the genetic algorithm 
corroborates this claim. 

The pure Greedy method easily gets stuck in local 
minima. The Pivot Last algorithm is marginally better than pure 
greedy in this sense. But in many cases it is incapable of 
improving a solution just by pivoting. Pivot Last improved the 
Greedy algorithm solutions only when it was in a “small” local 
minimum. This happened in less than 50% of the cases and the 
improvement obtained by Pivot Last was relatively minor 
(Figure 1). 

The alternation of Augmented Neighbor and Pivot 
Neighbor used in the Pivot algorithm consistently gives the best 
results with both synthetic and real data (Figure 2). In the 
synthetic datasets, Random Pivot performed better than 
Simulating Annealing which seems to suggest that the results 
obtained by S.A. are due more to the improving pivot steps in 
the low temperature section than to the worsening pivot steps in 
the high temperature section (Figure 1). 
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Figure 1: Overall results of 20 experiments of synthetic data: 128 clones, 300 probes. 

 
Results for Real Data ( Length, Missed) 

Gyrase B (8,1) Gyrase A (7,1) Viral Sequences (9,1) PS 
Algorithm 

Entropy NS LS Entropy NS LS Entropy NS LS 

Genetic 6.51681 138 20 7.17872 240 92 7.24911 212 9 
Random Pivot 6.89692 167 17 7.42104 248 72 7.36812 225 7 

Greedy 6.82886 167 18 7.34425 243 60 7.38354 224 9 

Pivot Last 6.8737 172 20 7.40305 244 58 7.38354 224 9 

8 

Greedy Pivot 6.97776 179 13 7.48133 249 51 7.41775 228 9 

Genetic 6.94921 193 24 7.72637 401 85 7.8018 307 8 

Random Pivot 7.26134 209 13 8.08305 408 60 7.99156 333 5 

Greedy 7.21894 213 16 7.9279 402 58 7.93615 328 7 

Pivot Last 7.29441 221 16 8.04343 422 53 7.93615 328 7 

9 

Greedy Pivot 7.33412 220 11 7.98138 432 38 7.96286 327 7 

Genetic 7.25508 225 14 8.16058 510 58 8.05224 358 6 

Random Pivot 7.59323 264 12 8.54307 590 51 8.25645 387 5 

Greedy 7.50505 254 14 8.40456 581 53 8.27827 396 5 

Pivot Last 7.55605 262 12 8.54915 599 45 8.27827 396 5 

10 

Greedy Pivot 7.60498 267 11 8.60101 606 37 8.32861 413 6 

Genetic 7.45709 256 17 8.58009 680 49 8.28232 410 6 

Random Pivot 7.77116 292 12 8.95783 735 45 8.49102 438 4 

Greedy 7.70693 285 14 8.76439 720 47 8.48211 444 4 

Pivot Last 7.7441 293 16 8.89523 766 40 8.48211 444 4 

11 

Greedy Pivot 7.8441 303 12 8.97972 777 33 8.5198 451 6 

Genetic 7.61145 271 16 8.74391 722 47 8.43178 442 4 

Random Pivot 7.97221 330 13 9.14348 840 39 8.62003 465 4 

12 

Greedy 7.85252 308 14 9.01763 832 40 8.60109 468 4 
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Pivot Last 7.9002 317 14 9.12942 880 37 8.61369 470 4  

Greedy Pivot 8.01836 341 11 9.21264 897 31 8.64187 475 5 

Genetic 7.60645 285 19 9.14016 882 38 8.55773 458 7 

Random Pivot 8.1117 351 9 9.33875 964 31 8.66456 481 4 

Greedy 7.96623 330 14 9.20693 927 38 8.6743 482 4 

Pivot Last 8.00999 340 16 9.30069 962 31 8.709 480 3 

13 

Greedy Pivot 8.13328 357 9 9.36887 981 29 8.7468 490 4 

Table 1: Results on Data sets for Viral Sequences, Gyrase A and Gyrase B ( PS – probes selected, NS – number 
of sets, LS – largest set). 

 

Real Data Results
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Figure 2: Overall results for three data sets. 
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