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Abstract—The notion of centrality is used to identify “im-
portant” nodes in social networks. Importance of nodes is not
well-defined, and many different notions exist in the literature.
The challenge of defining centrality in meaningful ways when
network edges can be positively or negatively weighted has not
been adequately addressed in the literature. Existing centrality
algorithms also have a second shortcoming, i.e., the list of the
most central nodes are often clustered in a specific region of
the network and are not well represented across the network.
We address both by proposing ATria, an iterative centrality
algorithm that uses the concept of ‘“payoffs” from economic
theory. We compare our algorithm with other known centrality
algorithms and demonstrate how ATria overcomes several of
their shortcomings. We demonstrate the applicability of our
algorithm to synthetic networks as well as biological networks
including bacterial co-occurrence networks, sometimes referred
to as microbial social networks. We show evidence that ATria
identifies three different kinds of “important” nodes in microbial
social networks with different potential roles in the community.

I. INTRODUCTION

The concept of centrality is foundational in social network
theory and its underlying motivation is to find the most
important or “critical” nodes in a large complex social network
[1]. In this type of network, one may be interested in finding
the most influential or the most popular individual. A search
engine may want to rank the hits resulting from a search,
depending on how well linked it is in the network. In a
terror network, an agency may be interested in finding the
ringleader or the top leadership. Thus, “centrality” can have
multiple meanings, and different metrics and methods are
worth exploring.

With the advent of systems biology approaches, large-
scale biological networks have become commonplace. Gene
regulatory networks [2] model the interactions between genes,
while protein-protein interaction (PPI) networks [3] represent
the interaction of proteins. Microbial social networks [4]-[6]
attempt to model the complex interactions between microbes
within a microbial community, such as those that inhabit the
human gut or those that can be found in diseased coral.

It is well known that microbes in a community interact.
These interactions may occur through the use of quorum
sensing molecules, other signalling molecules, metabolites
and/or toxins [7]-[10]. However, lacking the access to precise
interaction information in sampled microbial communities,
it has been suggested that bacterial co-occurrence networks
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Fig. 1. An example of a bacterial co-occurrence network obtained from a
lung microbiome study. Nodes represent bacterial taxa. Green (resp. red) edges
represent positively (resp. negatively) correlated co-occurrence patterns.

inferred from metagenomic studies are a crude form of mi-
crobial social networks [4], [6]. A bacterial co-occurrence
network [11] is an undirected, weighted network with nodes
that represent bacterial taxa present in the community and
edges that correspond to how strongly the two taxa tend to
co-occur (i.e., co-infect) in the sampled communities. Edge
weights can be positive or negative lying in the range [—1, +1].
We show an example of this in Figure 1, using data from a lung
microbiome study. Green edges indicate positive correlations
and red edges indicate negative ones, with edge thickness
indicating strength of correlations. We visualize results using
the Fruchterman-Reingold algorithm [12] within Cytoscape
[13]. Even a cursory visual inspection of the network suggests
the presence of dense subgraphs representing strongly co-
occurring groups of bacteria (referred to as clubs [6]). In co-
occurence networks, strong green edges suggest the likelihood
of cooperation, while strong red edges suggest competition.

The following questions arise naturally in these investi-
gations. Is it possible to identify bacterial taxa that drive or
control the behavior of the community through their interac-
tions? Can the first infectors or colonizers of the community
be identified? What is the effect of disrupting a node or
edge of such a biological network? All the above questions
highlight the importance of studying central nodes in biological
networks [14]. We suggest three notions of centrality that are
potentially important to biological networks, and especially to
microbial social networks. The work in this paper addresses
all three notions:



1) For each club (high density subgraph), we refer
to a dominant node as a leader node [15], or an
entity responsible for connecting many individuals
and driving the behavior of the club.

2)  We define a villain node as one that has many strong
negative edges to a club. Unity against a common
enemy is a frequent theme in social networks [16].

3) Nodes that connect two or more dense subgraphs
(clubs) are referred to as bridge nodes. In general
social networks, this would correspond to someone
who has the ability to link different social circles [16].

Centrality concepts [17], [18] can be classified into three
categories: degree centrality, closeness centrality, and between-
ness centrality. Degree centrality assumes that the most im-
portant nodes have high connectivity or degree. It is useful in
identifying popular individuals in a social network. Closeness
centrality interprets centrality with respect to a distance metric,
identifying nodes that are centrally located. This would be
useful in identifying where to place an important network
resource (e.g., fire station or database server). Betweenness
centrality defines a central node as one that lies on many
shortest paths. Betweenness centrality would help identify
important junctions in a complex train or information flow
network. Other approaches define an entity’s centrality by the
importance of its friends in the social network. Eigenvector-
based approaches [17] for centrality extend the ideas of degree
and closeness centrality by explicitly defining the centrality of
a node in terms of the importance of its neighbors. Google’s
PageRank algorithm [19] is an example of this approach. In
this paper, we will propose an algorithm that combines and
generalizes these concepts.

Most of these approaches also generalize to weighted social
networks, where edge weights represent the strength of the
relationship or influence between nodes. Distance-based meth-
ods like closeness and betweenness extend trivially. Degree
can be generalized to weighted degree. The original version
of PageRank assumes edge weights of 0 and 1, but subse-
quent attempts have been made to generalize the algorithm
to weighted networks [20]. However, not many generalize
readily to networks with negative edge weights, which is an
important characteristic of real social networks because it helps
distinguish between “indifference” and “dislike”. PageTrust
[21] extends PageRank to handle negative edges but, since all
final centralities are positive, it becomes difficult to distinguish
a villain vs. a node with few friends as they both have low
values. The PN-Centrality algorithm [22] of Everett and Bor-
gatti fixes this problem but, as an eigenvector-based approach,
tends to be biased toward nodes in highly dense subgraphs,
thus distorting centrality information. Degree centrality has this
same difficulty with cliques or dense subgraphs having many
strong edges. Closeness centrality tends to have a cluster of
nodes with high centrality with values decreasing from there,
biasing a particular area of the network. Betweenness centrality
is better at identifying bridges but not leaders or villains.

In this work we present ATria, an iterative centrality al-
gorithm that addresses the shortcomings mentioned above and
combines aspects of economic theory, social network theory,
and path-based algorithms. We investigate methods that avoid
the above shortcomings by iteratively removing nodes with
highest centrality along with some of the neighborhood edges

before finding the node with the next highest centrality, using
social network theory to determine the appropriate edges to
remove. The goal of ATria is to find leaders, villains and
bridges within a signed, weighted social network. We will
verify that ATria is able to produce these results by testing
a wide-range of networks including some simple synthetic
examples, a scale-free network [23], and biological networks,
such as gene expression, PPI, and microbial social networks.

II. OUR PROPOSED ALGORITHM

Our proposed algorithm incorporates economic theory to
reflect the fact that our interest in leader, villain and bridge
nodes is based on their benefit (good or bad) to the network
as a whole. Conjecturing possible interpretations, a leader
node can be interpreted as a dominant member of a club, by
being a major producer or consumer of some resource (e.g., a
metabolite) that benefits other club members. A villain node
may either represent a common enemy against which members
of a club unite, or the producer of some byproduct (e.g., toxin)
that is harmful to all members of a club. Bridge nodes may
represent taxa that provide a beneficial (or harmful) resource to
more than one club. Alternatively, they could be an important
part of a cascade of events in a process.

Our starting point for an economic model is the Payoff
Model proposed by Jackson and Wolinsky [24], which analyzes
the efficiency and stability of an economic network where
every node in the network provides some payoff to every
other node. They use this approach to determine nodes that
receive the highest pay (meaning, the largest benefit from their
connections), representing payoff for a node ¢ in network G
with uniform edge weights 0 < § < 1 by the following:

Ui(G) = w;; + Z(Stij Wij — Z Cij (1)
i jrijeG

In the above model, w;; represents an amount of starting
“capital” for node i. They use w;; to represent an innate
significance of node j to node ¢. The second term multiplies
w;; by a factor that is exponential in ¢;;, the number of links
in the shortest path between i and j. If 0 < § < 1, this term
ensures that the payoff contribution for node ¢ is higher for
nodes j that are closer. The shortest path between ¢ and j will
thus result in the highest pay for ¢ from j, and is the only
pay that is used. The final term c;; represents a cost (instead
of a payoff) for node ¢ to maintain a direct connection to a
neighboring node j. In summary, closer nodes contribute more,
but direct connections incur a cost.

The intuition behind the connection between the payoff
model and centrality is as follows. If (a) all nodes start with
the same capital (i.e., w;; = 0), (b) nodes do not contain any
intrinsic value to one another before the algorithm runs (i.e.,
w;; = wj; = 1), and (c) there is no cost to maintain direct
connections (i.e., ¢;; = 0) then the network is symmetric. This
implies that in an undirected network the amount of “pay”
received by a node (positive or negative) is the same as the
amount they are providing to other nodes. Pay thus becomes
a direct measurement of a node’s benefit to the network.

In designing our algorithm ATria, we take the symmetric
algorithm by Jackson and Wolinsky and extend it in the
following ways to encapsulate more general social networks:



1)  We allow for edge weights to be non-uniform. There-
fore, instead of all weights being equal to ¢, the edge
weights are 0 < J;; < 1. As a consequence, in the
second term of Eq. 1 we replace §* by the product of
the 9 values along the path of maximum pay between
node i and node j.

2)  We incorporate negative edge weights, under the
limited assumption that all weights are in the range
—1 < §;; < 1. With negative edges, a node receives a
negative benefit from its connection with a neighbor.
However, a path with two negative edges will result
in a positive payoff, since the total payoff from a path
is the product (not sum) of its edge weights.

3) Centrality is computed iteratively. The most central
node is found first, with ties broken arbitrarily. This
node is then deleted along with some of the edges
in its neighborhood. The centrality values are then
recomputed for all the nodes. Although ties are bro-
ken arbitrarily, this does guarantee that the list of the
most central nodes are not occupied by nodes that are
all close to each other. Hence, ATria will find central
nodes from all across the network.

Our modified equation, after removing c;;, is thus:

wi(G) =Y P(.j), 2)
J#i
where P(i, j) is the path of maximum pay magnitude between
i and j.

A major deviation from the payoff model is that our
algorithm computes the centrality values incrementally as
opposed to all at once. Therefore, even if the node with the
highest u;(G) value may be judged the most central node in
the first iteration, the node with the second highest value in
the first iteration will not end up as the second most central
node, unless it is the highest in the second iteration.

Consider the example in Figure 2. In this network, the
payoff model would compute node B as being the most central
to the network, but then would compute A as the second most
central and C' as the third most central. While this may make
sense for the payoff model itself (both A and C receive large
benefits from B), it has some shortcomings from the point
of view of centrality to say that A and C' are the next most
important nodes, since most of their pay comes as a result
of B. ATria would first find B as the most central node as a
leader of the first triad, but it would then find D as the second
most central node as a leader of the second triad.

This happens because the edges incident on B are deleted
after B is determined as having the highest centrality. The logic
here is to remove all dependencies on the most central node
before computing the next most central node. Also for every
triad involving two of these incident edges, we remove the third
edge if both incident edges have the same sign and the third
edge is positive. This is backed up by social network literature
[16], which states that two nodes with a mutual friend (in this
case the leader B) or enemy (a villain) will tend to become
friends as a result, meaning their connection is coincidental
and resulting not from their own importance but the importance
of the leader or villain. Such a triad with an even number (zero
or two) of negative edges is said to be stable, a necessary
condition for social network balance.
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Fig. 2. A sample social network with two strongly connected triads

{A,B,C} and {D, E, F}.
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Fig. 3. (a) An example social network with non-uniform positive edge
weights. In this situation, the payoff between A and C' is larger via their
indirect connection through B (0.56) compared with their direct connection
to each other (0.2). (b) An example network with non-uniform positive and
negative edge weights. Nodes can now gain and lose from each other.

A. Extended Payoff Model

Incorporating Non-uniform Edge Weights: The first change
that we make to the Payoff Model, as mentioned, is incor-
porating non-uniform edge weights. In the unweighted (or
uniformly weighted) case, the shortest path between 7 and j is
guaranteed to have the fewest number of edges; this may not
be true any longer, as illustrated in Figure 3(a).

To incorporate this change, we use a modified form of
Dijkstra’s Algorithm. In particular, the length of a path is the
product of its lengths, and the best path is the one with the
maximum (not minimum) product. Note that since all edge
weights are between 0 and 1, the products can only decrease in
magnitude as the path gets longer. Such a modified Dijkstra’s
algorithm when started at node ¢, will help compute P(%, j)
for all j, thus computing u;(G) (see Eq. 2).

Incorporating Negative Edge Weights: When negative edge
weights are present in the network, we have a possibility for
nodes to gain and lose from each other depending on the
path along which the effect takes place. Similar to the path of
maximum gain, we consider the path of maximum loss as more
significant to a node’s centrality as opposed to one of a smaller
loss. However, there may be pairs of nodes between which
there is a positive length path as well as a negative length
path. Consider the network in Figure 3(b). There are two paths
between A and D: A - C - D, and A — B — C — D with path
lengths of 0.2 x —0.5 = —0.1 and —0.8 x 0.7 x —0.5 = 0.28,
respectively. One causes a gain, the other incurs a loss.

Dijkstra’s algorithm is modified so that for every starting
node ¢, we simultaneously keep track of two quantities: the
length of the path of highest gain to node j, and length of
the path of highest loss to node j. This covers situations like
in Figure 3(b) where the path of highest gain from A to D
includes a path of highest loss from A to C and a path of
highest loss from C' to D. We then modify the RELAX step
in Dijkstra’s algorithm [25] as follows: when relaxing edge
(4, k), if its weight is positive, then we use the maximum gain
due to node j to update the maximum gain due to node k and
the maximum loss due to node j to update the maximum loss



Fig. 4. (a) A weighted four-clique with leader A, (b) Clique (a) with a villain
E, (¢) A clique of rival groups. The same node can be a leader and a villain.

due to node k. On the other hand, if its weight is negative,
then we use the maximum gain due to node j to update the
maximum loss due to node k£ and the maximum loss due to
node j to update the maximum gain due to node k.

To incorporate both gain and loss, we modify our payment
equation to set P(i,j) = G(i,5) + L(3, ), where G(4,7) is
the length of the path of maximum gain between ¢ and j and
L(i,7) is the length of the path of maximum loss (negative or
zero). So our final payment equation for ATria becomes:

uig) =Y G(i,5) + L, )] 3)
Jj#i

III. EXPERIMENTAL RESULTS AND DISCUSSION

In order to test ATria, we run our algorithm on sample
networks alongside five other centrality algorithms: between-
ness, closeness, degree, and the eigenvector-based approaches
PageRank (PageTrust if the graph has negative weights) and
PN. To be fair we use weighted degree centrality, and for
running Dijkstra’s algorithm for closeness and betweenness
centrality we compute distance by taking the negative log-
arithm of the absolute value of an edge (so larger edge
magnitudes carry smaller weights, yielding shorter paths).

A. Networks With Cliques

1) Single Clique: We begin by studying weighted cliques.
The first is a non-uniform weighted clique of size four with a
leader A (in Figure 4(a)). The second is the same clique but
with the addition of a villain node E (Figure 4(b)). Finally,
we show a uniform-weighted clique of rival groups in Figure
4(c), where the most central node will be a leader to one group
and a villain to the other. While ATria agreed with all other
algorithms on the most central node for all three examples,
only ATria clearly identified A as the leader in (a), F as the
villain in (b), and A (arbitrarily, but the point remains) as leader
and villain in (c). It does this by setting all other centralities to
zero, thus assuming that all remaining connections result from
connections to these central nodes.

2) Multiple Cliques: Figure 5 shows our first example of
a multiple-clique network, which is the non-uniform weighted
network from Figure 2 that has two positive triads connected
by a weaker positive edge. In this figure we compare the
results of all six algorithms, color coding individual cen-
trality values against a normal distribution (red=maximum,
violet=minimum, blue and green respectively two and one
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Fig. 5. A comparison of ATria with five other centrality algorithms on the
network from Figure 2. Red nodes are the most central.

standard deviations left of the mean, yellow one to the right, or-
ange two to the right). Degree, PageRank and PN all biased the
tighter-connected first triad, while betweenness and closeness
biased the triad bridges. As discussed earlier, ATria computed
B as most central (first triad leader), and D as second (second
triad leader). F is then arbitrarily chosen as third over C, thus
favoring leaders above bridges if triad edges are stronger than
their connections. This holds independent of the sign of the
connections. If the connection edge C'E was stronger than the
triads, ATria would choose C' as most central for a positive
CFE (C is in the tighter triad and has closer friends) and F as
most central for a negative C'E (for this same reason, more
nodes are harmed by its competition with C).

B. Synthetic Network with Clubs

We now develop a synthetic network to illustrate the type
of network for which ATria is most beneficial, with five cliques
of random sizes between 16 and 20. We randomly choose one
leader node for each of three of the cliques, and one villain
node for each of the other two. We connect leaders to their
clique using random edge weights in the range [0.85, 1), and
villains using (—1,—0.85]. Edges between other nodes are
between (.75 and the lower of the two edges with the leader or
villain. We choose a number of bridge nodes equal to half the
size of the largest clique and connect them to a random node
in two random cliques using a random weight in the range
[0.75,1). We run all six algorithms on this network and show
our results in Figure 6. As can be seen, Alria was able to
immediately pick out leaders, villains and bridges and set all
other centralities to zero.

This situation also illustrates challenges with other cen-
trality approaches for this type of network. Betweenness was
the only other algorithm able to somewhat separate leaders,
villains, and bridges since in this example they reside on
most high pay paths, but for this same reason also counted
clique nodes connected to bridges (in some cases even above
leaders and villains). Closeness centrality biased the cliques
connected by the most bridges, and degree biased the tightest
connected cliques. PageTrust and PN found the two villains
(low centralities by design) and PN also found the top leader,
but then biased its clique and lost the other two.

C. Biological Networks

We now demonstrate ATria’s results on three types of
biological networks. The first, shown in Figure 7(a) is a
synthetic scale-free network of 1,000 nodes. We use this as an
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Fig. 6. A comparison of ATria with five other centrality algorithms on a
synthetic network with five cliques (three with a leader, two with a villain),
plus some bridge nodes.
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Fig. 7.
co-expression network from a species of oyster, and (c) a yeast PPI network.

Results of ATria on (a) a 1,000-node scale-free network, (b) a gene

overarching example of a network that is common across many
areas of biology, including PPIs, cell signalling pathways [26],
and neural networks [27]. The second, in Figure 7(b), is a gene
co-expression network from a species of oyster under different
salinity conditions. Finally as our largest example in Figure
7(c), we run a yeast PPI [28] consisting of 5,526 nodes. Note
that the PPI is by definition uniformly weighted and positive,
since proteins either interact or do not interact.

Scale-free networks are known for the presence of critical
hub nodes, which ATria also ranks with the highest centrality.
The co-expression network shows that with more realistic
biological data, ATria can still find leaders and villains across
the network. The transcription factor Nuclear Y-Subunit Alpha
(NYFA, [29]) was ranked #7 by ATria. This was found
first by degree and PN centrality, but no other algorithms
found transcription factors in their top ten. However, while
degree and PN centrality then biased central nodes around this
transcription factor, ATria was able to find a protein TRIM?2
(#2) from the Tripartite Motif (TRIM, [30]) family, which
no other algorithm found. TRIM2 helps bind the molecule
Ubiquitin to proteins as a tag for later modification [31].
ATria discovered Ubiquitin itself as #4 in the yeast PPI. A
specific type of modification for which Ubiquitin binds to
proteins is degradation in the proteasome, and ATria also found
Rpnll (#7), which is responsible for removing Ubiquitin from
proteins before entering the proteasome [32]. These results
exhibit agreement with Cicehanover, Hershko and Rose in their
discovery of Ubiquitin-mediated proteolysis and its regulation
of numerous critical cellular processes including the cell cycle
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Fig. 8. A comparison of ATria to the other five centrality algorithms on the
co-occurence network assembled from lung microbiome data, from Figure 1.

[33], helping them win the 2004 Nobel Prize in Chemistry.

D. Microbial Social Network

We now show the results of ATria and the five other
centrality algorithms on the co-occurence network assembled
from human lung microbiome data, from Figure 1. These
results are shown in Figure 8.

For this network, both degree and PN centrality restricted
the highest ranked nodes to the tightest club in the center of
the network. Closeness centrality tended to bias the center of
the largest connected component, with centrality decreasing
as nodes were more out of this loop. Betweenness centrality
was heavily biased towards bridges in the largest connected
component. The only other algorithm that was able to find
central nodes in multiple clubs was PageTrust; however, ATria
was able to better isolate one or two nodes in each club,
followed by the bridges. Interestingly, PageTrust put the most
central leader in the lower left, disconnected club; likely
because it does not lie on any negative paths.

Based on the results of ATria, the bacterial taxa most
likely to be producing a critical metabolite would be: F
Burkholderiaceae (the most central node, leader of the tightest
club in the middle), F. Erysipelotrichaceae (#2, leader of the
club just to the south), Bifidobacterium (#4, leader of the
club to the southwest), and Atopobium (#6, leader of the
southernmost component). F. Prevotellaceae (#3) is a villain of
the tightest knit club which is likely to be in competition for a
resource (possibly the same metabolite) that many bacteria in
this club need. Bridge nodes such as Prevotella (#5, connecting
many nodes in the two northernmost clubs) and Selenomonas
(#8, part of a central bridge connecting the southwestern clubs
to the largest connected component) could be producing a
metabolite that benefits multiple clubs. Interestingly, ATria
also found C.Gammaproteobacteria (#7), which is an enemy
bridge between the largest club and the rest of this largest
connected component. This could indicate competition with its
counterpart Fusobacteria as critical to the network structure.



IV. CONCLUSION

Our results demonstrate that the application of economic
models using payoffs can be useful to computing centrality in
a signed and weighted social network when finding important
leader, villain and bridge nodes. We built ATria as an iterative
extension of a payoff model using social networking princi-
ples and in the process overcome shortcomings of existing
algorithms for computing centrality, identifying central nodes
across the network as opposed to many in the same vicinity.
We verifed these results using scale-free networks and rele-
vant synthetic networks with both positive and negative edge
weights, both of which are particularly relevant in biological
networks, and, finally, real biological networks including a
bacterial co-occurence network (or Microbial Social Network).
As future work, we would like to explore extensions of
ATria to directed networks, as while uncommon in the social
networking field would be useful when applied to biological
networks. We also would immediately like to explore the
idea of interference [34] to show and analyze the effects of
removing ATria’s highly central nodes from our networks.
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