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Abstract

We introduce the concept of Avatar problems that deal with situations where each entity has multiple
copies or “avatars” and the solutions are constrained to use at most (or exactly) one of the avatars.
The resulting set of problems show a surprising range of hardness characteristics and elicit a variety of
algorithmic solutions. In particular, we show how to extend the concept of ε-kernels to find approximation
algorithms for some avatar problems.
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1 Introduction

We introduce a family of optimization problems which
we call Avatar problems. The main feature of this
family of problems is that their input entities have
multiple replicas (or copies, or avatars), but their
output is constrained to use exactly one of the copies.
Avatar problems have many applications in resource
allocation problems. For example, storage systems
may maintain multiple copies of data items; a pur-
chase for a single part can be made by picking one of
several brands or from one of several retail outlets; a
task can be assigned to any one of a few select spe-
cialists. These applications involve choosing from a
limited set of choices in order to achieve efficient use
of resources.

An example of a problem containing avatars is the
traveling salesman problem with neighborhoods, where
the challenge is to find a tour of minimum length that
visits each of the neighborhoods (i.e., regions or sets
of points). This problem is known to be NP-Hard
even in Euclidean space [10, 14], and it is known to
be (2− ε) inapproximable [18]. Approximation algo-
rithms have been found for geometric instances [7].
This problem can be thought of as an Avatar prob-
lem since each neighborhood provides a set of choices,
one of which needs to be visited.

Another related problem is the job interval selec-
tion problem (JISP) [6]. In this problem the input is
a set of n jobs assigned to a worker. Each job is a set
of one or more intervals on the real line, and we must
select one interval for each job such that we schedule
as many jobs as possible by picking non-overlapping
intervals. In the k-avatar version of JISP each job is
a set of at most k intervals. Avatar problems share
some overlap with the area of parameterized com-
plexity. The study of the complexity of a k-avatar
problem as k goes from 1 to ∞ provides better un-
derstanding of the complexity landscape of the prob-
lem. A model that is similar to the avatar model
is the indecisive (uncertain) points model, see [12].
There the input is a set of elements where each ele-
ment can take a value over a set of candidate data
points as governed by a probability distribution over
candidate points.

In this paper we introduce and study the avatar
versions of classical algorithmic problems and evalu-
ate their hardness. Given any optimization (or deci-
sion) problem, its avatar version is required to achieve
the same optimization (or decision) over all possible
instances where each instance is created by assign-
ing each element ai to exactly one of k possible val-

ues. The main results are summarized below, and is
indicative of how “choice” affects the complexity of
these problems in different ways.

Results: We consider geoemtric avatar problems in
Sections 2 through 4. For points on a line, in sec-
tion 2, we design a O(n2 log n)-time algorithm for
the 2-avatar maximum minGap problem for inputs
in Rd, and a 2-approximation polynomial time al-
gorithm for the k-avatar minimum maxGap prob-
lem for points on a line. In section 3 we design a
polynomial-time (1 + ε)-approximation algorithm for
the k-avatar convex hull problem in Rd. More sig-
nificantly, in the process, we extend the concept of
ε-kernels to the avatar world and show how to com-
pute it efficiently for a k-avatar point set in Rd. The
ε-kernel result was also used to design polynomial-
time (1 + ε)-approximation algorithms for the avatar
versions of the following geometric problems: small-
est volume axis-aligned enclosing hyperbox; and in
the Appendix, smallest axis-aligned perimeter and di-
ameter. Finally, a significant result here is that the
2-avatar version of the geometric minimum spanning
tree problem, even for points in the plane, is NP-
Complete; see section 4. For unweighted graphs, we
show that the k-avatar reachability problem is NP-
Complete, and for weighted graphs, we show that the
k-avatar shortest path problem is inapproximable to
any constant factor unless P = NP . Additionally
there are a couple of “warm up” problems in the Ap-
pendix (see sections 7.1 and 7.2).

We establish some basic notation for this paper.
Let L = {a1, a2, . . . , an} be a set of n k-avatar enti-
ties. In other words, for each entity ai ∈ L, one can
assign ai to one of the k avatar values from the set

Av(ai) = {v(1)i , v
(2)
i , . . . , v

(k)
i }. An avatar assignment

for entities in L, denoted by A(·), is an assignment
of a single avatar value to each entity in L. Thus,
A(ai) ∈ Av(ai). Let A(L) denote the set of values
assigned to each element in L.

2 Avatar Minimum and Maxi-
mum Gaps

Given a set of points {x1, . . . , xn} on a line, we define
the minGap (resp. maxGap) as the smallest (resp.
largest) gap between consecutive items in the sorted
order. The avatar version of the maximum minGap
and minimum maxGap problems can be stated as
follows: Given a set of n k-avatar entities, find an
avatar assignment that results in the maximum min-
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Gap (resp. minimum maxGap); these two problems
will be tackled in the following subsections. More for-
mally, assume that we are given a set of k-avatar enti-
ties L = {a1, a2, . . . , an}, where each entity ai can be

assigned one values from the set {v(1)i , v
(2)
i , . . . , v

(k)
i }.

Avatar Maximum minGap We present a poly-
nomial time algorithm for the 2-avatar version of max-
imum minGap problem. It is clear that the minGap
must be between a pair of points from the set of all
avatar values,⋃

ai∈L
Av(ai) =

⋃
ai∈L
{v(1)i , . . . , v

(k)
i } (1)

We first solve the decision problem of determining if
there exists an avatar assignment so that the minGap
is at least B; this is achieved by giving a polynomial-
time reduction to 2SAT. The construction creates two
complementary boolean variables, xi and ¬xi, to rep-
resent the two avatars of entity ai. For every pair of
values that are not avatars of each other and that
have a distance of at most B, a clause is created to
ensure that the corresponding boolean variables are
not simultaneously set to true; a conjunction of these
clauses generates an instance of 2SAT. It is easily
shown that the resulting 2SAT formula is satisfiable
if and only if the original 2-Avatar Maximum min-
Gap problem has a minGap that is no smaller than
B. Given the linear time algorithm for 2SAT [2], it
is not difficult to see that the above algorithm takes
O(n2) time, and that the maximum minGap can be
found in O(n2 log n) time by doing a binary search
on the sorted list of all interpoint distances.

The above reduction to 2SAT for the 2-avatar
minGap problem readily generalizes to the case where
the entity values are points in d-dimensional space.
However, the k-avatar minGap problem is NP-complete,
and can be proved by a trivial adaptation of the proof
of NP-Completeness of the problem of finding a Sys-
tem of q-Distant Representatives proved by Fiala et
al. [9].

Theorem 1 The 2-avatar maximum minGap prob-
lem for n points in Rd can be solved in O(n2 log n)
time. The corresponding k-avatar problem for k > 2
is NP-hard.

Avatar Minimum maxGap The
avatar minimum maxGap problem appears to be harder
than the avatar maximum minGap problem. While
an exact polynomial time algorithm for the minimum

maxGap problem remains open, below we present an
approximation algorithm for the k-avatar minimum
maxGap problem for points on a line.

Let B∗ be the length of the minimum MaxGap,
where the minimum is over all possible avatar assign-
ments. We will perform binary search on the sorted
list of all interpoint distances in order to find good
lower and upper bounds B` and Bu for B∗ such that
B` ≤ B∗ ≤ Bu. Establishing bounds for the ratio be-
tween the lower and upper bounds gives an approx-
imation for B∗. A sorted list of interpoint distances
can be computed in O(n2k2 log nk). For a given value
of B during this binary search we need to solve the de-
cision problem of determining if there exists an avatar
assignment so that the maxGap is at most B. The al-
gorithm described below will give an approximate so-
lution to this decision problem in the following sense.
If the algorithm says “NO”, then maxGap is greater
than B. If the algorithm says “YES”, then the max-
Gap is at most 2B.

Let V denote the set of kn avatar values mapped
on to the real line. Any avatar assignment is a sub-
set of n points from V . A partition of the line into
infinite number of disjoint abutting cells each of size
B (see Fig. 1) is called a valid partition if there ex-
ists an avatar assignment such that all the points in
the assignment are contained in a sequence of con-
secutive non-empty cells. Therefore, it follows that
if there exists an avatar assignment for L such that
the resulting point set has maxGap at most B then
every partition of the line into infinite cells of size
B is valid. The consequence is that if there is any
partition of the line into infinite cells of size B that
is not valid, then we know for sure that the maxGap
for every assignment is greater than B. The difficulty
is that the converse need not be true. Even though
the assigned values appear in a sequence of consecu-
tive cells, the maxGap could be between two items in
adjacent cells that are nearly 2B apart, a key obser-
vation that leads to a 2-approximate algorithm. For
example, in Fig. 1, v26 and v25 are in adjacent cells
(of the partition with vertical dotted lines) but are
almost 2B apart.

Given B, a fixed infinite partition of the line into
cells of size B, and a fixed sequence of consecutive
cells, we check if that partition is valid for some avatar
assignment of L by a reduction to Network Flow.
Briefly, we construct a bipartite network where one
partition P has vertices corresponding to entities ai ∈
L and the other parition Q has vertices correspond-
ing to cells of the partition. There is an edge from
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Figure 1: Two different infinite partitions of the line
are shown. The partition with dotted vertical lines
is valid, while the partition with solid vertical lines is
not valid. The valid partition is achieved by an avatar
assignment that picks all choices with superscript 2.

a vertex p ∈ P to a vertex q ∈ Q if the entity corre-
sponding to p has an avatar in the cell corresponding
to q. Finally, the reduction involves showing that the
network has a flow of n if and only if the partition
is valid. For lack of space, details of the algorithm
are provided in the Appendix (Algorithm 2 in Section
7.3). As mentioned above, we perform binary search
on the sorted list of interpoint distances until we find
two adjacent gaps Bi−1 and Bi in the list of gaps such
that Bi−1 ≤ Bi, Algorithm 2 returns NO for all par-
titions into cells of length Bi−1, and returns YES for
at least one partition into cells of length Bi. Thus,
Bi−1 < B∗. Since the smallest possible gap attain-
able that is larger than Bi−1 is Bi, we have Bi ≤ B∗.
Also, since we have a partition into cells of length
Bi for which we can find an entity-avatar assignment
where all the chosen points are in a set of adjacent
cells such that each cell in that cell contains a chosen
point, we can use that avatar assignment to produce
an assignment with a maximum gap no larger than
2·Bi. Hence we have that Bi ≤ B∗ ≤ 2·Bi. This gives
us a polynomial-time 2-approximation algorithm for
the 1D k-avatar minimum maxGap problem. The
hardness of the avatar minimum maxGap for points
in Rd remains open, even for d = 1.

Theorem 2 The k-avatar minimum maxGap prob-
lem for points on a line has a 2-approximate algo-
rithm that runs in O(n3 · k3 log(nk)) time.

2.1 Avatar Line Segment Intersection
problem:

We mention briefly that the 2-avatar version of the
classical line segment intersection problem (is there
an avatar assignment that ensures that none of the
line segments intersect) can be solved in polynomial
time (O(n2)) by a reduction to 2SAT. The reduction

involves representing the avatars s
(1)
i and s

(2)
i of each

entity ai as complementary boolean variables xi and
¬xi respectively, and representing a pair of intersect-
ing line segments by a 2SAT clause that prevents both

segments to be chosen. The same reduction, how-
ever, does not solve the optimization version of the
2-avatar line segment problem, where the goal is find
the avatar assignment that produces the largest sub-
set of non-intersecting line segments (or conversely
the smallest number of intersecting line segments).
However, the reduction does allow us to provide an
approximation guarantee of 0.93 (based on the best
approximation algorithms for MAX-2SAT [8]).

3 Avatar Convex Hulls

Let L be a set of k-avatar entities where each en-
tity can be assigned one of k different points in d-
dimensional space. The k-avatar convex hull of L
is the convex set that contains at least one avatar
for each entity a ∈ L and that minimizes a specific
measure (such as the perimeter, surface area, or vol-
ume). The computational complexity of the prob-
lem of computing the avatar minimum convex hull
remains an open problem. Related work includes re-
sults on the minimum and maximum convex hull for
a set of points with imprecise locations [19, 13].

Here we discuss two avatar convex hull problems.
First, we consider a special case of the problem where
all avatars of a single entity are collinear and lie on
a line parallel to the line containing the avatars of
any other entity. We refer to this problem as the
avatar convex hull problem for parallel entities. Due
to limited space, the dynamic programming based
algorithm for this special case is relegated to the
Appendix (see section 7.4). More importantly, we
present an ε-approximation algorithm for the avatar
convex hull problem.

3.1 Approximate Avatar Convex Hulls

A smallest avatar convex hull is a convex hull that
has minimum perimeter over all possible avatar as-
signments. The results can be extended to minimum
area/volume convex hulls. We present an algorithm
that finds an ε-approximate smallest avatar convex
hull for the k-avatar convex hull problem in Rd.

For any point set X ⊂ Rd, let ω(u,X) denote
the directional width of X in direction u (see Fig. 2
(a)). A subset Q ⊆ P is called an ε-approximation
of P if for all directions u ∈ Sd−1 we have (1 −
ε)ω(u, P ) ≤ ω(u,Q). Our proposed algorithm finds
an ε-approximate smallest convex hull CH(Q) by re-
turning a set of avatar points Q ⊆ A′(L) for some
avatar assignmentA′(L) such that (1−ε)ω(u, CH∗(L)) ≤
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ω(u, CH(Q)), where CH∗(L) is the minimum avatar
convex hull of L. Using the terminology of Agarwal
et al. [1], one can think of the set Q as the avatar
equivalent of an ε-kernel. This is formalized in the
following definition of an avatar ε-kernel whose width
along any direction is within a 1−ε factor of the width
of the optimal hull along that direction.

Definition 1 Given a set L of n k-avatar entities,
we say that a point set Q is an avatar ε-kernel of L if
and only if (1−ε)ω(u, CH∗(L)) ≤ ω(u,Q),∀u ∈ Sd−1,
where Sd−1 is the unit hypersphere centered at the
origin.

The following procedure for finding a diameter-
oriented bounding box B of a set S of points in Rd

was described by Bareqet and Har-Peled [3]. Let
D(S) be the diameter of S and let s1, t1 ∈ S s.t.
|s1t1| = D(S). Let H be a hyperplane perpendicu-
lar to s1t1 and let Q be the orthogonal projection of
S onto H. We again compute two points s2, t2 ∈ Q
s.t. |s2t2| = D(Q). Once again we project Q onto
a hyperplane H ′ perpendicular to s1t1 and s2t2 and
determine the diameter D(Q′) of the projection Q
onto H ′ and select two more points s3, t3 ∈ Q′ s.t.
|s3t3| = D(Q′). After d iterations of this process
we have a diameter-oriented bounding box B(S) of
S with the diameter in each iteration determined by
the direction from si to ti, for i = 1, 2, . . . , d− 1.
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Figure 2: (a) Directional Width (b) ε-grid Z

Note that CH∗ must cover a set S of 2 · d avatar
points of an avatar assignment such that the diameter-
oriented bounding box B(S) is exactly the same as the
diameter-oriented bounding box B(CH∗). See Algo-
rithm 1 for the pseudocode for the following proce-
dure. We pick all possible subsets of 2·d avatar points
of L, of which there are

(
n·k
2·d
)
. For each subset Si, first

check that no two points in Si are in the same avatar
set, then find the diameter-oriented bounding box
Bi = B(Si). If every entity in L has an avatar point

inside Bi then it is possible that Bi = B(CH∗), oth-
erwise we can discard Bi. We find an ε-approximate
minimum avatar convex hull CHi of all the points in-
side Bi and output the smallest one CHmin. Since
B(CH∗) = Bi for some i, CHmin will ε-approximate
CH∗. The following lemma from [1] is useful for this
proof. A point set is α-fat if its convex hull (a) is
contained in a hypercube H and (b) contains a copy
of H sharing the same center as H, but shrunk by a
factor α < 1.

Algorithm 1 Computing ε-approximate min avatar
convex hull
Require: L: set of n k-avatar entities; µ: a measure

function of the size of a convex hull, T (.) affine
transform procedure
let CHmin = null

let S be the set of all possible sets of 2d avatar
points of L.
for Si ∈ S do

if no two points in Si are the same avatar set
then
let B(Si) be the diameter oriented bounding
box
let Bi be the set of all avatar points inside
B(Si)
let CHi be the ε-approximate smallest avatar
convex hull of Bi
find CHi with algorithm 3 for α-fat avatar
point set T (Bi)
CHmin = Min(CHmin, CHi)

end if
end for
return CHmin

Lemma 1 [1] For any point set P with non-zero vol-
ume in Rd there exists an affine transform M s.t.
M(P ) is an α-fat point set where the hypercube C =
[−1,+1]d is the smallest enclosing box of M(P ) and
s.t. a subset Q ⊆ P is an ε-kernel of P iff M(Q) is
an ε-kernel of M(P ).
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Figure 3: Affine transform of space inside diameter-
oriented bounding box of 2 · d points.
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It is known that for a diameter oriented bound-
ing box B with largest side D, if we appropriately
expand or contract the box along each direction until
it becomes a hypercube of side D and scale it to the
hypercube C, then the transformed point set is an
α-fat point set in C [3]. This transformation T (B)
of B as well as the transformed points can be com-
puted in linear time, i.e., O(n · k) time. By Lemma
1, to compute an ε-approximate avatar convex hull
of all the points in B, we only need to compute an
ε-approximate avatar convex hull of all the points in
C, which is computed as follows.

As in [3], let δ be the largest value such that δ ≤
(ε/
√
d)α and 1

δ is an integer. We then partition the
bounding hypercube into a uniform grid with cells of
side length δ (see Fig. 2 (b)). However, applying the
algorithm described in [3] does not help us compute
ε-kernels in C because even though the point set may
be α-fat, once we perform an avatar assignment, the
resulting set may not be α-fat.

We need one other idea to compute ε-kernels in
C. The following procedure computes the ε-kernel in
T (B) (for details, see Algorithm 3 in the Appendix).
Consider all possible assignments of binary values
(0/1) to the cells in the grid (see Fig. 2 (b)). For
the ith binary assignment let Qi be the set of cells
that are assigned a value of 1. We call the set Qi le-
gal if each avatar entity has at least one element in at
least one of the cells of Qi, and it is possible to pick a
representative point from each cell such that no two
cells have representative points that are avatars of the
same entity. Since there are 1/δd cells, there are at

most 21/δ
d

legal sets. In particular, if AOPT (·) is the
avatar assignment that leads to the optimal avatar
convex hull, then it is easy to see that one of these
legal sets must contain exactly the collection of cells
with points from AOPT (·).

We can determine if a given set of grid cells Qi
is legal by solving a network flow problem as follows.
Create a set of vertices T such that each vertex in T
represents a different cell in Qi. Create a source ver-
tex s with directed edges to each vertex in T . Create
a set of vertices T ′ such that each vertex in T ′ rep-
resents a distinct point in some cell in Qi. Add an
edge from u ∈ T to u′ ∈ T ′ if the corresponding cell
in Qi contains the corresponding point. Create an-
other set of vertices T ′′ such that each vertex in T ′′

corresponds to an avatar entity. Add an edge from
u′ ∈ T ′ to u′′ ∈ T ′′ if u′ is a possible assignment for
the avatar entity u′′. Finally add a sink vertex t and
connect all vertices in T ′′ to t by an edge. All edges

have capacity 1. A maximum flow of size |T | from s
to t will identify a representative point in each cell
such that no two points are avatars of the same en-
tity. It is easy to see that such a flow exists if and
only if the corresponding set of cells Qi is legal. The
following theorem formalizes the result.

Theorem 3 There is an algorithm that finds an ε-
approximate smallest k-avatar convex hull in time

O((nk)(2d+3) · n
δd
· (2d)2 · 2

1

δd ( 2
δd−1 )b

d
2 c), by finding

an avatar ε-kernel Q of L, which by Definition 1 sat-
isfies:

(1− ε)ω(u, CH∗(L)) ≤ ω(u, CH(Q)), ∀u ∈ Sd−1
(2)

The proof is sketched as follows. Given a legal set,
Qi, let Q′i ⊆ Qi be the collection of highest and lowest
cells in every hypercolumn containing at least one cell
of Qi. Let Q (resp., Q′) be the set of representative
points of cells in Qi (resp., Q′i). It is easy to see that
Q is an ε-kernel of Q′. We argue that AOPT (·), the
avatar assignment that leads to the optimal avatar
convex hull, occupies a collection of cells (call this
set of cells QOPT ), which would have been considered
by our algorithm. While the algorithm may not have
picked the points in the optimal avatar assignment, it
is sure to pick one representative point from each of
the cells in QOPT . Since for each point in there is at
least one representative point that is within distance
ε ·α for every point in the optimal avatar assignment,
we immediately have an avatar ε-kernel of the original
input. The algorithm is fleshed out in some detail in
the Appendix (see Section 7.5).

Approximate Smallest Volume Axis-Aligned
Enclosing Hyperbox We can compute a (1 +
ε)-approximate smallest volume axis-aligned enclos-
ing hyperbox B(L) containing an avatar of each en-
tity in L after finding an ε′-kernel of L, for some con-
stant ε′. Let CH(L) be the smallest avatar convex
hull of a set L of k-avatar points. If Q is a k-avatar
ε′-kernel of L such that Q ⊂ CH(L), then we have:

(1− ε′) · ω(u, L) ≤ ω(u,Q), ∀u ∈ Sd−1

(1− ε′) · ω(u, L) ≤ ω(u,Q), ∀u ∈ [d] = {e1, e2, . . . , ed}
(1− ε′)d

∏
u∈[d]

ω(u, L) ≤
∏
u∈[d]

ω(u,Q)
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There exists a constant c (function of ε′ and d), such
that (1−cε′) ≤ (1− ε′)d, thus implying the following:

(1− cε′)
∏
u∈[d]

ω(u, L) ≤
∏
u∈[d]

ω(u,Q)

(1− cε′) · V olume(B(L)) ≤ V olume(B(Q))

Thus by choosing ε = 1
1−cε′ , we obtain a (1 + ε)-

approximation of the smallest volume axis-aligned en-
closing rectangle, since

1 ≤ (1 + ε) · V olume(B(Q))

V olume(B(L))
≤ (1 + ε)

Theorem 4 Given an exact algorithm for finding the
smallest volume axis-aligned enclosing hyperbox that
runs in time O(na), there exists an algorithm that
finds a (1+ε)-approximate smallest volume axis-aligned
avatar enclosing hyperbox in time

O((nk)(2d+3) · n
δd
· (2d)2 · 2

1

δd ( 2
δd−1 )b

d
2 c + ( 2

δd−1 )a).

Similar results can be achieved for an approxi-
mate smallest avatar diameter and minimum perime-
ter axis-aligned avatar enclosing box, and is given in
the Appendix (see sections 7.6 and 7.7).

4 Avatar Euclidean Minimum
Spanning Tree

Let L be a set of k-avatar entities where each entity
can be assigned one of k avatar points in the plane.
We define an avatar tree to be a tree whose vertex
set is a subset of all avatar points, but is constrained
to include at most one avatar for each entity aj ∈ L.
An avatar tree is said to be spanning if its vertex
set includes exactly one avatar point for each entity
aj ∈ L. An avatar minimum spanning tree (MST)
is an avatar spanning tree of minimum weight. The
problem of computing the k-avatar Euclidean Mini-
mum Spanning Tree (EMST) for points in the plane
is a natural and interesting problem. Chambers et al.
[4] show that the related problem best case connec-
tivity under uncertainty (BCU) is NP-Hard.

Theorem 5 .
The k-avatar EMST problem is NP-Complete.

It is sufficient to consider the general 2-avatar case,
where each entity has one or two avatars. To prove
the hardness of the problem we provide a reduction
from Hamiltonian Path Problem in Cubic Directed
Planar Graph (DHP). The reduction makes use of the

slightly modified version of DHP (denoted by DHPst)
in which G has one vertex s with out-degree of one
(and no incoming edges) and one vertex t with in-
degree of one (and no outgoing edges). It can be
shown that DHPst is NP-complete.

Given an instance I of the DHPst problem, we
construct an instance of the avatar EMST problem
by first forming a rectilinear planar layout of I with
integer coordinates. This step is somewhat involved
and technical and we have provided a sketch of this
step in the Appendix (Section 7.8). An example of
a rectilinear layout can be found in the left figure of
Fig. 4.

Figure 4: Locating points and avatar pairs along edges
of the planar rectilinear layout

Next we construct an instance of the avatar EMST
problem by placing a series of closely located points
on each line segment in the layout. Then, we identify
the avatar pairs. Finally, we show the equivalence of
the two instances.

Informally, the distance between adjacent points
placed on a line segment is 1 and the distance between
any other pair is strictly greater than 1. It is impor-
tant that we do not place points on “overhangs” (i.e.,
the left and right overhang of each horizontal line)
(see Fig. 4). For vertex v ∈ V with in-degree 1 and
out-degree 2 in G, consider its corresponding horizon-
tal segment in the layout. If c(v) denotes the inter-
section point of the horizontal segment corresponding
to v and the vertical incoming line incident on this
segment, then we make two points horizontally next
to c(v) (denoted by c−1(v) and c1(v)), as an avatar
pair, ensuring that both branches of the fork at ver-
tex v will not be simultaneously part of the EMST.
We continue to pair the vertices on the horizontal seg-
ment and also continue along the two vertical edges
leaving. As shown in Fig. 4, every vertex c−i is paired
with ci, and continuing on, vertex rj is paired with lj .
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If v ∈ V is a vertex with in-degree 1 and out-degree
2 in G, then only pair the points on the horizontal
segment. The result of this construction is a set of
points forming the instance of the avatar EMST.

The critical proof that the EMST instance has an
avatar spanning tree of a certain weight if and only
if G has a Hamiltonian path from s to t is provided
in the Appendix (see Theorem 9 in Section 7.9).

5 Avatar Problems in Graphs
and Metric Spaces

In this section we consider the hardness of the avatar
versions of vertex reachability and shortest paths in
unweighted graphs. The results easily generalize to
weighted graphs and metric spaces. Vertex reachabil-
ity has strong ties to rainbow connectivity problems
from the graph theory literature [5]. As before, in
order to set the stage, we provide some formal defi-
nitions.

Avatar graph reachability A k-avatar graph
G(V,E, L,A) (or simply an “avatar” graph) consists
of the following: a set of vertices V ; a set of edges E
connecting pairs of vertices in V ; a set of entities L =
{a1, . . . , am}; and a collection of disjoint avatar sets
A = {A1, . . . , Am} such that ∀i, Ai ⊆ V is the avatar
set for entity i, |Ai| ≤ k, and Ai

⋂
Aj = �, if i 6= j.

As with the definition of an avatar tree, an avatar
path in G is a path p such that no two vertices on the
path p are avatars of the same entity.

The k-avatar reachability problem is stated as fol-
lows: Given an avatar graph G and two vertices s and
t in G determine if there is an avatar path P from
s to t. Reachability is a fundamental graph problem
and can be solved in linear time using simple tech-
niques like DFS or BFS. Surprisingly enough, in the
avatar setting it turns out to be NP-Complete, even
for k = 2. The proof of the following theorem can be
found in the Appendix (Section 7.10).

Theorem 6 The k-avatar reachability problem is NP-
Complete.

5.1 Avatar Maximum Matching

Based on classical work of Edmonds in 1965, we know
that non-bipartite weighted graph matching is solv-
able in polynomial time (O(|V |4), later improved us-
ing matrix multiplication); an excellent exposition
can be found in Papadimitriou and Steiglitz [15]. We

start with some definitions in order to consider the
avatar version of the problem. Given a k-avatar graph
G(V,E,M,A, α), an avatar matching is a matching
of a set of vertices V ′ ⊂ V such that for any u, v ∈
V ′, α(u) 6= α(v). A maximum avatar matching of a
k-avatar graph is an avatar matching of maximum
cardinality. Given a weight function ` on the edges
of the graph G, a minimum weight maximum avatar
matching is a maximum avatar matching of mini-
mum weight. We show that the avatar version of
the weighted matching problem can be reduced to
non-bipartite weighted graph matching.

The k-avatar minimum weight maximum match-
ing problem is stated as follows: Given a k-avatar
graph G(V,E,A, α) with edge-weight function ` : E →
R, find a maximum avatar matching of minimum
weight.

The reduction is intuitively straightforward. If
an entity has k avatars, then it involves introduc-
ing k− 1 new vertices for each entity and connecting
each of them by an edge of very small weight (say, 0)
to each of its k avatar vertices. A minimum weight
graph matching would then force the use of as many
of these 0 weight edges as possible, guaranteeing the
match of all but one avatar vertex for that entity to
the newly introduced entity vertices (using 0-weight
edges). The vertex that is not matched with a 0-
weight edge will, in turn, be matched to some other
vertex in G in a way as to achieve a minimum weight
matching.

6 Open Problems

Several open problems still remain. The most notable
ones that result from this paper include determining
the time complexity of the k-avatar versions of (a)
minimum MaxGap problem, and (b) convex hull.

Acknowledgments

The work of GN and MEC was partly supported by
NSF Grant # 1018262. MEC was also partly sup-
ported by NSF Graduate Research Fellowship DGE-
1038321. The authors thank Joshua Kirstein for use-
ful discussions.

References

[1] P. K. Agarwal, S. Har-Peled, and K. R.
Varadarajan. Approximating extent measures of

7



points. J. ACM, 51(4):606–635, July 2004.

[2] B. Aspvall, M. F. Plass, and R. E. Tarjan. A
linear-time algorithm for testing the truth of cer-
tain quantified boolean formulas. Information
Processing Letters, 8(3):121–123, March 1979.

[3] G. Barequet and S. Har-Peled. Efficiently ap-
proximating the minimum-volume bounding box
of a point set in three dimensions. Journal of Al-
gorithms, 38(1):91 – 109, 2001.

[4] E. W. Chambers, A. Erickson, S. P. Fekete,
J. Lenchner, J. Sember, V. Srinivasan, U. Stege,
S. Stolpner, C. Weibel, and S. Whitesides. Con-
nectivity graphs of uncertainty regions. In Pro-
ceedings of the 21st International Symposium,
ISAAC 2010, LNCS 6507, pages 434–445, 2010.

[5] G. Chartrand, G. L. Johns, K. A. McKeon, and
P. Zhang. The rainbow connectivity of a graph.
Networks, 54(2):75–81, 2009.

[6] J. Chuzhoy, R. Ostrovsky, and Y. Rabani. Ap-
proximation algorithms for the job interval selec-
tion problem and related scheduling problems.
Mathematics of Operations Research, 31(4):730–
738, 2006.

[7] A. Dumitrescu and J. S. B. Mitchell. Approxi-
mation algorithms for TSP with neighborhoods
in the plane. Journal of Algorithms, 48(1):135 –
159, 2003. Twelfth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms.

[8] U. Feige and M. Goemans. Approximating the
value of two prover proof systems, with applica-
tions to MAX 2SAT and MAX DICUT. In Pro-
ceedings of the 3rd Israel symposium on Theory
of Computing an Systems, pages 182–189, 1995.

[9] J. Fiala, J. Kratochv́ıl, and A. Proskurowski.
Systems of distant representatives. Discrete
Appl. Math., 145(2):306–316, January 2005.

[10] M. R. Garey and D. S. Johnson. Computers
and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[11] M. R. Garey, D. S. Johnson, and R. E. Tar-
jan. The planar hamiltonian circuit problem is
np-complete. SIAM J. Comput., 5(4):704–714,
1976.
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7 Appendix

7.1 Avatar Sorting

In this section, we present some simple “warm-up”
problem that provide some intuition for tackling avatar
problems. We start with sorting, which is a funda-
mental and well-studied algorithmic problem. Given
a permutation Π, an avatar assignment A(·) for enti-
ties in L achieves Π if the sorted order of the (multi)set
A(ai), ai ∈ L is the same as Π. We look at the follow-
ing problem: find the permutation Π that is achieved
by the largest number of sorted distinct avatar assign-
ments. We solve it by by reducing it to topologi-
cal sort in an acyclic directed graph. Details can be
found in the Appendix (Section 7.1.1).

7.1.1 Avatar most stable sorting

Here we present a solution for the problem: find the
permutation Π that is achieved by the largest number
of distinct avatar assignments. There exists an effi-
cient algorithm that involves topological sort in a di-
rected acyclic graph. The following algorithm solves
the above problem. Given L = {a1, . . . , an} and the

avatars for each entity ai, Av(ai) = {v(1)i , . . . , v
(k)
j }.

For any pair of entities ai and aj there are k2 possi-
ble avatar assignments for that pair of values. These
k2 arrangements result in two kinds of permutations,
ones in which i appears before j and the remaining
with j appearing before i.

We construct a directed acyclic graph (DAG)
G(V,E) as follows: For each entity ai add a vertex vi
to V . We add a directed edge (vi, vj) in G if there are
(strictly) more avatar assignments that put i before
j than those that put j before i.

If there are an equal number of the two kinds of
order-preserving permutations, then no edge connects
the two corresponding vertices. Obviously, at most
one of the two edges, (vi, vj) and (vj , vi), will be cre-
ated, and the graph G has no cycles and is therefore
a DAG. We state without proof that a permutation
defined by any topological sort of the graph G gives us
a permutation that is achieved by the largest number
of avatar assignments A(·).

7.2 Avatar Maximum Matching

Based on classical work of Edmonds in 1965, we know
that non-bipartite weighted graph matching is solv-
able in polynomial time (O(|V |4), later improved us-
ing matrix multiplication); an excellent exposition

can be found in Papadimitriou and Steiglitz [15]. We
start with some definitions in order to consider the
avatar version of the problem. Given a k-avatar graph
G(V,E,M,A, α), an avatar matching is a matching
of a set of vertices V ′ ⊂ V such that for any u, v ∈
V ′, α(u) 6= α(v). A maximum avatar matching of a
k-avatar graph is an avatar matching of maximum
cardinality. Given a weight function ` on the edges
of the graph G, a minimum weight maximum avatar
matching is a maximum avatar matching of mini-
mum weight. We show that the avatar version of
the weighted matching problem can be reduced to
non-bipartite weighted graph matching.

The k-avatar minimum weight maximum match-
ing problem is stated as follows: Given a k-avatar
graph G(V,E,A, α) with edge-weight function ` : E →
R, find a maximum avatar matching of minimum
weight.

The reduction is intuitively straightforward. If
an entity has k avatars, then it involves introduc-
ing k− 1 new vertices for each entity and connecting
each of them by an edge of very small weight (say, 0)
to each of its k avatar vertices. A minimum weight
graph matching would then force the use of as many
of these 0 weight edges as possible, guaranteeing the
match of all but one avatar vertex for that entity to
the newly introduced entity vertices (using 0-weight
edges). The vertex that is not matched with a 0-
weight edge will, in turn, be matched to some other
vertex in G in a way as to achieve a minimum weight
matching.

The following is a sketch of the proof for k = 2.
Construct a graph G′(V ′, E′) with edge-weight func-
tion w′ as follows. For each entity ai ∈ A, create a
new vertex in V ′. Also, add each vertex u ∈ V to V ′

as u′. Hence V ′ = V
⋃
{ai|1 ≤ i ≤ n}. Then we have

E′ = E
⋃
{(u, v)|u ∈ (V ′ − V ), v ∈ (V ′

⋂
V, α(v) =

u}. The weight w′(e) of each edge e ∈ E′ is defined
as follows:.

w′(e) =

{
w(e) if e ∈ E,

0 if e ∈ E′ − E,
(3)

Then we simply proceed to find a minimum weight
maximum matching in G′ solving it as a standard
non-bipartite matching problem. We can use Ed-
monds’s algorithm to solve a weighted maximum match-
ing problem in any graph. LetM ′ = {u′1, u′2, . . . , u′m′}
be a minimum weight maximum matching in G′ with
u′i ∈ V ′ andm′ even, then we say thatM = {u1, u2, . . . , um}
is a minimum weight maximum avatar matching of G.
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We now prove that M is a minimum weight maximum
matching of G.

Proof If M ′ = {u′1, u′2, . . . , u′m′} is a minimum
weight maximum matching in G′ with u′i ∈ V ′, then
all of the n vertices in (V ′ − V ) are contained in
that matching. See that ∀a ∈ (V ′ − V ) we have that
w′(a, v) = ε ∀(a, v) ∈ E′, and that v ∈ (V ′

⋂
V ) by

construction of G′. If there was a vertex a ∈ (V ′−V )
such that a /∈M ′, then there are two vertices u ∈M ′
and v ∈ M ′ in V ′

⋂
V that are connected to a. Let

x and y be matched to u and v respectively in M ′.
Then by construction we know that x /∈ (V ′ − V )
and y /∈ (V ′ − V ), which implies w′(u, x) > w′(a, u),
w′(v, y) > w′(a, v). Then removing (u, x) from M ′

and adding (a, u) produces a maximum matching of
lower weight than the initial matching M ′. Then M ′

was not a minimum weight maximum matching, and
this is a contradiction.

Having shown that M ′ contains all of the n ver-
tices in (V ′ − V ), we proceed to show that M =
M ′ − {(ai, v) ∈ M ′|1 ≤ i ≤ n, v ∈ (V ′

⋂
V )} is

an avatar maximum matching of minimum weight.
Since all the vertices in {ai|1 ≤ i ≤ n} are matched to
vertices in V ′

⋂
V , then M contains only one avatar

per entity since there are only two avatars per entity
and each vertex v ∈M ′ is either matched to an entity
vertex ai or to a vertex that is an avatar of another
entity aj. Hence M is an avatar matching of G. Fur-
thermore, M is a minimum weight maximum avatar
matching of G. If M were not a minimum weight
maximum avatar matching of G and there were an-
other maximum avatar matching M2 of G then there
would be a maximum matching M ′2 with lower weight
than M ′, which would be a contradiction. Therefore
M is a minimum weight maximum avatar matching
of G. �

As mentioned in the text, generalizing the above
proof for k > 2 is straightforward. The detailed proof
will be provided in a full version of the paper.

7.3 Avatar Maximum Gap Reduction
to Network Flow

Using a reduction to network flow, it can be shown
that for a given value of B, a fixed infinite partition
of the line into cells of size B, and a fixed sequence
of consecutive cells, there exists a polynomial-time
algorithm to determine if that partition is valid for
some avatar assignment of L.

Below we formalize the ideas expressed above. For
a given value of B, a fixed infinite partition of the line

into cells of size B, and a fixed sequence of consecu-
tive cells, we first show a polynomial-time algorithm
to determine if that partition is valid for some avatar
assignment of L. Consider the following reduction to
network flow. Construct a bipartite directed graph
with two sets P and Q such that each vertex pi ∈ P
corresponds to entity ai ∈ A, and each vertex qj ∈ Q
corresponds to cell Cj in the infinite partition. Create
a directed edge (pi, qj) with capacity 1 and minimum
flow 0, if ∃u ∈ Cj which is an avatar of ai. Add
a vertex s and add a directed edge (s, pi),∀pi with
capacity 1 and minimum flow 0. Also we add a ver-
tex t. Add a directed edge (qj , t),∀qj with capacity
n and minimum flow 1. After this construction, we
find the maximum s − t flow of G′. If this flow is of
value n, then there is an avatar assignment such that
each cell in the partition contains one of the points
used in the avatar assignment. If these cells are cho-
sen to be contiguous, then we have effectively tested
if the partition is valid for the specific cell size and
choice of cells. In Algorithm 2, the call to procedure
makeNetwork constructs the instance of the network
flow problem mentioned above. This procedure takes
as input the set of entities, the set of points, and a
group of cells. In order to try every possible set of
consecutive cells, the algorithm has two for-loops.

Algorithm 2 Determine if there is an avatar assign-
ment such that all the cells that contain assigned
points are adjacent to each other

Require: A: list of n entities
Require: V : list of points on the line
Require: α: avatar to entity relation
Require: Br: cell length
let C1, C2, . . . , Cm the ordered set of cells that
contain points from V .
for (i = m− 1 down to i = 1) do

for (j = 1 to j = m− i) do
G′ = makeNetwork(A, V, (Cj,...,Cj+i))
if (n == maxFlow(G′)) then

return YES

end if
end for

end for
return NO

We need to try every possible “partition”. Two
partitions are different if the set of points in at least
one cell are different in the partitions. We argue that
there are at most kn different “partitions” and that
we can efficiently generate every possible partition
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with cells of size B. For each point v on the line we
divide the line into cells such that v is at the leftmost
end of the cell that contains it. These partitions are
sufficient because otherwise, we can slide the “par-
titions”, making sure that during the slide that no
changes occur to the set of points contained, until
some point is hit on the boundary. If at least one
point has to be on a partition boundary, clearly there
are at most kn partitions. Thus the algorithm ends
up solving a series of network flow problems as shown
in Algorithm 2.

7.4 Avatar Convex Hull Problem for
Parallel Entities

We first consider the case when k = 2 and later show
how to generalize the solution to k > 2. Assume
that entity ai ∈ L has two avatars {a′i, a′′i }, both
points in R2. Let si be the line segment joining the
two points and ti be the infinite line containing si.
We now show a polynomial-time algorithm to solve
the 2-avatar convex hull for parallel entities problem
using dynamic programming. Our presentation here
will assume that each ti is vertical. However, the
algorithm can be extended to the case when they are
not vertical (see Fig. 5(b)). Let us assume without
loss of generality (wlog) that ∀ai ∈ L, a′i has higher
y-coordinate than a′′i . Also assume wlog that a′i has
smaller x-coordinate than a′j for i < j . To solve
the 2-avatar convex hull problem for parallel entities
we first divide the initial problem into 4 subproblems.
The final solution may have a′1 (resp. a′n) or a′′1 (resp.
a′′n) as the leftmost (resp. rightmost) point on the
hull. Since we do not know which one is correct, we
try all four possible subproblems and pick the best of
the solutions. Thus in each subproblem, we have only
one leftmost point and only one rightmost point, both
of which will be on the final convex hull. First, we
label the leftmost and rightmost points as s and t (see
Fig. 5(b)). The algorithm attempts to simultaneously
extend a partial upper hull and a partial lower hull
from s to t. Note that the line segment st will be
contained in the convex hull. Also note that if both
avatars of any entity ai lie on the same side of the line
st then we can discard the one that is farther from
the line and instead make two copies of the closer one.

Next we present the details of the dynamic pro-
gramming algorithm for the avatar convex hull prob-
lem for parallel entities. Define:

(i) C[u, un, l, ln,m] to be the smallest length polyg-
onal chain consisting of a concatenation of the

(a) (b)

Figure 5: (a) Figure for Avatar convex hull problem
with parallel entities. (b) Case when the lines con-
taining all avatars of an entity are parallel, but not
necessarily vertical.

partial upper hull from s to a′u (s  a′u) and
the partial lower hull from s to a′′l (s  a′′l ),
such that (a) u ≤ m < un, (b) l ≤ m < ln, (c)
the region enclosed between it and the polygo-
nal chain a′u − um − lm − a′′l is a convex region
covering at least one avatar for each entity in
a1, . . . , am. As shown in Fig. 5(a), um (resp.
lm) is the point of intersection between the line
tm (line containing all avatars of entity am) and
the segment a′ua

′
un (resp. segment a′′l a

′′
ln

). If
any of the three conditions stated above (a)-(c)
are not satisfied, then C[u, un, l, ln,m] is unde-
fined.

(ii) L[u, un, l, ln,m] = Length of the polygonal chain
C[u, un, l, ln,m].
If C[u, un, l, ln,m] is undefined, then L[u, un, l, ln,m] =
∞.

The length function defined above satisfies the fol-
lowing recurrence:

L[u, un, l, ln,m] =
L[u, un, l, ln,m− 1] if (m < u) and (m < l)

min
i<l

L[u, un, i,m,m− 1] + |a′′i a′′m| if l = m,

min
i<l

L[i,m, l, ln,m− 1] + |a′ia′m| if u = m,

∞ otherwise

(4)
Finally by setting L[s, i, s, j, s] = 0 as the base

case and running the recurrence relation in Eq (4)
we can get the length of the optimal convex hull by
calculating Lopt as follows::

Lopt = min
u,l∈[n−1]

{L[u, n, l, n, n−1]+ |a′ut|+ |a′′l t|} (5)
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To understand the correctness of the recurrence in
Eq (4) we observe that the optimal solution C[u, un, l, ln,m]
is determined by the following cases (assume wlog
that u < l):

• First, note that L[u, un, l, ln,m−1] ≤ L[u, un, l, ln,m].
If am does not have any avatar as part of the
polygonal chain C[u, un, l, ln,m] and u < l < m
then at least one avatar of am is between the
segments uun and lln. However, since u < l ≤
m − 1, one of the two avatars of am−1 is also
between the segments uun and lln. Then the
claim is that C[u, un, l, ln,m] = C[u, un, l, ln,m−
1] and L[u, un, l, ln,m] = L[u, un, l, ln,m − 1],
since otherwise, we can replace the polygonal
chain C[u, un, l, ln,m] with the shorter polyg-
onal chain C[u, un, l, ln,m − 1] and one of the
avatars of am would get covered since it lies in
between the segments uun and lln.

• If one of the avatars of am is part of the polyg-
onal chain C[u, un, l, ln,m] (assume wlog that
u < l = m), then there must exist a point a′′i in
the lower hull of the polygonal chain
C[u, un, l, ln,m] such that the polygonal chain
C[u, un, i, l,m−1] concatenated with the polyg-
onal chain a′′i −a′′l −a′um −a

′
u encloses a convex

region that contains at least one avatar from
the entity set [m]. Since the recurrence re-
lation tries out every possible i, the solution
would have considered C[u, un, i, l,m − 1] con-
catenated with the segment lln and found it.

7.5 Algorithm for finding ε-approximate
smallest avatar convex hull

We calculate an ε-approximate minimum convex hull
for a set of k-avatar entities L in Rd by finding an
ε-kernel Q of L. We call it ε-approximate because
the Hausdorff distance between CH∗(L) and CH(Q)
would be at mostO(ε). The approximation is achieved
by computing a convex region whose width along ev-
ery direction is within a factor of at least 1− ε of the
width of the optimal hull along that direction. See
Algorithm 1.

It is clear that for any box Bi, with largest side of
length Di, if we expand the box along each direction
until it becomes a hypercube of side Di and scale
it to the unit hypercube C, we are left with an α-
fat point set in C since CH(Bi) must cover all the
points in Si and hence it must touch each face of C.
This transformation T (Bi) of Bi can be found in time

Algorithm 3 ε-approximation of α-fat avatar
point set minimum avatar convex hull
Require: P : an α-fat set of k-avatar points inside

the unit hypercube C where there is at least a 1-
avatar point on each face of C

let Z be a d-dimensional grid of cell size δ where δ
is the largest integer s.t. δ ≤ (ε/

√
d)α

for each assignment of binary values (0/1) to the
cells in the grid do
let Qi be the set of cells assigned with a 1 in
the ith binary assignment
if Qi is legal then
let Q′i ⊆ Qi be the collection of highest and
lowest cells in every hypercolumn containing
at least one cell of Qi
let Q (resp., Q′) be the set of representative
points of cells in Qi (resp., Q′i)
//It is easy to see that Q′ is an ε-kernel of Q
let CHi = CH(Q′)
if µ(CHi) < µ(CHmin) then
CHmin = CHi

end if
end if

end for
return CHmin
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linear in the number of points in Bi, which is equal
to O(nk). By Lemma 1, we know that finding an ε-
approximate avatar convex hull of all the points in C
gives us directly an ε-approximate avatar convex hull
of all the points in Bi.

We can determine if a given set of grid cells Qi
is legal by solving a network flow problem as follows.
Create a set of vertices T such that each vertex in T
represents a different cell in Qi. Create a source ver-
tex s with directed edges to each vertex in T . Create
a set of vertices T ′ such that each vertex in T ′ repre-
sents a distinct point in some cell in Qi. Add an edge
from u ∈ T to u′ ∈ T ′ if the corresponding cell in
Qi contains the corresponding point. Create another
set of vertices T ′′ such that each vertex in T ′′ corre-
sponds to an avatar entity. Add an edge from u′ ∈ T ′
to u′′ ∈ T ′′ if the corresponding point is a possible
value for the corresponding avatar entity. Finally add
a sink vertex t and connect all vertices in T ′′ to t by
an edge. All edges have capacity 1. A maximum flow
of size |T | from s to t will identify a representative
point in each cell such that no two points are avatars
of the same entity. It is easy to see that such a flow
exists if and only if the corresponding set of cells Qi
is legal.

7.6 (1+ ε)-Approximate Avatar Diam-
eter

Definition 2 Define the minimum avatar diameter
diam(L) of a set L of avatar points as the diame-
ter of the avatar assignment A(L) with the smallest
diameter.

We can use the algorithm described above to find an
avatar ε′-kernel Q and ε′-approximate smallest con-
vex hull CH(Q) of L. Our measure function is µ(.) =
diam(.). We have that this measure function diam(.)
has the property: diam(L) = diam(CH∗(L)). Let
ū ∈ Sd−1 be the direction of diam(L). Then we have
that:

(1− ε′)ω(u, L) ≤ ω(u,Q), ∀u ∈ Sd−1

(1− ε′) · diam(L) ≤ ω(ū, Q)

≤ diam(Q)

diam(L) ≤ (1 + ε) · diam(Q),

where ε =
1

1− ε′

Thus we can just return (1+ε) ·diam(Q), which gives
us an (1 + ε)-approximate minimum avatar diameter

knowing that:

diam(Q) ≤ diam(L) ≤ (1 + ε) · diam(Q)

1 ≤ (1 + ε) · diam(Q)

diam(L)
≤ (1 + ε)

Theorem 7 Given an exact algorithm for finding the
diameter of a convex hull that runs in time O(na),
there exists an algorithm that computes a (1 + ε)-
approximate smallest k-avatar diameter in time O((nk)(2d+3)·
n
δd
· (2d)2 · 2

1

δd ( 2
δd−1 )b

d
2 c + ( 2

δd−1 )a).

7.7 (1+ε)-Approximate Smallest Perime-
ter Axis-Aligned Enclosing Hyper-
box

For instance we would find (1+ε)-approximate small-
est perimeter axis-aligned avatar enclosing hyperbox
B(L) containing an avatar of each entity in L.

Let CH(L) be the smallest avatar convex hull of
a set L of k-avatar points. Then if Q is a k-avatar
ε′-kernel of L such that Q ⊂ CH(L). Let µ(.) be
the measure function measuring the perimeter of a
hyperbox. Then we have:

(1− ε′) · ω(u, L) ≤ ω(u,Q), ∀u ∈ Sd−1

(1− ε′) · ω(u, L) ≤ ω(u,Q), ∀u ∈ [d] = {e1, e2, . . . , ed}
(1− ε′)

∑
u∈[d]

ω(u, L) ≤
∑
u∈[d]

ω(u,Q)

(1− ε′) · µ(B(L)) ≤ µ(B(Q))

µ(B(L)) ≤ (1 + ε) · µ(B(Q)), where ε =
1

1− ε′

Thus once again we obtain a (1 + ε)-approximation
by returning (1 + ε) · µ(B(Q)). knowing that:

1 ≤ (1 + ε) · µ(B(Q))

µ(B(L))
≤ (1 + ε)

Theorem 8 Given an exact algorithm for finding the
diameter of a smallest perimeter axis-aligned enclos-
ing hyperbox that runs in time O(na), there is an
algorithm that finds a (1 + ε)-approximate smallest
perimeter axis-aligned avatar enclosing hyperbox in

time O((nk)(2d+3) · n
δd
·(2d)2 ·2

1

δd ( 2
δd−1 )b

d
2 c+( 2

δd−1 )a).

7.8 Rectilinear planar layout of Cubic
Directed Planar Graph

A graph is a cubic graph if all vertices have degree
three. The following problem is known to be NP-
complete [11, 16]: given a cubic directed planar graph
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G (in which we can assume that each vertex has in-
degree two and out-degree one, or in-degree one and
out-degree two), determine whether there exists a di-
rected Hamiltonian path in G?

A rectilinear planar layout of a planar graph G =
(V,E) is a mapping such that each vertex in V is
mapped to a horizontal line segment and each edge
in E is mapped to a vertical line segment. Two hor-
izontal line segments are connected by the vertical
line segment if and only if their corresponding ver-
tices in G are connected with an edge of G (see Fig.
6). Rosenstiehl and Tarjan [17] showed that a rec-
tilinear layout of G can be computed in O(n) time
such that all endpoints of segments have integer co-
ordinates and the height and the width of the layout
are both O(n).

(a) (b)

Figure 6: Rectilinear planar layout.

By introducing bending edges, we can redraw the
rectilinear planar layout satisfying the following prop-
erty:

(i) For each horizontal line corresponding to v ∈ V
with in-degree 1 and out-degree 2 (resp. in-
degree 2 and out-degree 1), the entering (leav-
ing, reps.) vertical segment lies between the two
leaving (entering) vertical segments as shown in
Fig. 7(a).

For each v ∈ V , let us denote the intersection
points of the horizontal line corresponding to v and
the three incident vertical lines from the left to right
by l(v), c(v) and r(v) (see Fig. 4). Then, by bend-
ing vertical edges, we further impose the following
properties for the rectilinear drawing:

(i) For each v ∈ V , |l(v) − c(v)| = |r(v) − c(v)|.
(Fig. 7(b))

(i) For each horizontal line corresponding to v ∈ V
with out-degree 2 in G, the leaving horizontal
lines have the same length. (Fig. 7(c))

If the parity of the y-coordinates of all horizon-
tal lines coincide, then the above redrawing is always
possible. (We can adjust the y-coordinate of each
horizontal line at the beginning. So, this redrawing
process is always possible.) Also, by making the grid
finer, we may assume that all segments are drawn in
the grid and parallel lines are at least 4 unit-length
apart from each other.

7.9 Reduction from DHPst to 2-Avatar
EMST

Here we show a polynomial-time reduction from DHPst
to 2-Avatar EMST. Let n be the sum of the number
of pairs and the number of unpaired points. In this
setting, we observe the following.

Theorem 9 The avatar MST problem constructed
in section 4 has the optimal cost of (n − 1) if and
only if G has a Hamiltonian path from s to t.

Proof Since any two points have a distance of
at least 1 unit-length, any avatar MST hast the cost
at least n− 1 unit-length. It is clear that there is an
avatar MST with the cost n−1 if G has a Hamiltonian
path. Observe that the distance of two points of P is
equal to 1 iff they are next to each other on a line
segment in the drawing. Hence, if we consider the
graph on P consisting of unit length edges, then only
c(v) (v ∈ V ) can have the degree three. However,
since c−1(v) and c1(v) are paired, any avatar forest
consisting of only unit-length edges has no vertex with
degree more than two. So, if G has no Hamilton path,
then any avatar forest consisting of only unit-length
edges is disconnected, and any avatar MST contains
an edge whose length is more than unit-length. �

7.10 NP-Completeness Proof of Avatar
Reachability

Theorem 10 The k-avatar reachability problem is
NP-Complete.

Proof The reduction is from the CLIQUE problem.
Let graph GC(V,E) and integer k denote an instance
of the CLIQUE problem. We construct graph GA(V ′, E′)
as follows: create k+2 layers of vertex sets, V ′0 , V

′
1 , ..., V

′
k+1.

Let V ′0 = {s} and V ′k+1 = {t}. For i = 1, . . . , k,
let V ′l = {v′l,i,j : 1 ≤ i ≤ |V |, 1 ≤ j ≤ k}. Let
vertices v′x,i,y and v′y,i,x be avatars of the same en-
tity. Add edges (v′l,i,j , v

′
l,i,j+1) for all l, i, and j; for

0 ≤ l < k, add edges (v′l,i,k, v
′
l+1,j,1) for all i, j. Note
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(a)

(b)

(c)

Figure 7:

that the vertices v′l,i,1, ..., v
′
l,i,k in layer l form n con-

nected subpaths. Denote the subpath from v′l,i,1 to
v′l,i,k by Sl,i. It is important to note that for each
vertex vi ∈ V , there is exactly one corresponding sub-
path in each layer V ′l . See figure 8 in the appendix
(see section 7.12).

Now for each pair of non-adjacent vertices vi, vj ∈
V from GC , add vertices u′l,i,x and u′l,j,x, 1 ≤ x ≤ k to
GA. Add edges (u′l,i,x, u

′
l,i,x+1) and (u′l,j,x, u

′
l,j,x+1),

1 ≤ x < k. Update subpaths Sl,i by adding an edge
(vlast, u

′
l,i,1) to its last vertex; and take each outgo-

ing edge from it and make it outgoing from u′l,i,k in-
stead. Finally, let each pair of vertices u′x,i,y, u

′
y,j,x

be avatars of each other, for all 1 ≤ x, y ≤ k.
It is not hard to see that the size of graph GA is

polynomial in n. More importantly, we claim that if
the set {vi1 , ..., vik} is a clique in GC , then a 2-avatar
path can be found from s to t in GA by starting at s
(layer V ′0), moving from each layer to the next, select-
ing in each layer a subpath corresponding to a distinct
vertex from the clique. Intuitively, if the path in level
l goes through vertices of the form v′l,i,j, then vertex
i is chosen as the l-th vertex in the clique. Further-
more, the vertices of the form u′l,i,j that are required
to be visited by the path (and its avatars) ensure that
the other vertices picked for the clique are indeed ad-
jacent to i. The converse is proved by starting from
a 2-avatar path and selecting the clique vertices based
on the subpaths traversed in each layer.

Hence there is a clique of size k in GC if and
only if there is a 2-avatar s  t path in GA. It
is readily shown that 2-avatar reachability is in NP,
thus completing the proof that it is NP-Complete. �

7.11 Gap-preserving reduction from max-
clique to 2-avatar shortest path

Lemma 2 There is a gap-preserving reduction from
max-clique to 2-avatar shortest path that transforms
a graph Gclique(V,E) to a graph Gavatar(V

′, E′) such
that:

(i) if OPTclique(G) ≥ k·|V |, OPTavatar(s—t) ≤ m

(ii) if OPTclique(G) < α · (k · |V |), OPTavatar(s −
t) > (2− α) ·m

where m = (k2 · |V |3) + 1, and α and k are any con-
stants such that 0 ≤ α, k ≤ 1. Here OPTclique(G) is
the size of the maximum clique in Gclique(V,E), and
OPTavatar(s−t) is the length of the shortest 2-avatar
path from a vertex s to a vertex t in Gavatar(V

′, E′).
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Proof Let Gclique(V,E) represent an arbitrary
instance of a max-clique problem, and 0 < k ≤ 1.
We first create a graph Gavatar(V

′, E′) as follows:

Assume that k · |V | is an integer, if it is not then
just round it to an integer. Create k · |V | + 2 layers
V ′0 , V

′
1 , ..., V

′
k·|V |+1. Add a new vertex s in layer V ′0 .

Add a new vertex t in layer V ′k·|V |+1. In each layer

V ′l ∈ {V ′1 , ..., V ′k·|V |}, 1 ≤ l ≤ k · |V |, add k · |V |2

new vertices, V ′l = {v′l,i,j : 1 ≤ i ≤ |V |, 1 ≤ j ≤
k ·|V |}. Then make each pair of vertices (v′x,i,y, v

′
y,i,x)

be avatars of each other, and add an edge from v′l,i,j
to v′l,i,j+1 in each layer V ′l for all vertices v′l,i,j for
1 ≤ l ≤ k · |V |.

Note that in each layer V ′l , there exists a connected
subpath from v′l,i,1 to v′l,i,k·|V |, for each 1 ≤ i ≤ |V |.
In other words, each level consists of |V | subpaths
each of length k · |V | with no links between the sub-
paths. Denote the subpath of vertices {v′l,i,1, ..., v′l,i,k·|V |}
as Sl,i. It represents the subpath corresponding to ver-
tex vi ∈ V in layer V ′l . Notice that for each vertex
vi ∈ V there is one, and only one, subpath in each
layer V ′l that corresponds to it.

Now append more vertices to each subpath in the
following way: For each pair of non-adjacent vertices
vi, vj ∈ V from Gclique, add vertices u′l,i,j,x to Sl,i and
u′l,j,i,x to Sl,j for all x, 1 ≤ x ≤ k · |V | in each layer
V ′l in the graph Gavatar. Add an edge from u′l,i,j,x
to u′l,i,j,x+1 and an edge from u′l,j,i,x to u′l,j,i,x+1 for
all 1 ≤ x < k · |V |. Then update the subpath Sl,i
corresponding to vertex vi ∈ V in layer V ′l by adding
an edge from its last vertex to u′l,i,j,1. Update subpaths
Sl,j accordingly for all layers too. Then for all the
new vertices added in all layers, make each pair of
vertices u′x,i,j,y,u′y,j,i,x be avatars of each other, for
all 1 ≤ x, y ≤ k · |V |.

Now, for each layer V ′l add two slack subpaths C ′l
and D′l by adding new vertices
C ′l = {c′l,1, . . . , c′l,k·|V |2+ m

k·|V |
} and

D′l = {d′l,1, d′l,2, ..., d′l,k·|V |2+ m
k·|V |
}. Make each pair

of vertices c′l,x,d′l,x be avatars of each other, for all

1 ≤ x ≤ k · |V |2 + m
k·|V | . Also add an edge from c′l,x to

c′l,x+1 and an edge from d′l,x to d′l,x+1 for all 1 ≤ x <
k · |V |2 + m

k·|V | . Add an edge from c′l,k·|V |2+ m
k·|V |

to

the first vertex of each subpath in layer V ′l+1, and do
the same for d′l,k·|V |2+ m

k·|V |
. Then in each layer V ′l ,

add a shortcut edge from the last vertex of subpath
Sl,i to every vertex that receives an edge incoming
from c′l, m

k·|V |+|Sl,i|
. The effect of adding these shortcut

edges is to ensure that the length of any maximal in
level l is k·|V |2 or k·|V |2+ m

k·|V | ; the length is k·|V |2+
m

k·|V | if the path utilizes only vertices from C ′l or D′l,

and k · |V |2 if the path uses vertices from any subpath
Sl,i. Add an edge from c′l,k·|V |2+ m

k·|V |
to c′l+1,1, and an

edge from d′l,k·|V |2+ m
k·|V |

to d′l+1,1. Finally add edges

from s to c′1,1, to d′1,1, and to the first vertex of S1,i

for 0 ≤ i ≤ |V |; from c′k·|V |,k·|V |2+ m
k·|V |

to t; and from

d′k·|V |,k·|V |2+ m
k·|V |

to t.

Note that the size of any subpath Sl,i is at most
k ·|V |+k ·|V |·(|V |−1), which is k ·|V |2. Observe that
the shortest path from the first vertex of any subpath
Sl,i to the first vertex of any subpath Sl+1,j in the
following layer is of length k · |V |2 by construction.

Suppose there is a clique of size (k · |V |) in graph
Gclique. Let Ck·|V | = {vi1 , vi2 , ..., vi(k·|V |)} be the ver-
tices in the clique. Then it is possible to form a 2-
avatar path p from s to t by starting at s and adding
subpath Sl,il to the path p for each layer V ′l where
1 ≤ l ≤ k·|V | (see that subpath Sl,il is the subpath cor-
responding to vertex vil ∈ Ck·|V | in layer Vl). Then
path p is a 2-avatar path since it cannot have any
pair of vertices that are avatars of each other. Path
p cannot have any pair of vertices that are avatars of
each other because if there were any such pair then
by construction it would mean that there is a pair
of non-adjacent vertices in the given clique Ck·|V |,
which is a contradiction. This path p is of length
m = k2 · |V |3 + 1 since it moves from layer to layer
by selecting subpaths corresponding to vertices in the
clique from graph Gclique. The distance from the first
vertex of a non-slack subpath to the first vertex of a
subpath in the next layer is k · |V |2 for all layers V ′l
with 1 ≤ l ≤ k · |V |. Since k · |V | non-slack sub-
paths are selected by path p going from s to t then p
has length m = k2 · |V |3 + 1. This path is also a 2-
avatar path of shortest length connecting s to t since
it moves from layer to layer by selecting the subpaths
corresponding to the vertices in the clique.

If the max-clique is of size larger than or equal to
k · |V | then the shortest 2-avatar path is of length
exactly m after seeing that it is possible to find a 2-
avatar path of size m from s to t in Gavatar given a
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clique of size (k · |V |) in Gclique. Then (i) follows.

If the max-clique in Gclique is of size smaller than
α · (k · |V |), for some constant α ≤ 1, meaning:

OPTclique(G) < α · (k · |V |),

Then any path from s to t must use only vertices from
the slack subpaths C ′l or D′l in at least one layer Vl. If
it were possible to gather (k · |V |) non-slack subpaths
(one per layer) that make a 2-avatar path p from s
to t then it would be possible to find a clique of size
(k · |V |) in Gclique by selecting the vertices in Gclique
that correspond to the subpaths used in p. Then, if
the max-clique is of size less than α · (k · |V |), there
is no 2-avatar path from s to t that uses more than
α · (k · |V |) of the subpaths Sl,i. In that case at least
(1−α) · (k · |V |) slack subpaths must be used in order
to form a 2-avatar path from s to t. So the size of
the shortest path must be larger than (2−α) ·m. See
that:

OPTavatar(G) > ((k · |V |) · (k · |V |2) + 1)

+
m

k · |V |
· (1− α) · (k · |V |)

OPTavatar(G) > (k2 · |V |3 + 1) +m · (1− α)

OPTavatar(G) > m+m · (1− α)

OPTavatar(G) > (2− α) ·m

and (ii) follows.

7.11.1 Inapproximability of 2-avatar shortest
path to within any constant factor

The 2-avatar shortest path problem cannot be ap-
proximated to within any constant factor in poly-
nomial time because any polynomial-time constant-
factor approximation algorithm for 2-avatar short-
est path problem can be used to provide an exact
polynomial time solution to the decision version of
the clique problem. A polynomial-time solution to
clique would imply that P=NP, hence a constant-
factor polynomial-time approximation algorithm for
2-avatar shortest path cannot exist unless P=NP. We
will show a gap-introducing reduction from clique to
2-avatar shortest path using a construction as the one
shown above in section 7.11.

Theorem 11 There is no polynomial-time c-approximation
algorithm for 2-avatar shortest path problem for any
constant c > 1.

ProofProof by contradiction. Let ALGavatar be a c-
approximation algorithm for 2-avatar shortest path.
We show that if there is such an approximation al-
gorithm for 2-avatar shortest path then we can solve
clique in polynomial time by introducing a gap. To
show this, we describe how an instance Iclique(G, κ) of
clique can be transformed into an instance Iavatar of
2-avatar shortest path such that approximating Iavatar
to within a constant factor c of its optimal solution
gives us a solution to Iclique(G, κ). We use a transfor-
mation almost identical to the transformation used in
the proof of theorem 2. Let an instance Iclique(G, κ)
of clique be defined with a graph Gclique = (V,E) as:
Is there a clique of size at least κ in G? As in sec-
tion 7.11, we create an instance Iavatar by creating a
graph Gavatar = (V ′, E′) exactly as shown in section
7.11, letting k = κ

|V | . Here we are going to have the

slack subpaths have length

k · |V |2 + (c− 1) ·m+ 1

instead of k · |V |2 + m
k·|V | as we did in section 7.11.

This will give us the following relation:

(i) if OPTclique(G) ≥ k·|V |, OPTavatar(s—t) = m

(ii) if OPTclique(G) < k · |V |, OPTavatar(s − t) >
c ·m

If OPTclique(G) ≥ k · |V | that means that there is a
clique of size at least κ in G. If OPTclique(G) < k ·|V |
then there is no clique of size at least κ in G.

In this construction of graph Gavatar we have that
in each layer, for each subpath that goes through ver-
tices in non-slack subpaths Sl,i, for 1 ≤ l ≤ k · |V |
and 1 ≤ i ≤ |V |, its length is going to be k · |V |2 as in
the construction in section 7.11; and for each subpath
that goes only through vertices in slack subpaths, its
length is going to be k · |V |2 + (c− 1) ·m+ 1. Notice
that the shortest possible path from s to t has length

m = k2 · |V |3 + 1

This path could be obtained by taking vertices from
a subpath Sl,i in each layer Vl, for 1 ≤ l ≤ k · |V |.
Any path from s to t of length larger than m must
take only vertices from a slack subpath in at least one
layer. In that case the length of the path must be at
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least c ·m+ 1. If the path takes vertices from a slack
subpath only in at least one layer then the length of
the path would be:

OPTavatar(s− t) ≥ ((k · |V |) · (k · |V |2) + 1)

+(c− 1) ·m+ 1

OPTavatar(s− t) ≥ m+ c ·m−m+ 1

OPTavatar(s− t) ≥ c ·m+ 1

OPTavatar(s− t) > c ·m

So any algorithm ALGavatar that approximates 2-
avatar shortest path to within a factor of c will have
to produce a path of length m. Since a path p of length
m must go through non-slack subpaths in each layer
then we can gather k · |V | vertices from the original
graph G by taking the vertices corresponding to the
non-slack subpaths used by p, this will give us κ ver-
tices that form a clique in G. If ALGavatar produces
a path of length larger than c ·m then we know that
there is no clique of size at least κ = k · |V | in G.

Therefore if there were a c-approximation polyno-
mial time algorithm for 2-avatar shortest path then
we could decide if there is a clique of size at least κ
in a given graph G by using the gap-introducing re-
duction shown above. This would imply that P=NP.
Hence, there is no polynomial-time c-approximation
algorithm for 2-avatar shortest path for any constant
c unless P=NP.

7.12 Figures

(a)

Figure 8: Graph GV after the first set of construc-
tions.
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