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There is a strong need for computational methods to predict and characterize
functional binding sites for the functional annotations of protein structures. In
this paper, we propose a new method that uses descriptions of the sites based on
local properties and support vector machines to predict and obtain key features of
metal-binding sites. Previous approaches relied on conserved residues or conserved
residue distribution in the protein three-dimensional structure for the predictions.
All reported Ca2t, Zn?*, Mg2t+, Mn?*, Cu?t binding sites present in a non-
redundant PDB (a total of 1144 metal-binding sites in 467 proteins) were used
in our experiments. Results from ten-fold cross-validation showed sensitivity and
specificity above 95%. Then, using feature selection methods, profiles of critical
features were obtained for each metal-binding site. These profiles are consistent
with the prior knowledge about metal-binding sites. Furthermore, they provide
new insights into the microenvironments of the metal-binding sites.

Keywords:  Protein structure, Support Vector Machines, structure-
function relationship, metal-binding sites.

1. Introduction

One of the goals of the genome project is to develop tools to compare and
interpret genomic information. One fundamental problem is knowing the
function of each gene product: Does it bind to another molecule? Is it
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important for regulation of cellular processes? Does it catalyze a chemical
reaction? Is it involved in a functional pathway? The importance of an-
swering these questions has led to research efforts aimed at predicting the
function of a given protein sequence.

Methods of functional annotation based on sequence data use methods
such as sequence alignment and sequence motif detection. However, these
methods have their limitations. In the case of sequence alignment, when
the sequence similarity goes below 25% to 30% the relationship between
the two sequences are hard to detect. Databases such as BLOCKS [8],
PROSITE [6], and Prints [2] have sequence patterns that are specific to
a given functional family of proteins. While sequence signatures for pro-
tein function prediction are very powerful, they still fail to be accurate
predictors for function. This is because the factors that determine the
functionality of protein active sites are very complex and depend on their
three-dimensional structure, and also on the biochemical and biophysical
properties of the site. Thus, as sequences diverge, it becomes harder to
identify the critical features. And even if two proteins structures are found
to be homologous, the relationship between structural and functional sim-
ilarity is not straightforward [13,14].

In contrast, a functional annotation method that is based on the ter-
tiary structure and the conserved biochemical and biophysical features of
a protein active site should overcome such limitations.

The Protein Data Bank PDB [3] is rapidly growing fueled by the Protein
Structure Initiative launched by NIGMS [ http://www.nigms.nih.gov/psi/].
As of August 31, 2004, PDB contained 26,999 protein structures, which
were determined by X-ray crystallography, NMR (Nuclear Magnetic Res-
onance) spectroscopy and computational methods. For all these proteins
one is interested in finding those sites on the protein that are involved in
its biochemical and cellular functions. What is needed is a computational
method to accurately predict functional sites in protein structures.

In order to devise a predictive method, what is required is a learning
procedure that can automatically examine protein molecular structures and
can extract useful representations of the key biophysical and biochemical
features. Such a general purpose system for producing representations could
have medical, pharmaceutical, and industrial applications.

Several approaches to recognize functional sites have been proposed.
Nayal et al. [12] proposed a method that was designed to locate calcium-
binding sites. This study was limited since only 32 proteins (with 64 doc-
umented calcium-binding sites) were used. A Bayesian technique was used
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by Bagley and Altman [1] and Wei and Altman [19,20] to predict vari-
ous functional sites. The Bayesian approach assumes independence of the
identified features. However, some features are dependent; for instance, an
excess of Aspartic acid residues implies an excess of oxygen atoms as well.
Approaches like TESS [17] and FFF [7] rely strongly on the existence of
conserved residues. Karlin et al. [10] showed that zinc-binding sites can
be classified into six groups, showing that the same function can be ac-
complished by different sets of amino acids in the active site. This can
be explained by the fact that during the evolution of a site, the selective
pressure is on the ability of the molecule to create an effective milieu for
the desired structure or function. Amino acids provide a base set of chem-
ical groups that can contribute certain features to the site. But, several
features can be realized in multiple ways. If, instead of viewing binding
sites as groups of residues, they are perceived as a chemical milieu that
accomplish a function, a better insight of the nature of binding sites can be
gained.

Yamashita et al. [21] have pointed out the local nature of the origin of
ion specificity because the hydrophobicity contrast is determined by groups
located within 7A from the metal ion. Other components that are naturally
long range, such as the electrostatic properties of the protein, do not seem
to affect the rules for recognition and fail to provide a simple algorithm for
the prediction of metal binding sites.

In this paper, we introduce a new method that is inspired by the ap-
proach of Yamashita et al.. This method focuses on local properties of
the environment of metal binding sites to predict (Ca?"), (Zn2*), (Mg?1),
(Mn?*) and (Cu?") binding sites. This new approach is independent of
conserved residues and conserved residue geometry, and takes advantage of
the large number of protein structures available to construct models using
a machine learning approach. This method could be the first step in the
construction of a library of models to elucidate the function of the over-
whelming amount of protein structures expected in the coming years.

Metal ions are critical to the structure of the protein, their stability,
and their function. Approximately one third of all proteins have metal
ions (PDB contained around 6000 proteins with documented metal binding
site); therefore a tool to predict and characterize metal binding sites will
be very significant. Although the MDB [5] (The Metalloprotein Database
and Browser) uses geometry and residue conservation to provide key quan-
titative information on the metal-binding sites in PDB protein structures.
It does not, however, provide a predictive approach.
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The rest of this paper is organized as follows. In Section 2.1 we define
a procedure to describe a protein active site. In Section 2.2 the machine
learning approach used (Support Vector Machines) for the prediction of
protein active sites is briefly explained. Then the results are shown and
compared with previously reported approaches. Finally, some experimen-
tal results are discussed, some conclusions are drawn and perspectives for
future work are made.

2. Methods

We consider metal-binding sites to be spherical regions of radius 7A, cen-
tered at the crystallographically determined metal ions, as suggested by
Yamashita et al.. Non-sites, used as negative examples, are 7A spherical
regions of the proteins that are known not to have metal-binding sites.
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Figure 1. Outline of the algorithm

An outline of the recognition method is shown in Figure 1. The goal
is to use a training set of positive and negative examples to obtain a SVM
classifier, which can then correctly classify a query region as being a metal-
binding site or not. The training set consists of a set of examples of metal-
binding sites and non-sites from a non-redundant version of PDB. For each
example (both sites and non-sites), a 7A spherical region is considered and
divided into spatial volumes that are concentric shells of thickness 1A. For
each concentric shell, the algorithm computes a measure of each feature,
thus generating a site description. Then a support vector machine classifier
is trained using known sites as positive examples and non-sites as negative
examples. Additionally, using feature selection, the most influential fea-



November 2, 2004 18:36 Proceedings Trim Size: 9in x 6in Leonardo2

tures of a site description during the training phase are presented as a list
of distinguishing features that forms a qualitative model of metal-binding
sites. When given a query region in a new structure, it is divided into
concentric shells and then a measure of each feature is computed to obtain
a description of the site. Then, the representation of the query region is
tested using the support vector machine classifier. In the rest of this sec-
tion, the key elements of our approach, particularly the site description and
the support vector machine classifier, are explained in detail.

2.1. Site Description

To describe a site, a property-based representation of macromolecular struc-
ture was used in this work. Similar representations have been shown to
facilitate the identification of key features. For example, Bowie et al. [4]
used a set of base properties (including secondary structure, degree of sol-
vent accessibility, and polarity) to show that these higher level represen-
tations are useful to distinguish proper from improper three-dimensional
folds. Similarly, Zvelebil et al. [22] have shown that properties can be used
to characterize the neighborhood of catalytic residues (properties included
residue type, mobility, polarity, and sequence conservation). These proper-
ties along with others included in the work by Bagley and Altman (detailed
secondary structure classification) were included. Also, in order to capture
three-dimensional information of a site, a new property was added: the
atom density in the three-dimensional structure as described by Karlin et
al. [11]. A summary of the properties used in this work is given in Table 1.

Table 1. Properties used in the study.

| Categories | Properties |
Atom properties Hydrophobicity, Charge
Van der Waals volume, B-factor
Chemical group Hydroxyl, Amide, Amine

Carbonyl, Ring System, Peptide
Residue properties Residue, Hydrophobic, Charged
Polar, Non-Polar,Acidic, Basic

Secondary structure 3-Helix, 4-Helix, 5-Helix
Bridge, Alpha, Beta, Coil
Tertiary structure Atom Packing

Our algorithm obtains the spatial distribution of the features in a spher-
ical region of radius 7A by scanning all the atoms in each of the concentric
shells around the active site. The resulting algorithm was implemented and
will be referred to as MILIEU.
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2.2. Support Vector Machines

As mentioned earlier, MILIEU is based on binary Support Vector Machines
(SVM) [16] classifier. The training of an SVM constructs a hyperplane sep-
arating the positive examples from the negative examples in the space of
representations [16]. To minimize the number of misclassifications, SVMs
map the examples to a point in higher-dimensional feature space. To avoid
over-fitting, SVMs choose the Optimal Separating Hyperplane (OSH) to
maximize the margin of error. SVMs are a sophisticated, robust and effi-
cient tool that can model non-linear relationships with ease [15].

3. Experimental Results
3.1. Data Sets

PDB contains many protein structures that are identical (or nearly iden-
tical) and has many structures that were determined with low resolution
methods. Using all the protein structures in PDB as a training set for our
algorithm can introduce bias caused by the redundancy. To avoid this bias
and to avoid using low resolution structures for the training, our algorithm
was trained with a non-redundant high-resolution database called Culled-
PDB [http://wuw.fccc.edu/research/labs/dunbrack/pisces/]. It is a
subset of the PDB database in which the protein structures share less than
30% sequence identity and have a resolution of 1.8A or better with R-factors
at most 0.30. Even within CulledPDB, only those proteins with reported
metal-binding sites were used.

The amount of sites used in this work outnumbered any of the previous
approaches that predicted metal-binding sites in tertiary structures using
local properties. In contrast, Yamashita et al. used 23 proteins, Nayal used
32 proteins (with 62 Ca%t-binding sites), while Bagley and Altman used 11
proteins. All the 1144 metal-binding sites present in 467 protein structures
from CulledPDB were used in our experiments (see Table 2). Non-sites
were obtained by taking random points inside a protein structure which
were at least 15A away from any known binding site. Five non-sites were
taken from each protein in order to have more negative examples.

To train and test our MILIEU software, all the site descriptions were
transformed into vectors. Each such vector can be written as follows: x; =
(:L'z' propl shellls Ti propl shell2s -+s Ti propN shell7)a where each component of X
represents one of N properties in one of 7 concentric shells.
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Table 2. Sites used in the study

Site Structures | CulledPDB Sites in
PDB structures CulledPDB
(Ca?t) 2303 125 361
(Zn2t) 1957 160 349
(Mg?2t) 1570 122 278
(Mn2+) 584 31 100
(Cu?t) 314 29 56
[ TOTAL | | 467 [ 1144 |

3.2. Predicting metal-binding sites

To make statistically meaningful validation of our experiments, a k-fold
cross-validation method was used. Using cross-validation over all the sites
makes the approach independent of which sites are used for training and
which ones are used for testing. In k-fold cross-validation, the training
set is divided into k subsets of equal size. Each subset is tested using the
classifier trained on the remaining k — 1 subsets. Thus, each instance of
the whole training set is predicted once, and the cross-validation accuracy
is the percentage of data that is correctly classified. MILIEU was tested
with ten-fold cross-validation. To assess the performance of the approach,
two measures were used: sensitivity, defined as the ability to recognize
a metal-binding site, and specificity, defined as the ability to recognize a
non-binding site. The formulae for sensitivity (SN) and specificity (SP) are:

TP FN
“rprrp M P rNiEN
where TP is the number of true positives, FP is the number of false pos-
itives, TN is the number of true negatives, and FN the number of false
negatives. The results of the cross-validation experiments (see Table 3)

show that the error rates are low.

SN

Table 3. Ten-fold cross validation results.

| Site | Sensitivity | Specificity ]
Calcium (Ca’T) 96.71 98.93
Zinc (Zn?t) 98.24 97.16
Magnesium(Mg2t) 96.42 96.19
Manganese(Mn2t) 95.0 94
Copper(Cu?t) 96.5 98.8

The prediction of Ca2t-binding sites by MILIEU had a sensitivity of
96.71% and a specificity of 98.93%. In contrast, FEATURE [19] achieved
a sensitivity of 98% and a specificity of 100%, but with the weaker leave-
one-out cross-validation and a much smaller set of proteins (training set:
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33 sites and 100 non-sites; test set: 33 sites and 30 non-sites). Addition-
ally, binding sites for Zn%t, Mg?t, Mn2t+, Cu?* were predicted by MILIEU
quite accurately, with all sensitivities above 95.0% and all specificities above
94.0%.

3.3. Feature selection to obtain key features.

The purpose of feature selection is twofold. First, it is equivalent to
a dimensionality-reduction step, which can improve the efficiency of the
method. More importantly, the resulting description of the metal-binding
site helps to identify its key features. As mentioned earlier, each site in the
training set was mapped to a vector x; = (x;1, ..., ;), where | represents
the dimensionality of the feature space. In our case, we used 67 properties
from each of 7 concentric shells, making [ = 67 x 7 = 469.

For a given feature vector x;, the classifier is given by sgn[b + wTx;],
where w = Zé‘:l a;x;; is the vector of weights w = (w1, ..., wy).

A simple feature selection approach retains features j for which the
value of |w;| exceeds a defined threshold value, t4. As tq4 is increased,
fewer features will be selected. To find the essential features for correct
classification of metal-binding sites, a separate experiment was performed
by taking 70% of the known examples as the training set. Three sets of
experiments were performed for each metal: with (a) no feature selection
(tg = 0), (b) threshold of 0.1 (¢4 = 0.1), and (c) threshold of 0.5 (t4 = 0.5)
The results are shown in Table 4.

Table 4. Feature Selection Results.

Site tq Number | Sensitivity | Specificity
Features
0 469 100.0 99.54
(Ca2t) | 0.1 112 99.22 99.074
0.5 12 96.031 95.9
0 469 99.00 95.15
(zn%t) | 0.1 186 99.0 97.12
0.5 22 91.753 93.08
0 469 87.30 96.53
(Mg2t) | 0.1 175 85.71 95.95
0.5 26 87.932 94.381
0 469 100.0 93.75
(Mn2t) | 0.1 109 100.0 95.74
0.5 9 93.93 91.48
0 469 100.0 100.0
(Cu2t) | 0.1 77 100.0 100.0
0.5 12 100.0 100.0
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It can be seen that the reduction of the features for a site description
does not greatly affect the sensitivity and specificity of the method, while
making it more efficient. This could be explained by the fact that there are
many redundant features in the set of features initially chosen, and that
some of the features are noisy.

Bagley and Altman [1] proposed more than 100 significant features for
Ca2*-binding sites. Our process identified about 12 highly significant fea-
tures.

In Figures 2-6, the results of the feature selection procedure are orga-
nized and presented as a 3D profile describing the key features in each of
the concentric shells. Dark squares imply that the feature is present (after
applying feature selection with ¢4 = 0.5).

3.4. Calcium

The key features of calcium-binding sites are shown in Figure 2, and are
consistent with the conclusions of Yamashita et al. [21], where they noted
that metal sites in proteins are ligated by a shell of hydrophobic atomic
groups (indicated by the presence of oxygen).

Our results also showed the importance of several features in the
outer shells including polar residues, mobility, and solvent (indicated as
RESIDUE_UNKNOWN), confirming the conclusions suggested by Bagley
and Altman [1]. Bagley and Altman [1] also showed the significance of
the ASP and GLU residues; our results have grouped them under the
RESIDUE_CHARGED feature.

3.5. Zinc

The key features of zinc-binding sites obtained by our system are shown in
Figure 3 and are consistent with the findings of Yamashita et al. [21], as
shown by the presence of carbon atoms in the outer shells. Karlin et al. [9]
identified six types of zinc-binding sites, which was not deducible by our
system.

3.6. Magnesium

The findings for the magnesium-binding sites clearly indicate the impor-
tance of carbon and oxygen atoms, which is in accordance with the conclu-
sions of Yamashita et al. [21]. The results are summarized in Figure 4.
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3.7. Manganese

The results for manganese-binding sites are similar to that of other metal
binding sites and are presented in Figure 5.

3.8. Copper

The Histidine and Ring System features, shown in our results in Figure 6,
captures the fundamental role of Histidine in the copper-binding sites, as
suggested in Karlin [10].

4. Discussion

This paper demonstrates that local properties can be used to train a SVM
classifier to obtain an effective system for predicting and characterizing
metal-binding sites.
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Our conclusions are consistent with previous findings [21]; we show that
all the analyzed metal-binding sites shared a basic set of features. The atom
packing feature was crucial in all the cases. Geometry of the binding site
is important, but may not be as rigid as suggested by Borkakoti et al. [17].

The system proposed in this paper is certainly not restricted to metal-
binding sites, and could be applied to other functional sites. Future work
includes designing predictors and descriptors for other binding sites (e.g.,
sodium, potassium, and other organic molecules).

It is not clear whether our system can be used to address the following
questions raised by Karlin [10]: Is there substantial divergent or convergent
evolution among metal centers? How do similarities and differences in the
metal-binding sites reflect evolutionary and functional processes? Accord-
ing to the results obtained, both process could have taken place. A conver-
gent process could have directed the evolution of some metal-binding sites,
as suggested by the fact that there is no fixed set of residues or geometry to
accomplish the same function; nature in the course of evolution could have
found various ways to obtain similar microenvironments suitable for the
metal binding. Divergent evolution is also suggested by some conserved
residues. Further studies taking into account more specific evolutionary
details are required.

5. Conclusions

We conclude that the metal-binding sites should be seen not as a sequence
of residues, but as a set of conserved conformational and environmental
features, which can be achieved by different configurations, and which can
be characterized by a relatively small number of features. We also showed
that these features can be learned by using a machine learning approach.
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We used the local features to train a SVM classifier. The resulting
software MILIEU showed improved performance in detecting binding sites
for calcium, zinc, magnesium, manganese, and copper
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