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Abstract 
Protein sequence data is being generated at a 
tremendous rate; however, functional annotation of 
these proteins is proceeding at a much slower pace. 
Biologists rely on computational biology and pattern 
recognition to predict the functionality of proteins. 
This is based on the fact that proteins that share a 
similar function often exhibit conserved sequence 
patterns. Such sequence patterns, or motifs, are 
derived from multiple sequence alignments and have 
been collected in databases such as PROSITE, 
PRINTS, SPAT, and eMOTIF. These patterns help to 
classify proteins into families where the exact function 
may or may not be known. Research has shown that 
these domain signatures often exhibit specific three-
dimensional structures. In this paper, we show how 
starting from a seed sequence pattern from any of the 
existing sequence pattern databases, and using 
information from the protein structure databases, it is 
possible to design biologically meaningful sequence-
structure patterns (SSPs). An important by-product of 
our method to generate sequence-structure patterns is 
an improved sequence alignment as well as an 
improved structural alignment of proteins belonging to 
a family and containing that pattern. Validation was 
performed by matching the resulting SSPs to domains 
in the ASTRAL compendium associated with a family 
or super-family designation in the SCOP database. 
SSPs generated by this method were frequently either 
fully specific (no false positives), fully sensitive (no 
false negatives), or both (diagnostic).   
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1. Introduction 
New proteins are being sequenced at a tremendous 
rate. The challenge biologists now face is the 
automatic, correct, and efficient functional annotation 
of proteins within these genomes. Laboratory-based 
research is ongoing, but is slow by definition. Most 

proteins are annotated using computationaly derived 
conserved patterns. It has long been known that certain 
residues within functional domains in proteins are 
better conserved among homologs than residues 
elsewhere in the proteins. Databases such as PROSITE 
[6, 15], eMOTIF [10], PRINTS [1], and SPAT [9]  
have been created as repositories for sequence patterns 
that describe and distinguish functional and structural 
domains in proteins. Kasuya et al. [12] systematically 
investigated the 3D structures of protein fragments 
whose sequences contain a specific PROSITE pattern. 
They observed that in a large number of cases, the 
three-dimensional conformations of the residues from 
the PROSITE pattern were nearly identical in all the 
true positives (i.e., proteins belonging to the family 
and containing the sequence pattern). Furthermore, the 
corresponding substructures in the false positives were 
often considerably different from those in the true 
positives. The main drawback with the approach 
followed by existing databases to generate sequence 
patterns is that they base their computations on 
multiple sequence alignments, which are often 
inaccurate, especially when the sequences exhibit 
considerable diversity. In this paper, we use both 
sequence and structure information and show how to 
automatically construct patterns with a sequence 
component (consisting of a “PROSITE-style” regular 
expression pattern) and a structure component 
(consisting of a structure template). Because of the use 
of the structural information, the resulting sequence 
patterns showed measurably higher discriminatory 
capability than existing sequence patterns. The 
patterns described in this paper, which we will refer to 
as sequence-structure patterns (SSPs), characterize 
portions of the three-dimensional protein structure, 
ranging in size from small pockets to entire domains. 

In our method, SSPs are generated by starting 
from “seed” sequence patterns from PROSITE, 
eMOTIF, PRINTS, or other sources, and improving 
them using an iterative alignment of structures from 
the Protein Data Bank (PDB) [2, 3] and ASTRAL [5] 
databases, and by using the knowledge of substitution 
groups [16]. An important by-product of our method 



to generate SSPs is an improved sequence and 
structure alignment of the protein domains that contain 
the SSP. Our method iteratively improves both the 
sequence and the structure alignments by using a set of 
empirically derived equivalence classes (substitution 
groups) of amino acids. The final alignments are then 
used to output the final SSP.   

We say that a protein has a sequence match with 
the SSP if it contains the sequence component of the 
SSP. The SSPs are evaluated with regard to their 
specificity (TP/(TP+FP)) and sensitivity 
(TP/(TP+FN)), where TP is the set of true positive 
matches, while FP and FN are the sets of false positive 
and false negative matches with respect to their 
membership in a SCOP (Structural Classification of 
Proteins) protein family.  The SCOP database is a 
comprehensive classification of all proteins of known 
structure [4]. The basic classification unit in SCOP is 
the domain, a unit of the protein that is either observed 
isolated in nature or in more than one context in 
different multi-domain proteins.  Proteins are clustered 
into families if they have either: (a) residue identities 
of 30% or higher, or (b) lower sequence identities but 
very similar structures and functions [4]. A related 
database is the ASTRAL Compendium, which 
provides sequences and structures for all domains 
filtered according to percentage sequence similarity 
[5]. The ASTRAL 40% database (version 1.65) 
contains a subset of proteins from the PDB database 
with less than 40% sequence identity to each other, 
and this database will be referred to as ASTRAL40 in 
this paper. We also refer to ASTRAL95 and 
ASTRAL100 (or full PDB) to refer to the 
corresponding databases with 95% and 100% 
sequence identity respectively. For our purposes, the 
ASTRAL40 database was used to generate SSPs for 
families that were well represented in the PDB and the 
ASTRAL95 database was used to generate SSPs for 
protein families with fewer PDB examples.  In both 
cases, the ASTRAL100 database was used for testing.  

SSP patterns extend the information provided in 
PROSITE, SPAT, or eMOTIF databases. PROSITE is 
based on the assumption that specific regions of a 
protein are conserved in the amino-acid sequence due 
to functional properties, such as binding activity. In an 
attempt to make the pattern as general as possible, the 
development of shorter patterns has been favored over 
longer ones [6]. However, “spacer regions” 
surrounding functional sites also have a well-defined 
three-dimensional structure [12-14]. By focusing the 
motif generation process on the functional groups 
alone, many opportunities are missed for the discovery 
of other highly conserved, and characteristic, patterns 
in the sequence and structure of the “non-interacting” 
regions of the domain. The eMOTIF database, on the 

other hand, contains sequence patterns without 
variable gaps. This makes it necessary to look at a 
number of eMOTIF sequence patterns to be able to 
completely characterize a variable-length functional 
domain [10]. Although SPAT is an improvement over 
PROSITE, it too focuses on sequence alignment 
information to generate its patterns [9]. Unlike these 
other methods, our method to generate SSPs departs 
from this strategy by using both a multiple sequence 
and a multiple structure alignment to infer the patterns. 

Alignment, by either sequence or structure, 
consists of establishing a correspondence between the 
residues of the two proteins. Sequence alignment 
algorithms use a substitution matrix that is based on 
amino acid type and is independent of position. In a 
structure alignment, this correspondence is determined 
based on the 3D coordinates of the residues, not on the 
amino acid “type”. The major difference between the 
sequence and structure alignments is that the 
optimization used for sequence alignment is globally 
convergent, whereas the alignment found by a 
structural alignment algorithm can depend on the 
initial equivalences. In sequence alignments, the 
optimal alignment in one region of the sequence is less 
sensitive to the optimal alignment in another region. In 
contrast, structural alignments fail to converge 
globally because the possible matches for different 
segments are tightly linked, as they are part of the 
same rigid 3D structure [7]. Consequently, it is 
possible to improve a structural alignment by starting 
with a small number of residues which are known to 
be structurally related, followed by a realignment of 
the structure based on new residue equivalences 
indicated by the alignment. Although structurally 
variable regions, such as loops, may not align well, in 
practice, good alignments do exist for essential “core” 
regions of two similar proteins. These may include the 
catalytic domain of enzymes, or certain ligand-binding 
sites. It is known that in these core regions of folded 
proteins, the packing density can be quite high and 
that the side chains of distant residues end up in close 
proximity to each other. In spite of the high packing 
density, not only do structurally related residues show 
remarkably good structural alignment, even their side 
chains exhibit a high degree of conformation. Such 
residues can be characterized by their biochemical 
context, or “substitution groups”, as described by Wu 
et al. [16]. Based on these descriptions, the 
substitution groups used by the SSP method are 
primarily two-residue groups which have a concise 
biochemical role: [DN] and [EQ] are acid-amide 
combinations with a similar side chain; [DE] are 
acidic residues; [KR] are basic residues; [ST] have 
short hydroxyl side chains; [AS] are small with single 
carbon side chains and [HY] have polar ring 



structures. Two longer groups are [FWY] with 
aromatic side chains, and [FILMVY] with 
hydrophobic side chains.  

2. The SSP Algorithm 
Figure 1 gives a brief description of our algorithm for 
generating SSPs. It takes as input a “seed” PROSITE-
style pattern along with a training set database (in our 
case, we use ASTRAL40 unless there are not enough 
structures in it, in which case we use ASTRAL95). It 
produces as output a SSP, which is a pair <P, T>, 
where P is a sequence pattern, and T is a structure 
template for the sequence pattern. As mentioned 
earlier, it also produces sequence and structure 
alignments of proteins with this SSP.  

Step 1 of the algorithm generates candidate 
proteins that contain the sequence pattern. A “cluster” 
of structurally-related candidates L are chosen for 
further analysis. One way to pick such a cluster is to 
measure the pairwise RMSD of the αC atoms of the 
pattern residues and removing any proteins that 
deviate from the mean RMSD value by more than a 
user-defined threshold (RMSD_THRESH). A template 
structure T is then chosen from this list L. This can be 
done by picking the protein with the smallest mean 
RMSD value for all the proteins in the remaining set. 
The structure alignment in Step 3 is achieved by 
structurally aligning each of the remaining proteins to 
the template using the αC atoms of the pattern 
residues. Thus Step 3 produces an initial structure 
alignment of the apo protein structures from L. From 
this structure alignment, a sequence alignment is then 
created (Step 4) and a subset of this alignment 
consisting of all ungapped positions (i.e., positions 
which contain a residue from all proteins in the set) is 
then considered for the presence of conserved residues 
(Step 5), i.e., containing a user-defined percentage 
(SG_PERCENT) of residues from a substitution 
group. Thus these conserved positions define an 
intermediate sequence pattern. The proteins are then 
structurally aligned based on the residues in this new 
intermediate pattern (Step 6). From this new structure 
alignment, a new sequence alignment is obtained, 
which in turn leads to a new sequence pattern, and the 
process is repeated until no changes in the alignments 
are observed. This stable intermediate sequence 
pattern is then used as the seed pattern for a new 
match of the proteins in the training set database. The 
process is repeated until no new training set protein 
sequences are matched by the sequence pattern. 
Finally, the sequence pattern and the corresponding 
template are output as components of the output SSP. 

SSP ALGORITHM 
Input: (a) A database of protein structures, and 

associated protein sequences, N,   
(b) A PROSITE-style sequence pattern , P. 

Output:(a) Sequence-structure pattern <P’, T>,   
(b) Structure alignment S of proteins with 
pattern P’, and  
(c) Sequence alignment Q of proteins with 

pattern P’.  
1. Search for pattern P in database N to generate a 

list of candidate proteins C. 
2. Pick a “cluster” L of proteins from C that belong 

to the same SCOP family. 
3. Create a structure alignment S for L using the 

residues of pattern P. 
4. Extract sequence alignment Q from structure 

alignment S.  
5. Identify all positions in sequence alignment Q that 

have residues from a substitution group.  
6. If stopping condition is not satisfied, then create a 

new structure alignment S for L using the 
positions identified in Step 6. Then go to Step 5. 

7. Construct a PROSITE-style sequence-structure 
pattern P’ and template T from the positions in Q.  

8. Iterate the whole process if new candidates from 
database N are matched. 

Fig. 1: The SSP algorithm. 
 
The algorithm was implemented in Perl and in the 
SwissProt viewer SPDBV script language [8]. 

3. Results and Conclusions 
A comparison of 27 SSPs generated by the above 
method with PROSITE patterns for the same SCOP 
family (or superfamily) is available from our website. 
SSPs, and corresponding PROSITE patterns, for two 
SCOP families are shown in Table 1. In the case of the 
highly variable Immunoglobin C1 domain, the 
specificity of the SSP was 100% with respect to the 
ASTRAL100 (no false positive matches). The 
sensitivity of this SSP was also 4.1% higher than for 
the corresponding PROSITE pattern. For the Zinc 
Finger family, the specificity of the SSP was 
marginally lower than for the corresponding PROSITE 
pattern, however the sensitivity of the SSP was 100% 
(no false negative matches). Note that since the SSP 
algorithm uses structural information, SSPs can be 
generated if there are a reasonable number of hits in 
the PDB superfamily and the ASTRAL40 database. 



We first identified the PROSITE patterns with the 
highest number of hits in the ASTRAL40 database. 
The algorithm was then experimentally tested on these 
protein families. In the case where an SSP for a SCOP 
family already had a corresponding PROSITE 
sequence pattern, the PROSITE pattern was improved 
about 90% of the time with respect to the SSP 
sequence pattern. This represents an average 
improvement of specificity of +27.3% and an average 
improvement of sensitivity of +16.2%. The globins, 
dehydrogenases, and immunoglobin (V1 and C2) 
families did not previously have any PROSITE 
patterns. 

Improved sequence alignments, which are a by-
product of the SSP method, can also be used for the 
generation of improved profiles, HMMs and other 
statistical models. In this regard, SSPs that are fully 
specific and/or fully sensitive are useful in a number 
of ways. In the classification of protein families, the 
existence of a diagnostic SSP provides important 
verification that the classification is sound. Fully 
specific SSPs can be used in the annotation of newly 
sequenced genomes, to attribute both structure and 
function to a putative gene or open reading frame. This 
is especially important today with the rise in structure-
based functional annotation of proteins, and the 
number of hypothetical proteins, mainly from archaeal 
species, which are being crystallized in order to 
identify their function [11].  The SSPs discovered by 
our method have been compiled into the SSPsite 
database and made available at 
http://www.cs.fiu.edu/sspsite. The Perl and SPDBV 
script code for our method can be obtained by sending 
an email request to the corresponding author. 
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Protein Family SCOP 
Family 

Accn. 
Num. Pattern Spec. 

(TP/TP+FP) 
Sens. 

(TP/TP+FN) 

PS00290  [FY]-x-C-x-[VA]-x-H. 97.9% 
(1095/1119) 

71.2% 
(1095/1537) 

Immunoglobins 
C1 Set B.1.1.2 

SSP91008 

 [VP]-X(15,20)-[YVIL]-X(0,1)-C-X(4)-
[VLFY]-X(1,3)-[DSP]-X(2,3)-[MALIV]-
X(1)-[FILV]-X(1,2)-[FLW]-X(21,28)-
[WALFY]-X(5)-[TLV]-X(1)-[ITLFV]-
X(7,12)-[HVLFY]-X(1)-C-X(1)-[MAV]-
X(1)-[NFYH]. 

100% 
(1157/1157) 

75.3% 
(1157/1537) 

PS00028 C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-
x(3,5)-H. 

80.5% 
(95/118) 

93.1% 
(95/102) Zinc Finger G.37.1.1 

SSP91022 [AHITFVY]-X(1)-C-X(2,5)-C-X(8,12)-
[RIMFYL]-X(2)-H-X(3,5)-H.

71.8% 
(102/142) 

100% 
(102/102)

Table 1: Performance of PROSITE patterns and SSPs for two SCOP families measured using ASTRAL100. 
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