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Abstract. Let S be a set of points in Rd. Given a geometric spanner
graph, G = (S, E), with constant stretch factor t, and a positive con-
stant ε, we show how to construct a (1 + ε)-spanner of G with O(|S|)
edges in time O(|E|+ |S| log |S|). Previous algorithms require a prelim-
inary step in which the edges are sorted in non-decreasing order of their
lengths and, thus, have running time Ω(|E| log |S|). We obtain our re-
sult by designing a new algorithm that finds the pair in a well-separated
pair decomposition separating two given query points. Previously, it was
known how to answer such a query in O(log |S|) time. We show how a
sequence of such queries can be answered in O(1) amortized time per
query, provided all query pairs are from a polynomially bounded range.

1 Introduction

Complete graphs represent ideal communication networks, but they are expen-
sive to build; sparse spanners represent low cost alternatives. The number of
edges of the spanner network is a measure of its sparseness; other sparseness
measures include the weight, the maximum degree and the number of Steiner
points. Spanners for complete Euclidean graphs as well as for arbitrary weighted
graphs find applications in robotics, network topology design, distributed sys-
tems, design of parallel machines, and many other areas, and have been the
subject of considerable research [1, 2, 6, 7, 15].

Consider a set S of n points in Rd. Throughout this paper, we will assume
that d is constant. A network on S can be modelled as an undirected graph G
with vertex set S and with edges e = (u, v) of weight wt(e). In this paper we
consider geometric networks, where the weight of the edge e = (u, v) is equal
to the Euclidean distance |uv| between its two endpoints u and v. Let δG(p, q)
denote the length of a shortest path in G between p and q. Then, G is a t-spanner
for S, if δG(p, q) 6 t · |pq| for any two points p and q of S. The minimum value t
such that G is a t-spanner for S is called the stretch factor of G. A subgraph G′

of G is a t′-spanner of G, if δG′(p, q) 6 t′ · δG(p, q) for any points p and q of S.
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Many algorithms are known that compute t-spanners with useful properties
such as linear size (O(n) edges), bounded degree, small spanner diameter (i.e.,
any two points are connected by a t-spanner path consisting of only a small num-
ber of edges), low weight (i.e., the total length of all edges is proportional to the
weight of a minimum spanning tree of S), and fault-tolerance; for example, see
[1–4, 6–8, 10, 14, 15, 17, 19], and the surveys [9, 18]. All these algorithms compute
t-spanners for any given constant t > 1. However, all these algorithms either
start with a point set, or with a spanner that has a linear number of edges.

We consider the problem of efficiently pruning a given t-spanner, even if it
has a superlinear number of edges. That is, given a geometric graph G = (S, E)
in Rd with n points and constant stretch factor t, and a positive constant ε, we
consider the problem of constructing a (1 + ε)-spanner of G with O(n) edges.
Thus the resulting subgraph of G is guaranteed to be a (t(1 + ε))-spanner of
S. The greedy algorithm of [7, 10] can be used to compute a (1 + ε)-spanner
G′ of G. However, the greedy algorithm starts by sorting the edges and, thus,
has running time Ω(|E| log n). In [11], an algorithm was presented with running
time O(|E| log n), that produces a (1 + ε)-spanner G′ of G with O(n) edges.

In this paper, we show how the running time can be improved to O(|E| +
n log n) time. Furthermore, using the results in [10], we show that with the same
time complexity, we can compute a (1 + ε)-spanner of G with O(n) edges and
with total weight O(wt(MST (S))).

In a series of papers by Gudmundsson et al. [11–13], it was shown that approx-
imate shortest path queries can be answered in constant time using O(|E| log n)
preprocessing, provided that the given graph is a t-spanner. The time complexity
of the preprocessing depends on the time to prune the graph, which was shown
to be O(|E| log n). Using the pruning algorithm presented here, we improve the
preprocessing time of the data structure in [11–13] to O(|E|+ n log n). We also
improve the time complexity in [16] for computing a (1 + ε)-approximation to
the stretch factor of a geometric graph to O(|E|+ n log n), provided we know in
advance that the stretch factor is bounded from above by a constant. In Section 5
we consider several other applications.

Our model of computation is the traditional algebraic computation tree
model with the added power of indirect addressing.

2 Preliminaries

In the next sections, we will show how to prune a graph. Our construction uses
the well-separated pair decomposition of Callahan and Kosaraju [5]. We briefly
review this decomposition below.

If X is a bounded subset of Rd, then we denote by R(X) the smallest axes-
parallel d-dimensional rectangle that contains X. We call R(X) the bounding
box of X. Let l(R(X)), or l(X), be the length of the longest side of R(X).

Definition 1. Let s > 0 be a real number, and let A and B be two finite sets of
points in Rd. We say that A and B are well-separated with respect to s, if there
are two disjoint d-dimensional balls CA and CB, having the same radius, such
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that (i) CA contains the bounding box R(A) of A, (ii) CB contains the bounding
box R(B) of B, and (iii) the minimum distance between CA and CB is at least
s times the radius of CA.

The parameter s will be referred to as the separation constant.

Lemma 1 ([5]). Let A and B be two finite sets of points that are well-separated
w.r.t. s, let x and p be points of A, and let y and q be points of B. Then (i)
|xy| 6 (1 + 4/s) · |pq|, and (ii) |px| 6 (2/s) · |pq|.
Definition 2 ([5]). Let S be a set of n points in Rd, and let s > 0 be a real
number. A well-separated pair decomposition (WSPD) for S with respect to s
is a sequence of pairs of non-empty subsets of S, {A1, B1}, . . . , {Am, Bm}, such
that
1. Ai ∩Bi = ∅, for all i = 1, . . . , m,
2. for any two distinct points p and q of S, there is exactly one pair {Ai, Bi}

in the sequence, such that (i) p ∈ Ai and q ∈ Bi, or (ii) q ∈ Ai and p ∈ Bi,
3. Ai and Bi are well-separated w.r.t. s, for all i = 1, . . . , m.

Callahan and Kosaraju showed that the fair split tree T can be computed in
O(n log n) time, and that, given T , a WSPD of size m = O(n) can be computed
in O(n) time. Each pair {Ai, Bi} in this WSPD is represented by two nodes ui

and vi of T , i.e., we have Ai = Sui and Bi = Svi . We end this section with two
lemmas that will be used later on.

Lemma 2. Let u and u′ be two nodes in the fair split tree T such that u′ is in
the subtree of u and the path between them contains at least d edges. Then the
length of the longest side of the bounding box of u′ is at most half the length of
the longest side of the bounding box of u.

Lemma 3. Let A and B be two sets of points in Rd that are well-separated with
respect to s, and let p and q be points in A and B, respectively. The length of
each side of the bounding boxes of A and B is at most (2/s)|pq|.

3 A general pruning approach

Recall that we are given a set S of n points in Rd, a t-spanner G = (S,E) for
some real constant t > 1 and a real constant ε > 0.

Our goal is to compute a sparse (1 + ε)-spanner G′ of G. Suppose that there
exists a set pairs of points, P = {{a1, b1}, . . . , {am, bm}}, with the property that
for each edge (p, q) in E, there is an index i such that for some real number s,

1. |pai| 6 (2/s)|aibi| and |qbi| 6 (2/s)|aibi|, or
2. |pbi| 6 (2/s)|aibi| and |qai| 6 (2/s)|aibi|.

In other words, for each edge (p, q) in E, the set P contains a “close approxi-
mation”. Then, we show below that, if s = 1

ε ((1 + ε)(8t + 4) + 4), there exists a
(1+ε)-spanner of G with at most m edges. As the keen reader may have guessed,
we will show later that the set P can be easily constructed from a WSPD of S.
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To prove the existence of the subgraph G′ as a (1+ε)-spanner of G, we prune
G with respect to the set P of pairs as follows. Let Ci, 1 6 i 6 m, be m lists
that are initially empty. For each edge (p, q) in E, pick any index i for which
condition 1. or 2. above is satisfied, and add the edge (p, q) to the list Ci. We
define G′ to be the graph (S, E′), where the edge set E′ contains exactly one
edge from each non-empty list Ci, 1 6 i 6 m.

Lemma 4. The graph G′ = (S, E′) is a (1 + ε)-spanner of G.

The above process essentially prunes G using set P as a “guide”. Each edge of
G is “mapped” to a pair in P , and in the pruned subgraph, for each pair in P ,
we retain one edge that is mapped to it (if any). In order to apply the above
general result, we need algorithms that do the following:
1. Compute P = {ai, bi}16i6m, with m = O(n).
2. For each edge (p, q) in E, compute an index i such that the condition for the

set P holds.

A straight-forward approach for step 1, which appears already in [11], is as
follows. Compute the WSPD with separation constant s = ((1+ε)(8t+4)+4)/ε,
see Section 2. Given this WSPD, define the set P as follows. For each well-
separated pair {Ai, Bi}, choose a pair consisting of an arbitrary point in Ai and
an arbitrary point in Bi; see Fig 1b. Using Lemma 1, the properties that are
needed for P are satisfied, thus we can apply Lemma 4.

As for step 2, Arya et al. [3] showed that, after an O(n log n)-time prepro-
cessing of the fair split tree, the index i can be computed in O(log n) time, for
any edge (p, q) in E. Hence, the entire graph G′ can be computed in O((n +
|E|) log n) = O(|E| log n) time. We have proved the following result.

Theorem 1. [11] Given a geometric graph G = (S,E) with n vertices, which is
a t-spanner for S, for some real constant t > 1, and a real constant ε > 0 we
can compute a (1 + ε)-spanner of G having O(n) edges in O(|E| log n) time.

4 An improved algorithm

Above we showed that the time-complexity of the algorithm can be written as
O(n log n + |E| · τ(n)), where τ(n) is the time needed to find the pair {ai, bi} in
P , given a query (p, q), such that the condition mentioned at the beginning of
Section 3 holds. Below, we show a stepwise refinement of the basic scheme.

Bi
BiAi Ai

Fig. 1. Pruning the spanner graph using the WSPD.
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4.1 Improvements for a restricted case – bounded aspect ratio

Let T be the fair split tree for S, and let {Ai, Bi}, 1 6 i 6 m, be the well-
separated pair decomposition of S obtained from T , with separation constant
s > 0. Let L > 0 be a real number, let c > 1 be an integer constant, and let F
be a set of k pairs of points in S such that L/nc 6 |xy| 6 L holds for each pair
{x, y} ∈ F . We say that F has polynomially bounded aspect ratio.

In this section, we show how to compute, for every {x, y} ∈ F , the corre-
sponding well-separated pair, i.e., the index i for which x ∈ Ai and y ∈ Bi or
x ∈ Bi and y ∈ Ai. Recall that every node of T stores the bounding box of the
set of all points stored in its subtree. Let α = 2/(

√
d(s + 4)). For each point

x ∈ S, we define the following nodes in T :

ux: the highest node on the path from the leaf storing x to the root, such that
its bounding box has sides of length at most (2/s)L.

u′x: the highest node on the path from the leaf storing x to the root, such that
its bounding box has sides of length at most αL/nc.

Moreover, for each pair e = {x, y} ∈ F , we define the following nodes in T .

uex: the highest node on the path from the leaf storing x to the root, such that
its bounding box has sides of length at most (2/s)|xy|.

u′ex: the highest node on the path from the leaf storing x to the root, such that
its bounding box has sides of length at most α|xy|.

Observation 5 By traversing T , all nodes ux and u′x, x ∈ S, can be computed
in O(n) time.

Because of the polynomially bounded aspect ratio assumption, the path from
u′x to ux contains all nodes whose subsets contain x and are involved in well-
separated pairs corresponding to pairs in F . In particular, the path from u′ex to
uex contains the node whose subset is Ai. This is formalized in the lemma below.

Lemma 6. Let e = {x, y} be a pair in F , and let i be the index such that
x ∈ Ai and y ∈ Bi. Let vi and wi be the nodes of T that represent Ai and Bi,
respectively. Then,
1. if we walk in T from the leaf storing x to the root, then we will encounter

the nodes, u′x, u′ex, vi, uex, and ux, in this order;
2. the path in T between u′x and ux contains O(log n) nodes; and,
3. the path in T between u′ex and uex contains O(1) nodes.

Lemma 7. Let e = {x, y} be a pair in F , and let i be the index such that
x ∈ Ai and y ∈ Bi. Let vi and wi be the nodes of T that represent Ai and Bi,
respectively. Given pointers to the nodes uex and uey, the nodes vi and wi can
be computed in O(1) time.

The original problem has now been reduced to finding, for each query pair
e = {x, y} in F , the nodes uex and uey in T , where uex and uey correspond
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to nodes whose bounding boxes are of size close to (2/s)|xy|. A simple solution
would be as follows. For each point x in S, let Tx be a balanced binary search
tree storing the nodes on the path in T between u′x and ux, which by Lemma 6.2
has only O(log n) nodes. The key value for these nodes is the length of a longest
side of the bounding box.

Lemma 8. Let e = {x, y} be a vertex pair in F . Using the trees Tx and Ty, the
nodes uex and uey can be computed in O(log log n) time.

As a result, we have shown that our restricted problem can be solved in
O(n log n + k log log n) time. Each tree uses O(log n) space. Thus, the amount
of space used is O(n log n). Next we will show that the size can be reduced to
O(n) by observing that all queries are known in advance.

4.2 Achieving linear space

Let x1, . . . , xn be the vertices stored in the leafs of T , ordered from left to right.
Note that a query pair e = {x, y} in F asks for uex and uey. This can be viewed
as two different queries, i.e., (x, y) and (y, x).

We process the queries in batches. Initially we set i = 1. Build Tx1 in linear
time. For each query in F of the form e = (x1, xj), return uex1 . A pointer to
uex1 is stored together with x1 in the query pair (x1, xj) in F . When all queries
involving x1 have been answered, i is incremented.

In a generic step we build the binary tree Txi from Txi−1 by first deleting
the nodes in T that lie on the path between uxi−1 and u′xi−1

, but not on the
path between uxi and u′xi

; and then inserting all nodes in T that lie on the path
between uxi and u′xi

, but not on the path between uxi−1 and u′xi−1
. Since each

node in T is inserted and removed at most once, the total time complexity of
building the trees T1, . . . , Tn is O(n log log n).

After Txi has been constructed, all queries involving xi are solved, and the
answers are stored together with the pairs in F . The process continues until all
queries have been answered. At all times exactly one tree Txi is active, thus the
total space complexity is dominated by the fair-split tree and the number of
edges in F , which is bounded by O(k + n). We obtain the following lemma.

Lemma 9. Given the k query pairs {ei = {pi, qi}}16i6k in F , one can compute
ueipi and ueiqi for each 1 6 i 6 k in total O(n log n + k log log n) time using
O(k + n) space.

4.3 Improving the running time

In this section we will improve the running time in Lemma 9 to O(k + n log n);
instead of using the tree Tx for answering the queries we will use a different data
structure, namely an array Ax [0.. blog (2nc)c]. Recall that s = 1

ε ((1 + ε)(8t +
4) + 4). Each entry Ax[j] stores a pointer to the highest node on the path in T

between u′x and ux whose bounding box has sides of length at most 2jL
snc .
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Lemma 10. Let e = {x, y} be a pair in F , let j =
⌊
log

(
2nc

L |xy|)⌋, and let Ax[j]
point to node uA

ex. Then the path between uex and uA
ex contains O(1) nodes.

Since node uA
ex is close to uex, we can show the following lemma, which is

similar to Lemma 7.

Lemma 11. Let e = {x, y} be a pair in F , and let i be the index such that
x ∈ Ai and y ∈ Bi. Let vi and wi be the nodes of T that represent Ai and Bi,
respectively, and let j be as in Lemma 10. Given Ax[j] and Ay[j], the nodes vi

and wi can be computed in O(1) time.

Now, the above lemma assumes that the index j, defined by j =
⌊
log

(
2nc

L |xy|)⌋
can be easily determined. We will refer to this index as the index of two points
x and y in Rd. It remains to prove how k index queries can be answered in total
time O(k + n log n).

4.4 Answering index queries efficiently

Next we consider how to “bucket” distances in constant time, without using the
floor function since the floor function is a non-algebraic function. This problem
was considered in [11], but there it was only shown for the special case when
the points in the set lie in a polynomially bounded interval, see Fact 14. We ex-
tend the result to hold for any point set for which the queries have polynomially
bounded aspect ratio. The idea is to scale the point set and then partition it
into subsets such that each subset consists of points in a polynomially bounded
interval. Furthermore, for every pair in F it will be shown that the two corre-
sponding points in the scaled set will belong to the same subset. Consequently,
one may apply the results from [11] to each subset.

The aim of this section is to show the following theorem.

Theorem 2. Let S be a set of n points in Rd, let L > 0 be a real number, and
let c be a positive constant. We can preprocess S in O(n log n) time, such that
for any two points x and y in S with L/nc 6 |xy| 6 L, we can compute the
quantity

⌊
log

(
2nc

L |xy|)⌋ in constant time, using only algebraic operations and
indirect addressing.

For each x ∈ S, define x′ = 2nc

L x. This gives a set V = {x′ : x ∈ S}
of scaled points. Let F ′ be the set of scaled query pairs {x′, y′}, where {x, y}
ranges over all pairs in F . If {x, y} ∈ F , then L/nc 6 |xy| 6 L and, hence,
2 6 |x′y′| 6 2nc 6 nc+1. Furthermore,

⌊
log

(
2nc

L |xy|)⌋ = blog |x′y′|c.

The one-dimensional case. We will assume that V is a set of n points on the
real line. First the algorithm partitions V into groups V1, . . . , V`, in O(n log n)
time as follows. Sort the points of V in increasing order x′1, x

′
2, . . . , x

′
n. Let j1 <

j2 < . . . < j`−1 be all the indices such that x′j1+1 > x′j1 + nc+1, x′j2+1 >

x′j2 + nc+1, . . . , x′j`−1+1 > x′j`−1
+ nc+1. In other words, the gaps following

x′j1 , x
′
j2

, . . . , x′j`−1
are greater than nc+1. Then we define V1 = {x′1, . . . , x′j1},
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V1 V2 V3 V4

x
′

1 x
′

j1
x

′

j2
x

′

j3
x

′

nx
′

j1+1 x
′

j2+1 x
′

j3+1

Fig. 2. Illustrating how V is divided into the sets V1, . . . , V4. The gap between two sets
is larger than nc+1.

V` = {x′j`−1+1, . . . x
′
n}, and Vi = {x′ji−1+1, . . . , x

′
ji
} for 2 6 i 6 ` − 1; this is

illustrated by an example in Fig. 2. The following observation about the sequence
V1, . . . , V` follows immediately from the above partitioning algorithm.

Observation 12 Let i and j be two positive integers, such that i < j 6 `. Then,
the following statements hold:

1. If x′ ∈ Vi and y′ ∈ Vj, then |x′y′| > nc+1.
2. If x′, y′ ∈ Vi, then |x′y′| 6 nc+2.
3. Vi ∩ Vj = ∅, and V = V1 ∪ . . . ∪ V`

The following lemma gives properties of the scaled queries in F ′.

Lemma 13. Consider the sets V1, . . . , V` and F ′ as defined above. Then,

1. For each i with 1 6 i 6 ` there exists a real number Di such that the set Vi

is contained in the interval [Di, Di + nc+2].
2. For every pair {x, y} in F , there exists an i, such that both x′ and y′ are

contained in Vi. Moreover, the pair {x′, y′} in F ′ satisfies

2 6 |x′y′| 6 nc+1, and
⌊
log

(
2nc

L
|xy|

)⌋
= blog |x′y′|c.

Fact 14 (Theorem 2.1 in [11]) Let X be a set of n real numbers that are
contained in the interval [D, D +nk], for some real number D and some positive
integer constant k. We can preprocess X in O(n log n) time, using O(n) space,
such that for any two points p and q of X, with |pq| > β, where β > 0 is a
constant, we can compute blog |pq|c in constant time.

In [11], Fact 14 was only proved for the case when D = 0. By translating the
points, and observing that this does not change distances, it is clear that Fact 14
holds for any real number D. As a result of Lemma 13, it follows that Fact 14
can be applied to every subset Vi. Furthermore, according to Lemma 13, F ′ has
polynomially bounded aspect ratio, thus every query pair in F ′ can be answered
in constant time according to Fact 14. Note that, for each point x, we need to
store a pointer to the subset Vi of the partition that it belongs to. As a result,
we have proved Theorem 2 for the one-dimensional case.
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The d-dimensional case. This is inspired by the algorithm in [11]. Now
assume that V is a d-dimensional set of points, where d is a constant. Let
p = (p1, p2, . . . , pd) and q = (q1, q2, . . . , qd) be any two points of V with |pq| > β,
for some constant β > 0, let j be such that |pj − qj | is maximum, and let
i = blog |pj − qj |c. Since |pj − qj | 6 |pq| 6

√
d|pj − qj |, we have i 6 blog |pq|c 6

1
2 log d+i. This suggests the following solution. For each `, 1 6 ` 6 d, we build the
data structure above for the one-dimensional case for the set of `-th coordinates
of all points of V . Given two distinct points p and q of V , we compute the index
j such that |pj− qj | is maximum. Then we use the one-dimensional algorithm to
compute the integer i = blog |pj−qj |c. Note that this algorithm also gives us the
value 2i. Given i and 2i, we then compute blog |pq|c in O(log log d) time. Observe
that we can indeed apply the one-dimensional case, since |pj − qj | > β/

√
d. This

concludes the proof of Theorem 2.
We say that an edge {x, y} belongs to a well-separated pair {Ai, Bi} if and

only if x ∈ Ai and y ∈ Bi, or vice versa. Our results can be stated as follows:

Theorem 3. Let S be a set of n points in Rd, let F be a set of pairs of points in
S having polynomially bounded aspect ratio, let T be the fair split tree for S, and
let {Ai, Bi}, 1 6 i 6 m, be the corresponding well-separated pair decomposition
of S. In O(n log n + |F |) time, we can compute, for every {x, y} ∈ F , the index
i such that {x, y} belongs to the pair {Ai, Bi}.

Since we have an off-line problem, we can use the approach of Section 4.2 to
reduce the space requirement to O(n + |F |).

4.5 The general case – unbounded aspect ratio

As a result of the previous section it holds that a t-spanner can be pruned
efficiently in the case when the “aspect ratio” of the edge set is polynomially
bounded. To generalize this result we will use the following technical theorem
that is implicit in [13].

Theorem 4. Given a set S of n points in Rd and an integer constant c > 7 we
can compute a data structure D(S) in O(n log n) time consisting of:

1. a sequence L1, L2, . . . , L` of real numbers, where ` = O(n), and
2. a sequence S1, S2, . . . , S` of subsets of S such that

∑`
i=1 |Si| = O(n),

such that the following holds. For any two distinct points p and q of S, we can
compute in O(1) time an index i with 1 6 i 6 ` and two points x and y in Si

such that
a. Li/nc+1 6 |xy| < Li, and
b. both |px| and |qy| are less than |xy|/nc−2.

Figure 3 shows the complete algorithm, referred to as algorithm Prune-
Graph. Recall that the input to algorithm PruneGraph is a t-spanner G =
(S,E) and a positive real value ε.
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Algorithm PruneGraph(G = (S, E), t, ε)
Step 1: Compute the data structure D(S) with c = 7, according to Thm. 4.
Step 2: For each 1 6 i 6 `, set Fi := ∅.
Step 3: For each edge (p, q) ∈ E, compute (i, xp, yq), according to

Thm. 4, and add {xp, yq} to Fi.
Step 4: For i := 1 to ` do
Step 4a. Compute the fair split tree Ti for Si.
Step 4b. Compute the well-separated pair decomposition of Si,

Wi(Si) := {{Ai
1, B

i
1}, . . . , {Ai

mi
, Bi

mi
}}, using separation

constant 2s, where s = ((1 + ε)(8t + 4) + 4)/ε.
Step 4c. For each {x, y} ∈ Fi, compute the pair {Ai

j , B
i
j} that it belongs to.

Step 5: For each 1 6 i 6 ` and each 1 6 j 6 mi, set Ci
j := ∅

Step 6: For each edge (p, q) ∈ E, add (p, q) to Ci
j , where j

is the index such that {xp, yq} belongs to {Ai
j , B

i
j}.

Step 7: Output G′ = (S, E′), where E′ contains exactly one edge from each
non-empty set Ci

j .

Fig. 3. Algorithm PruneGraph.

Theorem 5. Algorithm PruneGraph requires O(|E|) space and runs in O(|E|+
n log n) time.

Theorem 6. The graph G′ = (S, E′) computed by algorithm PruneGraph(G =
(S,E), t, ε) is a (1 + ε)-spanner of the t-spanner G = (S,E) such that E′ ⊆ E
and |E′| = O(n).

Proof. For each 1 6 i 6 ` and each 1 6 j 6 mi, consider the j-th well-separated
pair {Ai

j , B
i
j} in the i-th length partition. Let ai

j be an arbitrary point in Ai
j and

let bi
j be an arbitrary point in Bi

j . Define P := {{ai
j , b

i
j} : 1 6 i 6 `, 1 6 j 6 mi}.

First, observe that

|P | =
∑̀

i=1

mi = O
(∑̀

i=1

|Si|
)

= O(n).

We will show that the set P satisfies the premises of the general framework of
Section 3. This will imply that the graph G′ is obtained by pruning G with
respect to P , as described in the beginning of Section 3, and, therefore, by
Lemma 4, G′ is a (1 + ε)-spanner of G.

Let (p, q) be an arbitrary edge of E. By Theorem 4, there exists an index i,
and two points x and y in Si, such that |px| < |xy|/n5 and |qy| < |xy|/n5. By
the definition of the WSPD, there exists an index j such that (i) x ∈ Ai

j and
y ∈ Bi

j or (ii) x ∈ Bi
j and y ∈ Ai

j . We may assume that (i) holds.
Consider the point ai

j in the set Ai
j and the point bi

j in the set Bi
j . Since we

chose the separation ratio for the WSPD to be 2s, we know from Lemma 1 that
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|xai
j | 6 |ai

jb
i
j |/s and |xy| 6 (1 + 2/s)|ai

jb
i
j |. It follows that |pai

j | 6 |px|+ |xai
j | 6

|xy|/n5 + |ai
jb

i
j |/s 6

(
(1 + 2/s)/n5 + 1/s

) |ai
jb

i
j | 6 (2/s)|ai

jb
i
j |, where the last

inequality assumes that n is sufficiently large. In exactly the same way, it can
be shown that |qbi

j | 6 (2/s)|ai
jb

i
j |.

This completes the proof of the theorem. ut
The above theorem can be combined with results in [10] to prove the following

corollary.

Corollary 1. Given a geometric t-spanner G = (S, E) of the set S of n points
in Rd, for some constant t > 1, and given a positive real constant ε′ > 0, we can
compute in O(n log n+ |E|) time, a (1+ε′)-spanner of G having O(n) edges and
whose weight is O(wt(MST (S))).

5 Applications

The tool presented in this paper for pruning a spanner graph is important as
a preprocessing step in many situations. We briefly mention a few. In [11], the
algorithm to approximate the length of the shortest path between two query
points in a given geometric spanner has a preprocessing time of O(|E| log n).
The results here reduce the preprocessing time to O(|E|+ n log n). As a second
application, a similar improvement can be achieved for the algorithm to com-
pute an approximation to the stretch factor of a spanner graph [11, 16]. Using
this result, an approximate stretch factor can be computed in O(|E| + n log n)
time, provided the stretch factor is bounded by a constant. Finally, similar im-
provements are achieved for several variants of the closest pair problem. In the
monochromatic version, a given geometric spanner G = (V,E) (with n vertices
corresponding to n points in Rd) is to be preprocessed, in order to answer clos-
est pair queries for a query subset S ⊆ V where distances between points are
defined as the length of the shortest path in G. In the bichromatic version, the
graph G is to be preprocessed, in order to answer closest pair queries between
two given query subsets X, Y ⊆ V . Using this result, the preprocessing can be
done in O(|E|+ n log n) time instead of O(|E| log n).

In all the above cases, the idea is to first prune the spanner using the al-
gorithm in this paper to obtain a spanner graph with approximately the same
stretch factor, but with only a linear number of edges, consequently speeding up
the previously designed algorithms.

6 Conclusions

Given a t-spanner G = (S,E), where S is a set of n points in Rd, we have shown
how to compute, in O(|E| + n log n) time, a (1 + ε)-spanner of G having O(n)
edges. The interesting fact about this result is that it shows that the pruning
problem can be solved without sorting the edges of E. We leave open the problem
of pruning a spanner in O(|E|) time.
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