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Abstract

Many resource allocation problems can be cast as
versions of the multi-dimensional vector packing prob-
lem. However, in most applications the inputs are
inherently dynamic. In this paper we experiment with
practical algorithms for the vector repacking problem
and its variants. Vector repacking, like vector packing,
aims to pack a set of input vectors such that the num-
ber of bins used is minimized, but has the additional
goal of minimizing the changes from the previous pack-
ing. We also consider a variant of vector repacking
that stores additional copies of items with the goal of
improving the performance of vector repacking algo-
rithms. We discuss the best versions of the Repack
and Replicas algorithms to address the vector repack-
ing problem and its variant. Experiments show that
our algorithms result in marked improvements over
existing heuristics (SRCMap) for energy-proportional
storage management. In addition, our algorithms
are paramterized so that they can be effectively opti-
mized for a variety of resource allocation applications
with different input characteristics and different cost
functions.

1 Introduction

Power consumption by data centers has displayed
phenomenal growth in recent years and is expected
to grow at even faster rates [9, 8]. It is therefore
imperative to find ways to make data center operations
more energy efficient. Toward this goal, Barroso and
Hozle [11] have proposed the approach of “energy
proportionality”. Most data centers are provisioned
for peak performance, while average loads can be
much more modest. An energy-proportional approach
allows for power consumption to vary with the usage;
they attempt to put as many servers as possible into
low-energy consumption states and pack the maximum
sustainable amount of work into each server kept
active and in a high energy consumption state.

Resource allocation problems can be cast as vector
packing problems by representing each item (task) and
each bin (server) as a multi-dimensional vector with
dimensions for relevant parameters. (We refer to the
vector representing the item or bin as its profile.) In
the storage systems application, relevant parameters
of the profile include working set size, workload inten-
sity (measured in IOPS), miss rate, etc. In the VM
management application, the dimensions could repre-
sent the requirements of the VM for resources such as

CPU, memory, bandwidth, etc. Energy-efficient com-
puting can be achieved by considering the problem of
(vector) packing these items into bins (servers) with
the goal of optimizing (minimizing) the total power
consumed by the servers. Server capacities in each of
the cases directly translates to bin capacities for the
abstracted multi-dimensional vector packing problem.

With the overall goal of optimizing the power con-
sumption of data centers, Amur et al. [1], Verma et
al. [17] and Thereska et al. [15] considered the problem
of storing multiple replicas of data sets and working
sets, while Panigrahy et al. [13], looked at the prob-
lem of efficiently packing virtual machines (VMs) with
known static demands into servers with fixed capaci-
tites. Using fewer bins (i.e., servers) directly translates
to lower power consumption. Energy efficiency is thus
achieved by keeping an optimal subset of servers in
the system active while other servers are spun down
or brought to a lower energy consumption state.

Vector Repacking: Given that workloads are in-
herently dynamic [11], we turn our attention to the
challenging vector repacking problem. While good
packings are useful, they may become sub-optimal as
conditions change. Computing good packings from
scratch may be prohibitively expensive because it
may require all items to be moved. Here we cast the
problems as a variant of the multi-dimensional vector
packing where we are required to “repack” efficiently
and where the cost of the resulting packing is also
dependent on how it differs from the previous pack-
ing, the assumption being that repacking requires a
costly “migration” of tasks, processes, or data. Our
approaches are meaningful only when the vectors to
be packed change their profiles relatively infrequently,
thus making it worthwhile to reconsider the repacking
of the entire set of tasks. The purely dyanmic bin
packing problem (where profiles change incessantly) is
also meaningful, but outside the scope of the present
work.

Vector Repacking with Replicas: Next, we con-
sider a practical variant of the vector repacking prob-
lem. In this variant, we assume that the system can
store a limited number of extra copies (replicas) of
select (or all) tasks, with the goal of reducing the cost
of “migration”. Here our experiments aim to study
the tradeoff between replication cost and the cost of
task/data migration.
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Note that the problems considered here can also be
cast in more general terms as combinatorial optimiza-
tion problems, allowing for a host of other optimiza-
tion approaches (e.g., ILP, semi-definite programming,
rounding methods, etc.) to be applied. We do not
consider these general approaches here, since they
are unlikely to be as time-efficient as the algorithms
evaluated here. Experiments and results for the two
problems are described in Sections 3 and 4. The re-
sults show that using vector repacking is an effective
and practical approach to deal with problems from
the areas of dynamic resource allocation and power-
aware computing. We show that allowing for extra
copies (replicas) of the entities can be used with vector
repacking approaches to find efficient solutions that at-
tempt to minimize migration costs. We show results of
our experiments with some real data sets (Section 5).
Our conclusions are summarized in Section 6.

2 Related Work

The purpose of this section is to evaluate and se-
lect competitive (static) vector packing algorithms
that could be useful to solve the dynamic repacking
variants introduced above. As mentioned earlier, we
model the problem of optimal placing of items such as
working sets or VMs (“items”) on disk servers or VM
hosts (“bins”) as a multi-dimensional vector packing
problem. Efficient packings into the smallest number
of bins translates to important energy savings. We
assume that all bins have homogenous capacities in
all dimensions and that the input is normalized such
that the bins have a capacity of 1 in each dimension.

The multidimensional vector packing problem has
been of interest for over three decades [12, 10] and
many sophisticated approximation algorithms have
been proposed for it. Even for d = 1, the vector pack-
ing problem (bin-packing) is NP-hard, and there are
no approximation algorithms having an approximation
ratio of ( 3

2 − ε) for ε > 0 unless P = NP [3]. Hence
finding efficient and practical algorithms to solve this
problem is still a challenging task. For an excellent
compilation of the relevant work on 1-dimensional bin
packing the reader is referred to a survey by Coffman
et al. [7].

For multi-dimensional vector packing Woeginger [18]
ruled out an approximation scheme even for the case
d = 2. For approximation algorithms, de la Vega
and Lueker [6] obtained a (d + ε)-approximation al-
gorithm; and an improved algorithm by Bansal et
al. [2] achieved an approximation ratio of (ln d+ 1).

Both algorithms are deemed not practical. For the
2-dimensional case, there is a ( 1

1−ρ )-approximation al-

gorithm (for any ρ < 1) called Hedging [5] (where ρ is
the maximum length in any component for each item).
Note that Hedging can be competitive and useful only
for small ρ (e.g., ρ < 1

2 ). Other relevant algorithms in-
clude generalizations of the most effective algorithms
for the 1-dimensional case (e.g. GFFD), and were
considered as candidates for the multi-dimensional
vector problem considered here. Applications of vec-
tor packing to resource allocation problems have also
been explored [13].

Note that the vector repacking problem has re-
ceived less attention. In fact, we are not aware of any
relevant work on the two variants considered in this
paper.

We assume that the input to all variants of the
vector packing problem includes a set of d-dimensional
vectors within the unit d-dimensional cube, represent-
ing the d-dimensional profiles of n items that need
to be packed. In other words, v̄i = (vi1, vi2, . . . , vid),
where vij ≤ 1 for j = 1, . . . , d. The (static) vector
packing problem is to partition S into a minimum
set of subsets of S (bins), {S1, S2, . . . , Sm}, such that∑
v̄i∈Sk

v̄i ≤ 1̄, for k = 1, . . . ,m, where 1̄ is the d-
dimensional vector of all 1’s.

Based on prior work, there is strong evidence that
off-line algorithms for (static) vector packing perform
better (both theoretically and in practice) than their
on-line counterparts. Thus for the 1-dimensional case,
First-fit decreasing (FFD) performs better than First-
fit (FF). Similar behavior has been observed for vector
packing in higher dimensions. For practical vector
packing in 1-dimensions, it is well known that FF
and Best-fit (BF) [7] and their on-line counterparts,
FFD and BFD, strike the best balance between their
time complexity and performance in terms of number
of bins. Stillwell et al. [14] showed FFDSum to be
a good choice for resource allocation algorithms for
virtualized service platforms. Generalziing BF and
BFD for vector packing can be done in many ways.
For d ≥ 2, Panigrahy et al. [13] proposed an algorithm
called FFD-EL2, which finds the bin with the closest
L2-distance between the vector profile of the item
and the remaining space in the bin (represented as d-
dimensional vector). Their experiments showed FFD-
EL2 to be the most competitive among the vector
packing algorithms. In summary, generalizations of
FF and BF for higher dimensions seemed to be the
best candidates for applying to the vector repacking
problems. However, our experiments led to some
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surprising results as shown below.

3 Vector Repacking

In practice, finding optimal or near-optimal place-
ments of entities on servers is not the end of the story.
When profiles of entities change, placements have to
be modified, resulting in costly data migration be-
tween servers. Vector repacking is the problem that
requires the simultaneous optimization of the number
of bins as well as the amount of changes from a previ-
ous packing (i.e., migrations). The migration cost is
modeled as a function of the difference between the
previous packing and a new packing. More formally,
we have:

Instance: A set of vectors S = {v̄1, . . . , v̄n}, rep-
resenting the d-dimensional profiles of the n
items to be repacked, a partition of S, B =
{S1, . . . , Sm}, representing the previous pack-
ing, and a cost function f : (B,B′) → R(0,1]

that assigns a cost to the change of packing
from B to B′.

Problem: Find a packing B′ = {S′1, . . . , S′m} such
that f(B,B′) is minimized.

Note that we make the following assumptions. We as-
sume that the cost function f(B.B′) is a combination
of two costs – the cost of the packing B′ (i.e., it de-
pends on the number of bins in B′) and the migration
cost. We assume that the cost of migrating a specific
item depends on its size, which is assumed to be one of
the dimensions of vector profile representing the item
(say, dimension 1). For example, the cost of migrating
VMs is proportional to its memory footprint, while
in storage systems, migration costs are proportional
to the size of the working-set. We assume that the
total migration cost for the whole repacking is simply
the sum of the migration costs of individual items.
In other words, other consequences of the migration
(e.g., loss in computational time of a VM during the
migration) are assumed to have minimal impact and
negligble cost. Finally, we assume that the migration
cost for a specific item depends only on the vector
describing the item and not on the source or the des-
tination of the move. For the applications in question,
these assumptions are quite reasonable.

Applications: For resource allocation applications
where one would like to assign tasks to servers, it is
possible that a task may need to be migrated to a

different server because its profile may change over
a period of time. For example, a VM may become
more or less compute intensive or memory intensive;
in storage systems, a workload may have the miss
rate characteristics change [17]. In the analogy of
vector packing, it is possible that the bin may not be
able to pack the same set of vectors as the parame-
ters of the entities change, requiring migration of the
entities from one bin (server) to another [16]. Here
we run experiments simulating the scenario where a
given set of data items is represented by a set of d-
dimensional vectors. Our algorithms assume an initial
packing for the items (by applying one of the static
vector packing algorithms). Then as their profiles
change the given placements may become untenable
and new placements may be required, which involves
data movement, whose cost is assumed to be propor-
tional to the size of the migrated item. In the following
experiments we study algorithms that aim to find a
packing of data sets into a (approximately) minimum
number of servers as the load varies over time while
incurring a (approximately) minimum migration cost.

3.1 In Search of the Best Vector Repack-
ing algorithms

The Repack Algorithm: For the vector repacking
problem, the naive algorithm is to simply repack from
scratch without using any information from the prior
packing. Instead we propose a generalized heuristic,
which we call Repack that uses the standard (static)
vector packing algorithms as subroutines. This gener-
alized heuristic for vector repacking has three stages
and works as follows.

• The first stage involves vector eviction, where
overflowed bins are identified and selected vec-
tors are evicted.

• The second stage involves placement of the
evicted vectors, which are packed either into
one of the existing bins with adequate resources
or into new bins.

• The third and final stage involves a packing
reduction step, where we consider one bin at a
time and check whether all its vectors can be
placed in other open bins.

The last stage is to take care of underutilized bins
where the goal is to see if the bin could be done
away with entirely. As mentioned earlier, the total
data movement cost of these operations was simply
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modeled as the sum of the first dimension of all the
relocated items (i.e., size dimension).

Repack requires the choice of a (static) vector pack-
ing algorithm, which is then applied to obtain an ini-
tial packing of the items; in subsequent intervals it
again uses a vector packing algorithm to decide how
to evict items from overloaded and under-filled bins,
and uses it again to decide where to repack them. We
tested Repack using the off-line version in which all
items to be packed are preordered in decreasing order
of sum of all dimensions. We measured the quality of
the algorithm in terms of number of bins and migra-
tion cost. Note that the migration cost is a function
of the total size of all the items to be repacked.

For simple packing, previous work had already
showed that all the versions of BF and FF have com-
parable performance in practice. Along with the ver-
sions of BF, we also implemented a version of Next-fit
(NF). The results on the number of bins were exactly
as expected, i.e., BF resulted in far fewer bins than
NF. However, we made a curious yet crucial obser-
vation. We noticed that NF resulted in considerably
less migration cost than BF. (Note that the points
corresponding to k = 0 and k = 100 in Figure 1 corre-
spond to NF and BF respectively.) If the number of
bins were the only criterion, then BF and FF and its
variants are clear winners. Since the performance of
the algorithm is a function of both the number of bins
used as well as the migration cost, it meant that the
NF algorithm and its variants also had some merit.
Thus, BF and NF represented two extremes – NF is
an efficient algorithm and produces packings that are
not very tight, while BF is less efficient algorithm and
focuses on achieving good packings. However, NF has
the additional advantage of incurring relatively low
migration costs. The observation could be explained
by the fact that because NF does not generate tight
packings, even when some of the items change their
profiles the bins continue to be able to accommodate
the items, thus resulting in less migration costs. The
take-home message was that tighter packings will lead
to higher migration costs since the servers are run-
ning closer to full capacity and are more prone to
having the capacities exceeded by smaller changes in
the requirements of individual tasks.

The Hybrid Vector Packing Algorithm: What
we needed was a hybrid algorithm that could incorpo-
rate the best of both the NF and BF algorithms, and
we have an excellent candidate. We propose a family
of algorithms, which we will refer to as k-bounded BF

(on-line) and k-bounded BFD (off-line), for different
values of k. We abbreviate these algorithms as kBF
and kBFD. NF can be described as an algorithm that
looks at one bin and decides whether or not to place
the next item in it (or to open a new bin). In contrast,
BF can be thought of as an algorithm that looks at
all bins and decides on the best choice of a bin where
the item is to be placed (or opens a new bin). The
k-bounded BF looks at a fraction k of the bins to
decide on the best choice of a bin to place the next
item. When k = 0%, the algorithm is same as NF
and when k = 100%, i.e., equals the number of bins
currently used, the algorithm is the same as BF.

We studied the use of k-bounded BF (kBF) and
k-bounded BFD (kBFD) for Repack to characterize
its effect on the trade-off between the migration cost
of repacking at each dynamic interval and the number
of bins used. We tested Repack with kBF and kBFD
for k = 0%, 10%, 20%, . . . , 100%.
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Figure 1: The effect of varying k on the performance
of kBF and kBFD. Note that k = 0% and k = 100%
correspond to NF and BF respectively.

Figure 1 highlights the tradeoff between the pack-
ing efficiency and the migration cost as k is varied.
The first observation is that the tradeoff is non-existent
for the off-line version and manifests itself only in the
on-line version. In the off-line version, both number
of bins and migration cost go down with increase in k.
The behavior of the off-line algorithms, for which the
input is sorted in decreasing order of some measure
of the item, is explained as follows. As k increases,
it is no surprise that the number of bins becomes
smaller since every item has more choices of bins to
be placed. (In fact, the reason for the decrease in
the number of bins also applies to the on-line case.)
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For the off-line case, at the start when the items are
“large”, the bins are packed loosely. As the items get
smaller, the bins get packed increasingly tightly. How-
ever, as k increases, the algorithm packs the last k
bins less tightly (since it has more choices) causing
lower migration costs from these k bins in the next
interval. We have already argued that as bins get
packed less tightly, the migration costs start to drop.
In the on-line case, since the items appear in random
order, all bins packed to roughly the same level of
tightness. Therefore, for the on-line case, fewer bins
translates very simply to greater migration costs. Our
experiments (Fig 7 in Section 7.3 of the Appendix)
support the above arguments. Another interesting
observation is that the biggest drop in number of bins
happens when we go from k = 0% to k = 10%. This
is not surprising since having a few choices is always
better than no choices. However, the marginal gain of
more choices starts to drop as the number of choices
increases.

The real merit of on-line kBF can be seen in the
fact that it is possible to “exploit the tradeoff” and
optimize the cost of the algorithm by picking the value
of k that balances the packing cost and the migration
cost, thus providing finer control on the combined
total cost. This behavior stays consistent with tests
in higher dimensions (see Figure 6 in Section 7.2 of
the Appendix).

Experiments with Other Distributions: As
pointed out by Panigrahy et al. [13], practical resource
allocation applications vary widely in terms of how
heterogeneous they are in their resource requirements.
It is therefore important to perform comprehensive
experiments with a variety of distributions under a
variety of correlations across dimensions. The follow-
ing set of experiments were inspired by the work of
Panigrahy et al. [13] and Caprara and Toth [4].

The Repack algorithm was tested on 200 differ-
ent simulated data sets each with 1000 items. In
each test case, the initial vectors were randomly gen-
erated using values from U(0, 1] and distributions
from Caprara and Toth [4]. Then for each of 4 in-
tervals the values of these vectors were changed in
all dimension (except the first dimension, which we
refer to as the static size dimension), again generating
values from U(0, 1] and other distributions. This is
consistent with what is likely to happen in storage sys-
tems where working sets do not significantly change
in size over a small time interval [17]. We use the
following 8 interesting distributions from Caprara and

Toth [4]. Distributions Caprara 1 through 6 corre-
spond to U [0.1, 0.4], U [0, 1], U [0.2, 0.8], U [0.05, 0.2],
U [0.025, 0.1], and U [0.133, 0.667], respectively. Dis-
tribution Caprara 7 corresponds to U [0.133, 0.667]
for odd dimension i and to U [vi − 0.067, vi + 0.067]
for dimension i + 1, where vi is the value sampled
for dimension i. Lastly, Caprara 8 corresponds to
U [0.133, 0.667] in dimension i and U [0.733−vi, 0.867−
vi] in dimension i+ 1. Thus distributions Caprara 7
(and 8) correspond to a positively (resp., negatively)
correlated distributions.

Experiments with different values of k would seem
to strongly suggest that 100%-bounded BFD is always
the better choice for Repack than 0%-bounded BFD.
However, the behavior under some of the above dis-
tributions suggests otherwise. Figures 2(a) and (b)
show the performance of Repack with vectors from
the distributions Caprara 4 and Caprara 7. Caprara
7 is a correlated distribution and is effectively a 1-
dimensional vector packing and its behavior follows a
predictable path. Caprara 4 has a small variance and
other than a big jump when k becomes non-zero, its
trajectory stays within a small region. For these and
other distributions it is obvious that the best choice
of k for Repack using kBF or kBFD will depend on
the particular cost proportion between number of bins
and movement cost. The kBF and kBFD simply of-
fer us greater choice in the family of algorithms that
could provide us better performance.

4 Vector Repacking with Repli-
cas

In many resource allocation applications (e.g., stor-
age systems), migration of tasks is often prohibitively
expensive. In the previous section we saw how to
compensate for it by picking the right value of k in
the kBF packing algorithm. Another way to lower
or even eliminate data migration costs is to replicate
and over-provision the resources at the start [17]. The
storage of redundant copies of the items on different
servers is a technique already used in storage systems
for achieving higher fault tolerance and robustness.
(However, here we argue that it also results in lower
migration costs.) For example, in Verma et al. [17],
the system selects one of the copies of each item to
be its active copy. Other copies remain on different
servers as inactive. When a server exceeds it capacity,
then the system may deactivate one or more of the
items whose active copy is on that server. For each of
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Figure 2: Performance of Repack with input vectors
from the distributions (a) Caprara 4 and (b) Caprara
7

the deactivated copies, the system then has to choose
one of the inactive copies (on a different server) and
make it active, thus effectively shifting the load cor-
responding to that item from one server to another.
However, this does not mean that the migration cost
can be totally eliminated. When an item switches
to a different active copy then synchronization of the
copies may be needed since only the active copy is in-
volved in computation and may have undergone some
changes. Synchronization is the process of ensuring
that the copies are consistent. In the worst case, syn-
chronization costs can be as high as migration costs.
However, it is estimated that synchronization costs
are on the average considerably lower than migration

costs. Thus the replication approach, attempts to
tradeoff replication and copy synchronization costs
with that of migration costs.

We considered the effect of over-provisioning re-
sources to store replicas of entities with the goal of
lowering data migration costs in the event that param-
eters (such as workload intensity) of entities change.
We developed an algorithm called Replicas that creates
multiple copies (replicas) of each item and strategi-
cally places the copies on different servers. When the
profiles of the entities change, the algorithm adapts
by just selecting a different active copy of the multiple
copies without having to move the item to a different
location. This switching of active copy will incur some
synchronization cost since a fraction of the item may
have been dirtied from the time that the copy was
made.

4.1 The Replicas Algorithm

The Replicas algorithm is a modification of the bin
packing heuristic to be used in assigning tasks/items
to servers. It consists of two parts: replica allo-
cation (Algorithm 1), and active replica selec-
tion (Algorithm 2). Given the ordering and packing
strategies, and given α, the over-provisioning factor,
replica allocation makes repeated scans of the
n items (using the order determined by the given or-
dering strategy) and places the replicas in M(1 + α)
bins using the given packing strategy, where M is the
number of bins needed by that algorithm to pack one
copy of all items. Note that the cost of Algorithm 2 is
the cost of data movement involved in placing replicas
in bins.

Algorithm 1 Replicas: replica allocation

Require: V : list of n entities;
α: over-provisioning factor;
p: packing rule; q: ordering rule

initialize B to array of n empty bins
PackOneCopyOfAll(B, V , p, q)
add dα ·Me new empty bins to B
while (there is space to store more replicas of any
item) do
PackReplicas(B, V , p, q)

end while

Algorithm active replica selection is used to
determine which of the multiple replicas of each item
is to be the “active” replica. All other replicas are
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inactive and are in standby mode for possible later
activation. Algorithm active replica selection is
executed immediately after Algorithm 1 and after any
significant changes in item profiles. In storage system
applications, this would be done at periodic intervals
or after significant changes in load intensities [17].
For a relatively modest cost of storing multiple repli-
cas, the advantage of switching active replicas is that
capacity constraints of servers can be achieved with
minimal data movement. Note that replicas are placed
strategically and the choice of active replicas is made
in a manner such that servers with no active replicas
can be “turned off” or put in lower energy states to
reduce power consumption.

Algorithm 2 Replicas: active replica selection

Require: V : list of n entities;
α: over-provisioning factor;
p: packing rule;
q: ordering rule;
B : array of packed bins;

let E = � // a set of emergency bins
let O = � // subset of active bins
for all (i ∈ V sorted according to rule q) do
let C = set of open bins that contain replica of
item i
Pack item i in a bin in C using packing rule p
if (no such bin) then

Pack item i in any bin containing it using pack-
ing rule p
if (b is such a bin) then
O = O ∪ {b} and set bin b as active

else
Pack item i in a emergency bin using
packing rule p

end if
end if

end for

Algorithm active replica selection maintains
a list of currently chosen active replicas. Bins/servers
that contain at least one active replica are called “ac-
tive” bins/servers. Initially there are no active replicas
or bins. Items are scanned in the order determined by
the ordering rule q. If any of the replicas of that item
are in bins that are already active, and if that bin can
accomodate the load for that item, then that replica is
chosen to be the active one. If none of the replicas are
in active bins, then one of the bins containing one the
replicas of that item is activated and the correspond-
ing copy of the item in the bin is made the item’s

active replica. If none of the bins with replicas can
handle the load increase caused by making the item
active, then an emergency bin is opened and a new
replica is placed in that bin and made active (as is the
new bin). Note that the cost of Algorithm active
replica selection is the data movement needed to
place items in emergency bins (equal to the total of
the sizes of the emergency bins) and the number of
emergency bins used.

4.2 Experiments

We tested the Replicas algorithm on 200 data sets with
over-provisioning factor of 0, 1000 items, each item
represented by two-dimensional vectors with randomly
generated values from U [0, 1], and with 4 iterations
of changes in the second dimension (load). Since
switching between copies incurs a synchronization cost,
we studied the viability and cost of replication with
different dirty ratios. (Dirty ratio is the percentage of
the item “dirtied” or modified since the last time a
replica was made. In other words, it is the percentage
difference between the original copy and its replica
on another server.) As in Repack we tested Replicas
using FFD-EL2 and BFDSum.
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Figure 3: Performance of Replicas with k-bounded
BFD and BF for different values of k. Uniform dis-
tribution in 2D. Maximum dirty ratio of 25%

Figure 3 shows that k ≈ 50% for the off-line case
(k ≈ 30% for on-line) produces the best performance
in terms of lowering the number of bins used. Algo-
rithms BFD and BF produce more efficient packings
(than NFD and NF) for the static version of vector
packing, but these packings are too tight for the dy-
namic version, allows less space for replication, and
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has less room to adapt to any changes in the profile
of the items. Consequently, new emergency bins need
to be opened. On the other extreme, NF uses more
bins but has more room to adapt to abrupt changes
in demands. Thus Replicas with k-bounded BF and
BFD provides clear trade-offs in terms of migration
costs versus the number of bins. The right choice
of k will depend on the application and the relative
ratios of the migration costs versus number of bins.
As with Repack, the biggest drop in the number of
bins resulted when going from k = 0% to k = 10%.
When k initially increases, the gain in number of bins
is tremendous, which in turn means fewer replicas,
and smaller gains in migration costs. The drop in mi-
gration cost continues with increase in k all the way
to k = 100%. However, at some point the gains are
nullified by the increase in the number of emergency
bins created and hence the C-shaped curve. Higher
values of k results in fewer bins for the first copy
and therefore less space for the replicas and greater
number of emergency bins.

Figure 4 compares the performance of Replicas and
Repack. For lower dirty ratios (Fig. 4(a)), Replicas is
better than Repack since it adapts to change without
incurring large migration costs while providing more
fault tolerance and using a number of bins that is
competitive with Repack. When the dirty ratio is high
(Fig. 4(b)), the cost of synchronization for Replicas
becomes a dominant factor. For dirty ratios under
15% over a dynamic interval, Replicas performs as
well if not better than Repack in terms of migration
cost.

5 Experiments with Real Trace
Datasets

We finally tested our suite of algorithms on a storage
systems application. Real trace data was generated
from accesses to the university storage system. This
enabled us to compare Replicas with the best exist-
ing algorithm called SRCMap to manage replicas in
storage systems.

We used the same traces that were used to test the
performance of SRCMap by Verma et al. [17]. The
traces included all I/O data requests over a period
of 480 hours to 8 independent data volumes residing
on 8 different disks. The traces were used to infer
data about the average load intensities of each data
volume over each period of one hour length. These
values were then used as the realistic input that rep-
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Figure 4: k-bounded Replicas and Repack. Uniform
distribution. a) Maximum dirty ratio of 10% b) Max-
imum dirty ratio of 15%.
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resents dynamic workload profiles of the data sets
over each interval of one hour. Also for each data vol-
ume, the working set of the volume was determined
by aggregating all data I/O requests to that volume.

We ran the experiments with 8 data volumes each
with load capacity levels of 125, 196, 196, 196, 196, 196,
145, and 145 IOPS respectively. Each data volume set
aside 20% percent of its storage capacity as replica
space to hold working set copies of other volumes. The
data volumes had storage capacities of 270, 7.8, 7.8, 10,
10, 20, 170, and 170 GBs respectively. Each disk Di ∈
[Dn] has a working set Vi. Every hour each Vi ∈ [Vn] is
assigned a new average workload value for the length
of the interval. Every 24 hours Vi ∈ [Vn] is assigned
a new working set size value for the length of the 24
hours interval. Each working set Vi is replicated by
storing its copies on multiple disks from [Dn]. Ev-
ery 24 hours both Replicas and SRCmap apply their
replica allocation algorithm, and every hour they both
apply their target mapping algorithm. Replicas was
run with over-provisioning factor of α = 0. Since
each working set Vi has its main copy stored in the
primary storage section of disk Di each disk Di serves
all requests to Vi whenever it is active, even if another
active disk Dj has a replica of working set Vi. No
emergency hosts were set up in Replicas. We assumed
that in the worse case, all data volumes would be
active.

Table 1 compares the performance of SRCMap
with versions of Replicas using 10 different vector
packing (VP) strategies. Four of these use BF, four
use FF, and two of them use NF replica allocation.
Six of the ten flavors of the Replicas algorithm were
able to service the requests of all working sets using
less active hosts on the average than SRCMap. The
average number of bins using BF and BFD resulted in
about 20% decrease in the number of bins. Under this
real trace distribution dealing with a small number of
servers, k-bounded Replicas with k = 100% was the
best option regardless of the cost proportion between
movement cost and number of active hosts. The on-
line versions performed better than off-line versions of
BF and FF. The FF algorithm performed the best and
showed an improvement of over 50% over SRCMap in
number of bins.

6 Conclusions

This paper considers dynamic resource allocation prob-
lems, which have high practical relevance in this era
of cloud computing where services are provisioned and

Table 1: Comparing Replicas to SRCMap

Algorithm Avg # Migration
Active Hosts Cost
± Std. Dev Cost

Replicas NF 3.30 ± 0.63 10.02
Rep 50% BF 3.39 ± 0.66 9.59
Replicas BF 2.22 ± 0.75 9.92
Rep 50% FF 3.07 ± 0.77 9.56
Replicas FF 1.39 ± 0.74 9.95

Replicas NFD 3.29 ± 1.36 11.47
Rep 50% BFD 2.88 ± 1.22 10.59
Replicas BFD 2.36 ± 0.87 10.12
Rep 50% FFD 2.79 ± 1.21 10.55
Replicas FFD 1.44 ± 0.86 10.10

SRCMap 3.05 ± 1.01 12.13

managed dynamically to minimize cost.
Many important dynamic resource allocation prob-

lems can be cast as a vector repacking problem. We
have proposed the Repack algorithm to address the
vector repacking problem; it allows for “incremental”
repacking to reduce the cost of migrations due to
repacking. In its simplest form, it is based on well-
known vector packing algorithms (FF, BF, and NF),
and is efficient with regard to the number of bins used
and the amount of migration that results. More im-
portantly, we show that a simple variant of the Repack
algorithm that is based on the kBF (a combination of
BF and NF) vector packing algorithm has the right
ingredients to be an effective tool for this problem.
By picking an appropriate value of k, this proposed
variant can be adapted to many different resource
allocation applications. The value of k is a function
of the relative cost of using an extra bin to that of
migrating an item of unit size. We also considered a
variant of the vector repacking problem that allows
for a limited amount of extra bins to store multiple
copies (replicas) of items. Experiments show that a
small number of extra bins and multiple copies im-
proves the performance in terms of packing efficiency
as well as migration costs. Our experiments show
that Replicas is a practical tool for resource allocation
and power-aware computing for systems that store
entities with dynamically (but infrequently) changing
characteristics. All our experiments were confirmed
with synthetic data sets produced from a collection of
different realistic distributions, and with real traces
from real systems.
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7 Appendix

7.1 Experiments with Repack on a variety of input distributions
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Figure 5: Performance of Repack using kBF and kBFD on four distributions: (a) Caprara 1, (b) Caprara 5,
(c) Caprara 6, and (d) Caprara 8
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7.2 Experiments with Repack for higher dimensions
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Figure 6: Experiments with Repack for 4 and 8 dimensional inputs
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7.3 Experiments measuring level of bins after first dynamic interval for Repack
kBF and kBFD
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Figure 7: Figures on the top row show average levels to which bins are filled after the initial packing with
Repack (a) kBF and (b) kBFD. Figures on the bottom row show average levels to which bins are filled with
Repack (a) kBF and (b) kBFD after the first dynamic interval when their profiles are randomly changed. As
seen in the graphs on the bottom row, several bins have their capacities exceeded and will require migrations
of some of the items.
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