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Abstract

Let S be a set of n points in a metric space, and k a positive integer.
Algorithms are given that construct k-fault-tolerant spanners for S.
If in such a spanner at most k vertices and/or edges are removed,
then each pair of points in the remaining graph is still connected by a
“short” path. First, an algorithm is given that transforms an arbitrary
spanner into a k-fault-tolerant spanner. For the Euclidean metric in
R
d, this leads to an O(n log n + ckn)–time algorithm that constructs

a k-fault-tolerant spanner of degree O(ck), whose total edge length is
O(ck) times the weight of a minimum spanning tree of S, for some
constant c. For constant values of k, this result is optimal. In the
second part of the paper, algorithms are presented for the Euclidean
metric in Rd. These algorithms construct (i) in O(n log n+k2n) time,
a k-fault-tolerant spanner with O(k2n) edges, and (ii) in O(kn log n)
time, such a spanner with O(kn log n) edges.
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1 Introduction

Spanners have applications in the design of networks. Consider a set S of n
points in a metric space. A network on S can be modeled as an undirected
graph G with vertex set S and with edges e = (a, b) of length |e| that is
defined as the distance |ab| between its two endpoints a and b. Let p and q
be two points of S, and let P be a pq-path in G, i.e., a path in G between p
and q. The length |P | of P is defined as the sum of the lengths of the edges
of P .

Let t > 1 be a real number. We say that G is a t-spanner for S, if for
each pair of points p, q ∈ S, there exists a pq-path in G of length at most t
times the distance between p and q. If S is a set of points in Rd for some
constant d, and the metric is the Euclidean metric, then we call the graph G
a Euclidean t-spanner.

The problem of constructing spanners has been investigated by many
researchers. For general metric spaces, Althöfer et al. [1], and Chandra et
al. [7] showed that a natural greedy algorithm computes, for any constant
t > 1, a t-spanner with O(n1+2/(t−1)) edges, in O(n3+4/(t−1)) time.

For the Euclidean case in R2, Keil and Gutwin [11] showed that for any
constant t > 1, a t-spanner for S having O(n) edges can be constructed
in O(n log n) time. Salowe [15], Vaidya [17] and Callahan and Kosaraju [5]
showed the same result for any fixed dimension d.

In this paper, we show that it is possible to incorporate fault-tolerance into
such networks. Fault tolerance is intimately related to the graph-theoretic
concept of connectivity. The edge (vertex) connectivity of a graph is the
minimum number of edges (vertices) that need to be removed in order to
disconnect it. Fault-tolerant networks are usually designed by making them
highly connected.

We construct networks that are more than just resilient to edge or vertex
faults. Our networks have the property that after removing at most k vertices
and/or edges, the remaining graph still contains “short” paths between each
pair of points. Before we can define this formally, we have to introduce the
following notation.

If S is a set of points, then KS denotes the complete graph on S. Let
G = (S,E) be a graph, E ′ a subset of E, and S ′ a subset of S. We denote
by G \ S ′ the graph with vertex set S \ S ′, and edge set the set of all edges
of E that have both endpoints in S \ S ′. Similarly, G \E ′ denotes the graph
(S,E \E ′). Finally, G\ (S ′, E ′) denotes the graph with vertex set S \S ′, and
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edge set the set of all edges of E \ E ′ that have both endpoints in S \ S ′.

Definition 1 Let S be a set of n points in a metric space, t > 1 a real
number, k a positive integer, and G = (S,E) an undirected graph.

1. G is called a k-vertex fault-tolerant t-spanner for S, or (k, t)-VFTS,
if for each subset S ′ of S having size at most k, the graph G \ S ′ is a
t-spanner for the points of S \ S ′.

2. G is called a k-edge fault-tolerant t-spanner for S, or (k, t)-EFTS, if
the following holds for each subset E ′ of E having size at most k:

• For each pair p and q of points in S, the graph G \ E ′ contains
a pq-path having length at most t times the length of a shortest
pq-path in the graph KS \ E ′.

3. G is called a k-fault-tolerant t-spanner for S, or (k, t)-FTS, if the fol-
lowing holds for each subset S ′ of S and each subset E ′ of E such that
|S ′|+ |E ′| ≤ k:

• For each pair p and q of points in S \ S ′, the graph G \ (S ′, E ′)
contains a pq-path having length at most t times the length of a
shortest pq-path in the graph KS \ (S ′, E ′).

Note that in a vertex and/or edge fault-tolerant t-spanner, our definition
insists that between every pair of points there is a path whose length is at
most t times the best possible path under the circumstances, i.e., the shortest
path in the graph KS \ S ′, KS \ E ′, or KS \ (S ′, E ′).

In the definition of a (k, t)-VFTS, we could have required that for each
pair p and q of points in S \ S ′, the graph G \ S ′ contains a pq-path having
length at most t times the length of a shortest pq-path P in the graph KS\S ′.
Since KS \S ′ is the complete graph on the point set S \S ′, this shortest path
P , however, consists of the single edge (p, q). Hence, G \ S ′ is indeed a
t-spanner for S \ S ′.

To our knowledge, the concept of fault-tolerant spanners has not been
investigated before. The only related work that we are aware of is by Ueno
et al. [16], who showed that if an unweighted graph has a sufficiently high
connectivity, then it contains a spanner having a linear number of edges.

3



1.1 Our results

Unless stated otherwise, all algorithms in this paper belong to the algebraic
computation tree model. (See Ben-Or [3] and Preparata and Shamos [14].)

It is clear that any (k, t)-FTS is also a (k, t)-VFTS and a (k, t)-EFTS. In
Section 2, we will prove the converse. That is, we show that any (k, t)-VFTS
is in fact a (k, t)-FTS and, hence, in particular, a (k, t)-EFTS. As a result, it
suffices to show how to construct spanners that are resilient to vertex faults.

In Section 3, we give a simple construction that transforms any t-spanner
G0 into a (k, t)-VFTS G. If the degree of each vertex in G0 is bounded by D,
then each vertex of G has degree O(Dk+1). Moreover, in this case the total
edge length of G is proportional to k ·Dk times that of G0. The running time
of the algorithm that transforms G0 into G is bounded by O(Dk+1n).

For the Euclidean metric in Rd, Arya et al. [2] show how to compute in
O(n log n) time, a t-spanner G0, in which each point has a degree that is
bounded by a constant D, that only depends on d and t. Combining this
with our transformation of Section 3 and our result of Section 2, gives an
algorithm that constructs in O(n log n+Dk+1n) time, a Euclidean (k, t)-FTS
in which each point has degree O(Dk+1). If k is a constant, then this result
is optimal. The optimality of the running time follows from Chen et al. [8],
who proved that computing any Euclidean t-spanner takes Ω(n log n) time
in the algebraic computation tree model.

Arya et al. [2] also claim an O(n log n)–time algorithm that computes a
t-spanner in which the degree of each point is bounded by a constant D,
and whose total edge length is bounded by a constant times the weight of
a minimum spanning tree of the points. Unfortunately, this result seems to
be incorrect. Recently, Gudmundsson et al. [10] achieved this result in the
real RAM model. (See Preparata and Shamos [14].) Hence, if we combine
this result with the transformation of Section 3, then we get a real RAM
algorithm that constructs in O(n log n + Dk+1n) time, a Euclidean (k, t)-
FTS of degree O(Dk+1), whose total edge length is proportional to O(k ·Dk)
times the weight of a minimum spanning tree of the points.

In Section 4, we show that a Euclidean (k, t)-FTS having O(k2n) edges
can be constructed in O(n log n+ k2n) time, and that such a spanner having
O(kn log n) edges can be constructed in O(kn log n) time, where the constant
factors only depend on t and the dimension d. Our construction is based on
the well-separated pair decomposition of Callahan and Kosaraju [6]. They
show in [5] that a Euclidean t-spanner with O(n) edges can be obtained from
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this decomposition. We extend this result to fault-tolerant spanners.

2 It suffices to construct vertex fault-tolerant

spanners

In this section, we prove the following theorem.

Theorem 1 Let S be a set of n points in a metric space, k a positive integer,
t > 1 a real constant, and G = (S,E) an undirected graph. Then G is a
(k, t)-VFTS for S if and only if it is a (k, t)-FTS for S.

It is clear that a (k, t)-FTS is also a (k, t)-VFTS. To prove the converse,
assume that G is a (k, t)-VFTS for S. Let S ′ be a subset of S of size k′, and
let E ′ be a subset of E of size k′′, such that k′ + k′′ ≤ k. We may assume
without loss of generality that no edge of E ′ is incident to any point of S ′;
otherwise, we can decrease k′′ accordingly.

Let p and q be two distinct points of S \ S ′. We have to show that the
graph G \ (S ′, E ′) contains a pq-path of length at most t times the length
of a shortest pq-path in KS \ (S ′, E ′). This follows from the following two
lemmas.

Lemma 1 Assume that (p, q) is an edge of KS \ (S ′, E ′). Then G \ (S ′, E ′)
contains a pq-path of length at most t times the distance between p and q.

Proof. Let S ′′ be any set of at most k′′ vertices of S \{p, q}, that is obtained
by taking for each edge of E ′ an arbitrary endpoint that is not equal to p or
q. Since (p, q) is not an edge of E ′, this is possible. (For example, if (a, b)
and (b, c) are edges of E ′, then S ′′ can contain the endpoints a and b; or a
and c; or b and c; or only b.) Define G′ := G \ (S ′ ∪ S ′′). Note that

|S ′ ∪ S ′′| = |S ′|+ |S ′′| ≤ k′ + k′′ ≤ k.

Since G is a (k, t)-VFTS for S, the graph G′ is a t-spanner for S \ (S ′ ∪ S ′′).
Since p and q are vertices of G′, this graph contains a pq-path P of length at
most t|pq|. This path neither contains vertices of S ′, nor edges of E ′. That
is, P is a pq-path in G \ (S ′, E ′).

Lemma 2 The graph G\(S ′, E ′) contains a pq-path of length at most t times
the length of a shortest pq-path in KS \ (S ′, E ′).
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Proof. Let P = (p0 = p, p1, p2, . . . , pl = q) be a shortest pq-path in KS \
(S ′, E ′). Then for each i, 0 ≤ i < l, (pi, pi+1) is an edge of KS \ (S ′, E ′).
Hence by Lemma 1, the graph G \ (S ′, E ′) contains a path Qi between pi
and pi+1 having length at most t|pipi+1|. Let Q be the concatenation of
Q0, Q1, . . . , Ql−1. Then, Q is a pq-path in G \ (S ′, E ′), having length

l−1∑
i=0

|Qi| ≤
l−1∑
i=0

t|pipi+1| = t|P |.

This proves the lemma.

3 Fault-tolerant spanners in general metric

spaces

In this section, we give a simple transformation that turns any spanner G0

into a fault-tolerant spanner G. If the degree of G0 is bounded by D, then
the degree of G is proportional to Dk+1. Moreover, in this case, the trans-
formation increases the total edge length by at most a factor proportional to
k ·Dk.

Let S be a set of n points in a metric space, t > 1 a real number, and k
a positive integer. Let G0 be an arbitrary t-spanner for S. For each vertex
p ∈ S, let N(p) be the set of all vertices of S \ {p} that are connected to p,
in G0, by a path consisting of at most k+ 1 edges. Define Ep := {(p, q) : q ∈
N(p)}. The transformed graph G has the points of S as its vertices, and it
has edge set E :=

⋃
p∈S Ep. Note that G0 is a subgraph of G.

Lemma 3 The graph G is a (k, t)-FTS for S.

Proof. By Theorem 1, it suffices to show that G is a (k, t)-VFTS for S.
Let S ′ be a subset of S having size at most k, and let p and q be two

distinct points of S \ S ′. We will show that the graph G \ S ′ contains a
pq-path of length at most t times the distance between p and q.

Since G0 is a t-spanner for S, there is a pq-path

P = (q0 = p, q1, q2, . . . , ql = q)

in G0 of length at most t|pq|. We will construct a pq-path Q in G \ S ′ that
is a subpath of P . Then, the triangle inequality implies that the length of Q
is at most that of P . This will prove the lemma.
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First assume that l ≤ k+ 1. Then, q ∈ N(p) and, hence, (p, q) is an edge
of G. Since p and q are both vertices of S \S ′, (p, q) is an edge of G \S ′, and
we can take for Q the path consisting of this single edge.

Assume that k + 2 ≤ l. The following algorithm constructs the path
Q = (p0, p1, . . .) incrementally.
Step 1: Define p0 := p, i := 0, and j := 0. Go to Step 2.
Step 2: At this moment, Q = (p0, p1, . . . , pi) is a path in G \ S ′, j is the
index such that pi = qj, and j + k + 2 ≤ l. (In particular, pi 6= q, and
qj ∈ S \ S ′.)

If there is an index m, j + 1 ≤ m ≤ j + k+ 1, such that (i) m+ k+ 2 ≤ l
and (ii) qm is a vertex of S \ S ′, then go to Step 3. Otherwise, go to Step 4.
Step 3: Since qj and qm are both vertices of S \ S ′, and qm ∈ N(qj), we
know that (qj, qm) is an edge of G \ S ′. Therefore, we define pi+1 := qm, set
i := i+ 1 and j := m, and go to Step 2.
Step 4: We know that pi = qj and j + k + 2 ≤ l. Moreover, for all m,
j+1 ≤ m ≤ j+k+1, such that qm is a vertex of S\S ′, we have m+k+1 ≥ l.

We claim that there is an index m, j + 1 ≤ m ≤ j + k + 1, such that
(qj, qm) and (qm, q) are both edges of G \ S ′.

Assume this claim is true. Then we define pi+1 := qm and pi+2 := q, and
the construction of the pq-path Q is complete.

It remains to prove the claim. Since S ′ has size at most k, there is an
index m, j + 1 ≤ m ≤ j + k + 1, such that qm ∈ S \ S ′. Hence, qm ∈ N(qj)
and (qj, qm) is an edge of G \S ′. Our assumption implies that m+ k+ 1 ≥ l.
Therefore, q = ql ∈ N(qm) and (qm, q) is an edge of G. Since qm and q are
both contained in S \ S ′, edge (qm, q) is contained in G \ S ′. This proves the
claim.

Why does this algorithm terminate? Each time Step 3 is executed, path
Q is extended by a new point. Therefore, at some moment, Step 4 must be
executed. At that moment, Q reaches q, and the algorithm terminates.

Lemma 4 Assume that each point of S has degree at most D in G0. Then

1. each point of S has degree at most 2 ·Dk+1 in G, and

2. the total edge length of G is at most 8(k + 1) ·Dk times that of G0.

Proof. Let p ∈ S. Then

|N(p)| ≤ D +D2 +D3 + · · ·+Dk+1 ≤ 2 ·Dk+1.
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Since q ∈ N(p) if and only if p ∈ N(q), it follows that each point has degree
at most 2 ·Dk+1 in G.

To bound the total edge length of G, we use the following charging
scheme. Let (p, q) be any edge of G, and consider any pq-path P = (p0 =
p, p1, p2, . . . , pl = q) in G0 containing l ≤ k + 1 edges. (Note that P exists.)
We charge the length |pq| of edge (p, q) to the edges of P , in such a way
that no edge (pi, pi+1), 0 ≤ i < l, is charged by more than |pipi+1|. Since
|pq| ≤ |P |, this is possible. We do this for all edges of G.

For each edge e of G0, let ne be the number of times this edge is charged.
Then the total edge length of G is at most equal to

∑
e∈G0

ne · |e|. We will

show that ne ≤ 8(k + 1) ·Dk. This will imply that the total edge length of
G is at most 8(k + 1) ·Dk ·

∑
e∈G0
|e|, which is equal to 8(k + 1) ·Dk times

the total edge length of G0.
Let e be an edge of G0, and let it have endpoints a and b. Every time

e is charged, there are two points p and q, such that there is a pq-path in
G0 containing at most k + 1 edges, e being one of them. Assume w.l.o.g.
that a occurs before b on this path. Let i be the number of edges on the
subpath from p to a. Then 0 ≤ i ≤ k. If j denotes the number of edges on
the subpath from b to q, then 0 ≤ j ≤ k − i.

If we fix i and j, then the number of possibilities for p is at most

D +D2 +D3 + · · ·+Di ≤ 2 ·Di,

and the number of possibilities for q is at most

D +D2 +D3 + · · ·+Dj ≤ 2 ·Dj.

It follows that

ne ≤
k∑
i=0

2 ·Di

k−i∑
j=0

2 ·Dj

= 4
k∑
i=0

Di
(
1 +D +D2 + · · ·+Dk−i)

≤ 8
k∑
i=0

Di ·Dk−i

= 8(k + 1)Dk.
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We now apply these results to the Euclidean case.

Theorem 2 Let S be a set of n points in Rd, k a positive integer, and t > 1
a real constant. There exists a Euclidean (k, t)-FTS for S, in which each
point has degree less than or equal to αdk+d, for some constant α that only
depends on t. This (k, t)-FTS can be computed in O(n log n+ αdk+dn) time.
If t ↓ 1, then α ∼ c/(t− 1) for some constant c.

Proof. In [2], it is shown that in O(n log n + βdtn) time, a Euclidean t-
spanner G0 can be constructed whose degree D is bounded by βdt. The value
of βdt only depends on d and t, and if t ↓ 1, then βdt ∼ (c′/(t− 1))d for some
constant c′.

Let G be the graph obtained by applying our transformation to G0. By
Lemma 3, G is a Euclidean (k, t)-FTS. The bound on the degree of G follows
from Lemma 4. The definition of G immediately leads to an algorithm for
constructing it from G0, in time O(

∑
p∈S |N(p)|) = O(Dk+1n).

If the t-spanner G0 has low total edge length and low degree, then our
transformation results in a (k, t)-FTS, and Lemma 4 gives bounds on its total
edge length and its degree. Das and Narasimhan [9] showed how to compute
such a spanner G0 in O(n log2 n) time. The running time was recently im-
proved by Gudmundsson et al. [10] to O(n log2 n/ log log n) in the algebraic
computation tree model, and to O(n log n) in the real RAM model. Hence,
we have the following result.

Theorem 3 Let S be a set of n points in Rd, k a positive integer, and t > 1 a
real constant. There exists a Euclidean (k, t)-FTS for S, in which the degree
of each point is at most ck, and whose total edge length is at most O(ck)
times the weight of a minimum spanning tree of S. Here, c is a constant that
depends on t and d.

1. In the algebraic computation tree model, this (k, t)-FTS can be com-
puted in O(n log2 n/ log log n+ ckn) time.

2. In the real RAM model, this (k, t)-FTS can be computed in O(n log n+
ckn) time.
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4 Euclidean fault-tolerant spanners with a poly-

nomial number of edges

The number of edges in the Euclidean (k, t)-FTS of Theorems 2 and 3 is
exponential in k. In this section, we give an algorithm for constructing a
(k, t)-FTS that uses only a polynomial number of edges. Unfortunately, we
are not able to prove non-trivial bounds on the degree and total edge length
of this spanner. Before we give our construction, we recall some facts about
well-separated pairs.

4.1 Well-separated pairs

Our construction of fault-tolerant spanners is based on the notion of well-
separated pairs, which is due to Callahan and Kosaraju [6].

Definition 2 Let s > 0 be a real number, and let A and B be two finite sets
of points in Rd. We say that A and B are well-separated w.r.t. s, if there are
two disjoint d-dimensional balls CA and CB, having the same radius, such
that (i) CA contains all points of A, (ii) CB contains all points of B, and
(iii) the distance between CA and CB is at least equal to s times the radius
of CA.

See Figure 1 for an illustration. In this paper, s will always be a constant,
called the separation constant.

Definition 3 ([6]) Let S be a set of n points in Rd, and s > 0 a real number.
A well-separated pair decomposition (WSPD) for S (w.r.t. s) is a sequence
of pairs of non-empty subsets of S,

{A1, B1}, {A2, B2}, . . . , {Am, Bm},

such that

1. Ai ∩Bi = ∅, for all i = 1, 2, . . . ,m,

2. for any two distinct points p and q of S, there is exactly one pair
{Ai, Bi} in the sequence, such that

(a) p ∈ Ai and q ∈ Bi, or
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Figure 1: Two planar point sets A and B that are well-separated w.r.t. s.
Both circles have radius ρ; their distance is at least sρ.

(b) p ∈ Bi and q ∈ Ai,

3. Ai and Bi are well-separated w.r.t. s, for all i = 1, 2, . . . ,m.

The integer m is called the size of the WSPD.

Theorem 4 ([4, 6]) Let S be a set of n points in Rd, and s > 0 a separation
constant.

1. In O(n log n + αdsn) time, we can compute a WSPD for S of size less
than or equal to αdsn.

2. In O(αdsn log n) time, we can compute a WSPD for S of size O(αdsn log n),
in which each pair {Ai, Bi} contains at least one singleton set.

The constants in the Big-Oh bounds do not depend on s. Moreover, for a
large separation constant s, the value of αds is proportional to ((c+ 1)s)d for
some constant c.
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Ai Bi

Figure 2: Illustrating the construction of the fault-tolerant spanner.

4.2 Definition of the graph G

Let S be a set of n points in Rd, t > 1 a real constant, and k a positive
integer. Consider an arbitrary WSPD

{A1, B1}, {A2, B2}, . . . , {Am, Bm}
for S, with separation constant s = 4(t+ 1)/(t− 1).

We will define a graph G based on the well-separated pair decomposition,
and show that it is a fault-tolerant spanner.

Our graph G has the points of S as its vertices. Below, we define for
each i, 1 ≤ i ≤ m, a set Ei of edges. The edge set E of G is then defined as
E :=

⋃m
i=1 Ei.

Let 1 ≤ i ≤ m, and consider the well-separated pair {Ai, Bi}. We assume
without loss of generality that |Ai| ≥ |Bi|. To define Ei, we distinguish three
cases.
Case 1: |Bi| ≥ k + 1.

Choose k+1 arbitrary, but pairwise distinct points aj ∈ Ai, 1 ≤ j ≤ k+1,
and k+ 1 arbitrary, but pairwise distinct points bj ∈ Bi, 1 ≤ j ≤ k+ 1. The
edge set Ei consists of the k+ 1 edges (aj, bj), 1 ≤ j ≤ k+ 1. (See Figure 2.)
Case 2: |Bi| ≤ k and |Ai| ≥ k + 1.

Choose k+1 arbitrary, but pairwise distinct points aj ∈ Ai, 1 ≤ j ≤ k+1.
Let Bi = {b1, b2, . . . , bx}, where x = |Bi| ≤ k. The edge set Ei consists of the
x(k + 1) edges (aj, bl), 1 ≤ j ≤ k + 1, 1 ≤ l ≤ x. Hence, Ei has size at most
k(k + 1).
Case 3: |Ai| ≤ k.

In this case, the set Ei is defined as the edge set of the complete bipartite
Euclidean graph on the points of Ai∪Bi. Note that Ei has size |Ai|·|Bi| ≤ k2.
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This concludes the definition of our graph G. Note that E, the edge set
of G, has size O(k2m).

4.3 The graph G is a (k, t)-FTS for S

We now prove that the above construction does have the requisite properties.
By Theorem 1, it suffices to show that G is a (k, t)-VFTS. Let S ′ be an
arbitrary subset of S of size at most k, and let p and q be two points of
S \S ′. We will prove that the graph G \S ′ contains a pq-path having length
at most t times the Euclidean distance between p and q. The proof is by
induction on the rank of the distance |pq| in the sorted sequence of distances
in S \ S ′.

If p = q, then the claim clearly holds. So assume that p 6= q. Moreover,
assume that for any pair a, b ∈ S \ S ′ with |ab| < |pq|, the graph G \ S ′
contains an ab-path of length at most t|ab|.

Let i, 1 ≤ i ≤ m, be the index such that (i) p ∈ Ai and q ∈ Bi, or (ii)
p ∈ Bi and q ∈ Ai. According to Definition 3, i exists and is, in fact, unique.
We assume without loss of generality that (i) holds, and that |Ai| ≥ |Bi|.

Since the sets Ai and Bi are well-separated, there are two balls CAi and
CBi having the same radius, say ρ, that contain the sets Ai and Bi, respec-
tively, and that have distance at least sρ. We distinguish three cases.

Case 1: |Bi| ≥ k + 1.
Consider the k + 1 points aj ∈ Ai, 1 ≤ j ≤ k + 1, and the k + 1 points

bj ∈ Bi, 1 ≤ j ≤ k + 1, that were chosen in the construction of G.

Lemma 5 There is an index j, 1 ≤ j ≤ k + 1, such that the graph G \ S ′
contains

1. the edge (aj, bj),

2. a path P between p and aj of length at most 2tρ, and

3. a path Q between q and bj of length at most 2tρ.

Proof. Since S ′ has size at most k, there is an index j, 1 ≤ j ≤ k + 1,
such that aj and bj are both contained in S \S ′. Let j be an arbitrary index
having this property. Then (aj, bj) is an edge of G \ S ′.
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If p = aj, then we take for P the empty path, having length zero. So
assume that p 6= aj. Since |pq| ≥ sρ, |paj| ≤ 2ρ, and s > 2, we must
have |paj| < |pq|. Therefore, by the induction hypothesis, the graph G \ S ′
contains a path P between p and aj having length at most t|paj|. Clearly, P
has length at most 2tρ.

In exactly the same way, it can be shown that G \ S ′ contains a qbj-path
Q of length at most 2tρ.

We can now complete the proof for Case 1. Consider the index j, and
the paths P and Q, of Lemma 5. Let R be the pq-path in G \ S ′ obtained
by concatenating path P , edge (aj, bj), and path Q. We will show that
|R| ≤ t|pq|.

First note that |R| ≤ 4tρ + |ajbj|. The triangle inequality implies that
|ajbj| ≤ |ajp|+|pq|+|qbj|. Furthermore, |ajp| ≤ 2ρ and |qbj| ≤ 2ρ. Therefore,

|R| ≤ (4t+ 4)ρ+ |pq|.

Since |pq| ≥ sρ and s = 4(t + 1)/(t − 1), it follows that |R| ≤ t|pq|. This
completes the proof for Case 1.

Case 2: |Bi| ≤ k and |Ai| ≥ k + 1.
Consider the k + 1 points aj ∈ Ai, 1 ≤ j ≤ k + 1, that were chosen in

the construction of G. Let bj, 1 ≤ j ≤ x = |Bi|, be the points of Bi. Note
that q is one of the bj’s. Also, in G, point q is connected to each point aj,
1 ≤ j ≤ k + 1.

Let j, 1 ≤ j ≤ k+ 1, be an index such that aj is a vertex of G \S ′. Then
(aj, q) is an edge of G \S ′. It follows in exactly the same way as in the proof
of Lemma 5, that G \ S ′ contains a paj-path P of length at most 2tρ. Then,
just as in Case 1, it can be shown that the path consisting of P , followed by
edge (aj, q), is a pq-path in G \ S ′ of length at most t|pq|.

Case 3: |Ai| ≤ k.
In this case, G contains the complete bipartite Euclidean graph on Ai∪Bi

as a subgraph. Since p and q are both contained in S \ S ′, (p, q) is an edge
of G \ S ′. That is, G \ S ′ contains a pq-path of length |pq|, which is at most
t|pq|.

We have proved the following result.
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Theorem 5 Let S be a set of n points in Rd, k a positive integer, and t > 1
a real constant. Let

{A1, B1}, {A2, B2}, . . . , {Am, Bm}

be an arbitrary WSPD for S, with separation constant s = 4(t + 1)/(t −
1). The graph G = (S,E) defined above is a (k, t)-FTS for S. This graph
contains O(k2m) edges.

4.4 Constructing the graph G

The algorithm for constructing the graph G follows immediately from the
results of the previous sections. Given the set S, the positive integer k,
and the real constant t > 1, we use the algorithm of [6] (see Theorem 4)
to compute a WSPD for S of size m = O(n), in O(n log n) time. For each
pair {Ai, Bi} in this WSPD, we construct the corresponding edge set Ei. If
Case 1 applies, then we construct Ei in O(k) time. If Case 2 or 3 applies,
then we need O(k2) time to construct Ei.

Theorem 6 Let S be a set of n points in Rd, k a positive integer, and t > 1
a real constant.

1. There exists a (k, t)-FTS for S containing at most γdtk
2n edges. The

value of γdt only depends on d and t, and if t ↓ 1, then γdt ∼ (c/(t−1))d

for some constant c.

2. This (k, t)-FTS can be computed in O(n log n+ γdtk
2n) time.

Proof. Let s = 4(t + 1)/(t − 1). By Theorem 4, constructing the graph G
takes time O(n log n+αdsk

2n), where αds ∼ ((c′+ 1)s)d for some constant c′.
For t ↓ 1, we have s ∼ 8/(t− 1), and αds ∼ (8(c′ + 1)/(t− 1))d. This graph
has O(αdsk

2n) edges. By Theorem 1, G is a (k, t)-FTS for S.

Now consider a WSPD for S, in which each pair {Ai, Bi} contains at least
one singleton set. Theorem 4 states that such a WSPD of size O(αdsn log n)
exists and can be computed in O(αdsn log n) time. If we construct the corre-
sponding graph G, then Case 1 never occurs; in Case 2, only k+ 1 edges are
added; and in Case 3, at most k edges are added. Hence, the total number
of edges of G is less than or equal to k + 1 times the size of the WSPD.
Therefore, Theorems 4 and 6 lead to the following result.
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Theorem 7 Let S be a set of n points in Rd, k a positive integer, and t > 1
a real constant.

1. There exists a (k, t)-FTS for S containing at most γdtkn log n edges.
The value of γdt only depends on d and t, and if t ↓ 1, then γdt ∼
(c/(t− 1))d for some constant c.

2. This (k, t)-FTS can be computed in O(γdtkn log n) time.

5 Concluding remarks

We have presented efficient algorithms for constructing spanners that are re-
silient to k vertex and/or edge faults. In particular, Theorems 6 and 7 give
constructions that use a polynomial (i.e., O(k2n) and O(kn log n), respec-
tively) number of edges. On the other hand, the constructions of Theorems 2
and 3 use a number of edges that is exponential in k. In the latter construc-
tions, however, upper bounds on the degree and/or total edge length can be
guaranteed.

If k is a constant, then the best results are those of Theorems 2 and 3.
Theorem 2 gives a Euclidean k-fault-tolerant t-spanner, in which the degree
of each vertex is bounded by a constant. Moreover, this spanner can be
constructed in O(n log n) time. Chen et al. [8] showed that constructing any
t-spanner—that is not necessarily resilient to faults—takes Ω(n log n) time
in the algebraic computation tree model. Therefore, the result of Theorem 2
is optimal for constant values of k. Theorem 3 gives a Euclidean k-fault-
tolerant t-spanner of bounded degree, whose total edge length is bounded
by a constant times the weight of a minimum spanning tree of the points.
In the algebraic computation tree model, this spanner can be constructed
in O(n log2 n/ log log n) time, whereas in the real RAM model, the running
time is bounded by O(n log n). We leave open the problem of obtaining the
latter running time in the algebraic computation tree model.

Some other interesting problems remain to be solved. Any graph on
n vertices that remains connected after removing at most k edges, must
have Ω(kn) edges. The reason is that each vertex in such a graph must
have degree at least k + 1. In a follow-up paper to [12], Lukovszki [13]
showed that a Euclidean (k, t)-FTS with O(kn) edges can be computed,
in O(n logd−1 n + kn log log n) time. Can such a fault-tolerant spanner be
constructed in time O(n log n+ kn)?
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Lukovszki [13] also showed that a Euclidean (k, t)-FTS in which the de-
gree of each point is bounded by O(k2), can be computed in O(n logd−1 n +
kn log n+ k2n) time. Does a Euclidean (k, t)-FTS of degree O(k) exist and,
if so, can it be computed in O(n log n+ kn) time?

Let k be an even integer, and consider a set A of 1 + k/2 points that are
all very close to the origin. Let B be a set of n− 1− k/2 points that are all
very close together, but at distance roughly one from the origin. Let G be
any Euclidean (k, t)-FTS for the set S := A ∪B, where t is a constant close
to one. Then, since G is a (k, t)-EFTS, every point of A has to be connected
to at least 1 +k/2 points of B. Hence, G contains Ω(k2) edges having length
roughly equal to one. On the other hand, a minimum spanning tree of S has
weight roughly equal to one.

Is it possible to construct, for any set S of n points in Rd, a Euclidean
(k, t)-FTS, such that each vertex has degree O(k), and the weight of this
graph is O(k2) times the weight of a minimum spanning tree of S? Can such
a graph be constructed in O(n log n+ kn) time?
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