
Approximate Distance Oracles Revisited?

Joachim Gudmundsson1, Christos Levcopoulos2, Giri Narasimhan3, and
Michiel Smid4

1 Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB
Utrecht, the Netherlands. joachim@cs.uu.nl

2 Department of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden.
christos@cs.lth.se

3 School of Computer Science, Florida International University, Miami, FL 33199,
USA. giri@fiu.edu

4 School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa,
Ontario, Canada K1S 5B6. michiel@scs.carleton.ca

Abstract. Let G be a geometric t-spanner in E
d with n vertices and

m edges, where t is a constant. We show that G can be preprocessed
in O(m log n) time, such that (1 + ")-approximate shortest-path queries
in G can be answered in O(1) time. The data structure uses O(n log n)
space.

1 Introduction

The shortest-path (SP) problem for weighted graphs with n vertices and m
edges is a fundamental problem for which eÆcient solutions can now be found
in any standard algorithms text. The approximation version of this problem has
been studied extensively, see [1, 7{9]. In numerous algorithms, query versions
frequently appear as subroutines. In such a query, we are given two vertices and
have to compute or approximate the shortest path between them. The latest in
a series of results for undirected weighted graphs is by Thorup and Zwick [14];
their algorithm computes (2k� 1)-approximate solutions to the query version of
the SP problem in O(k) time, using a data structure that takes (expected) time
O(kmn1=k) to construct and utilises O(kn1+1=k) space. It is not an approxima-
tion scheme in the true sense because the value k needs to be a positive integer.
Since the query time is essentially bounded by a constant, Thorup and Zwick
refer to their queries as approximate distance oracles.

We focus on the geometric version of this problem. A geometric graph has
vertices corresponding to points in Rd and edge weights from a Euclidean met-
ric. Again, considerable previous work exists on the shortest path and related
problems. A good survey on the topic was written by Mitchell and can be found
in [13], see also [3{6]. Recently Gudmundsson et al. [9] presented the �rst data
structure that answers approximate shortest-path distance queries in constant

? J.G. is supported by The Swedish Foundation for International Cooperation in Re-
search and Higher Education and M.S. is supported by NSERC.

time, with O(n log n) space and preprocessing time for geometric graphs with
O(n) edges that are t-spanners for some (possibly large) constant t. This result
is restricted in the sense that it only supports queries between vertices in G
whose Euclidean distance is at least D=nk, where D is the length of the longest
edge in G, and k > 0 is an arbitrary integer constant. In this paper we extend
the results in [9] so that it holds for any two query points, i.e., we remove the
restriction on the distance between the query points.

A graph G = (V;E) is said to be a t-spanner for V , if for any two points p
and q in V , there exists a path in G between p and q of length at most t times
the Euclidean distance between p and q. Given a geometric t-spanner G = (V;E)
on n vertices and m edges, for some constant t, we show how to build a data
structure in time O(m log n) that answers (1 + ")-approximate shortest path
length queries in G in constant time, for any given real constant " > 0. The
structure uses O(n log n) space.

We remark that many \naturally occurring" geometric graphs are t-spanners,
for some constant t > 1, thus justifying the interest in the restricted inputs
considered in this paper. In [9] it was shown that an approximate shortest-
path distance (ASD) oracle can be applied to a large number of problems, for
example, �nding a shortest obstacle-avoiding path between two vertices in a
planar polygonal domain with obstacles, interesting query versions of closest pair
problems and, computing the approximate stretch factor of geometric graphs.

In the full paper we also show that the structure presented in this paper
easily can be extended such that (1 + ")-approximate shortest path queries for
geometric t-spanners can be answered in time proportional to the number of
edges along the path.

2 Preliminaries

Our model of computation is the traditional algebraic computation model with
the added power of indirect addressing. We will use the following notation. For
points p and q in R

d , jpqj denotes the Euclidean distance between p and q. If
G is a geometric graph, then ÆG(p; q) denotes the Euclidean length of a shortest
path in G between p and q. Hence, G is a t-spanner for V if ÆG(p; q) 6 t � jpqj
for any two points p and q of V . A geometric graph G is said to be a (t; L)-
spanner for V if for every pair of points p; q 2 V with jpqj < L it holds that
ÆG(p; q) 6 t � jpqj. If P is a path in G between p and q having length � with
ÆG(p; q) 6 � 6 (1+") �ÆG(p; q), then P is a (1+")-approximate shortest path for
p and q. Finally, a subgraph G0 of G is a t0-spanner of G, if ÆG0(p; q) 6 t0 �ÆG(p; q)
for any two points p and q of V .

The main result of this paper is stated in the following theorem:

Theorem 1. Let V be a set of n points in Rd , let " be a positive real constant
and let G = (V;E) be a t-spanner for V , for some real constant t > 1, having
O(n) edges. We can preprocess G in O(n logn) time using O(n logn) space,
such that for any two points p and q in V , we can compute, in O(1) time, a
(1 + ")-approximation to the shortest-path distance in G between p and q.

If G has m edges, where m grows superlinearly with n, then we �rst apply
Theorem 3.1 in [9] to obtain a (1 + ")-spanner of G with O(n) edges. Then
we apply Theorem 2 to G0. The preprocessing increases by an additive term of
O(m logn) and the space requirement increases by an additive term of O(m+n),
but note that the data structure only uses O(n logn) space. As described in the
theorem we will present a data structure that supports (1 + ")-ASD queries in
a t-spanner graph. As a substructure we will use the data structure in [9] that
supports restricted (1+ ")-shortest path queries in t-spanner graphs. In the rest
of this paper we will refer to the data structure in [9] as the PSP-structure and
the construction algorithm of the PSP-structure as the PSP-algorithm.

Fact 2 (Theorem 4.1 in [9])
Let V be a set of n points in R

d , and let G = (V;E) be a t-spanner for V , for
some real constant t > 1, having O(n) edges. Let D be the length of the longest
edge in G, let " be a positive real constant, and let k be a positive real constant.
We can preprocess G in O(n logn) time using O(n logn) space, such that for
any two points p and q in V with jpqj > D=nk, we can compute, in O(1) time,
a (1 + ")-approximation to the shortest-path distance in G between p and q.

We need a slightly modi�ed version of the above fact, stated in the following
corollary. The proof is implicit in [9].

Corollary 1. Let V be a set of n points in Rd , and let G = (V;E) be a (t; L)-
spanner for V , having O(n) edges, for some real constant t > 1 and some real
number L. Let D be the length of the longest edge in G, let " be a positive
real constant, and let k be a positive integer constant. We can preprocess G in
O(n log n) time using O(n logn) space, such that for any two points p and q in V
with D=nk < jpqj < L=t, we can compute, in O(1) time, a (1+")-approximation
to the shortest-path distance in G between p and q.

In the rest of this paper, we will apply Corollary 1 with a suÆciently large
value of k.

3 A �rst result

A straightforward idea is to divide the set E of edges of the t-spanner G = (V;E)
into subsets E1; : : : ; E`, and then build a PSP-structure Pi for each subset Ei.
In this way, a query can be reduced to the problem of �nding an appropriate,
to be de�ned below, PSP-structure. A �rst step towards our goal is to construct
the PSP-structures for each subset of edges and then show that given a query,
the correct PSP-structure can be found in constant time.

3.1 Building the PSP-structures

For each i, 1 6 i 6 `, construct the edge set Ei as follows. Initially E0
1 = E.

Let emin be the edge in E0
i with smallest weight and let Ei = fe 2 E0

ijwt(e) 6

nk � wt(emin)g. Finally, set E
0
i+1 = E0

inEi. The resulting edge sets are denoted
E1; : : : ; E`. We need some straightforward properties of the edge sets that will
be needed for the improved algorithm in Section 4.

Observation 3 Given the subsets of edges E1; : : : ; E`, as described above, the
following properties hold.

1. If e1; e2 2 Ei then wt(e1)=wt(e2) 6 nk.
2. If e1 2 Ei and e2 2 Ei+1 then wt(e1) < wt(e2).
3. If e1 2 Ei and e2 2 Ei+2 then wt(e2) > n2k � wt(e1).

When the edge sets are constructed, the ` PSP-structures, P1; : : : ; P`, can
be computed as follows. For each i, 1 6 i 6 `, construct a PSP-structure Pi
with the graph Gi = (V ; Ei) as input, where V = V and Ei = E1 [: : : [Ei.
Since Gi is a (t; Li)-spanner, where Li is equal to 1=t times the maximum edge
weight in Ei, we can apply Corollary 1 to Gi. Hence, the complexity of building
the data structure is ` � O(n log n), according to Corollary 2, which can be
bounded by O(n2 logn). It remains to show that given the ` PSP-structures, a
(1 + ")-approximate shortest path query can be answered in constant time, i.e.,
an appropriate PSP-structure can be found in constant time. Given a query pair
(p; q), if i is an integer such that mine2Ei

jej 6 t � jpqj and jpqj 6 nk+1mine2Ei
jej,

then the PSP-structure Pi is said to be appropriate for the query pair (p; q). Later
in the paper, we will see how this notion can be used to answer ASD-queries in
the t-spanner G.

Observation 4 For every query (p; q) there is an appropriate PSP-structure Pi.

Proof. Since G is a t-spanner, there is a path in G of length at most t � jpqj.
Clearly, this path has length at least jpqj, and it contains at most n edges.
Let e0 be the longest edge on this path. Then jpqj=n 6 wt(e0) 6 t � jpqj. Let
i be the index such that e0 2 Ei. Then mine2Ei

wt(e) 6 wt(e0) 6 t � jpqj and
jpqj 6 n � wt(e0) 6 nk+1mine2Ei

jej.

In Section 4, we will show how to improve the time and space bounds to
O(n log n), by using so-called cluster graphs as input to the PSP-algorithm in-
stead of the entire graphs Gi.

3.2 Answering ASD-queries

Given a query pair (p; q) it suÆces to prove, according to Fact 2 and Observa-
tion 4, that the appropriate PSP-structure Pi can be found in constant time. For
this we build an approximate single-link hierarchical cluster tree, denoted by T .
Given a set V of points, a single-link hierarchical cluster tree can be built as fol-
lows. Initially, each point is considered to be a cluster. As long as there are two or
more clusters, the pair C1 and C2 of clusters for which minfjpqj : p 2 C1; q 2 C2g
is minimum is joined into one cluster. Constructing the single-linkage hierarchy
T for V just means simulating the greedy algorithm of Kruskal [11] for comput-
ing the MST of V . This works �ne in the plane but not in higher dimensions.

Instead we build an approximate single-link hierarchical cluster tree using an
O(1)-approximation of the MST of V , that is, a variant of the MST which can
be obtained, as in Kruskal's algorithm, by inserting in each step an almost short-
est edge which does not induce a cycle with the edges already inserted. Methods
for constructing such MST's are given, for example, in [12].

When the approximate single-link hierarchical cluster tree T is built we pre-
process it in O(n) time, such that lowest common ancestors (LCA) queries can
be answered in constant time [10].

Observation 5 Let (u1; v1) and (u2; v2) be two pairs of vertices that have the
same least common ancestor �. Then wt(u1; v1)=wt(u2; v2) = O(n).

Proof. The observation is trivial since an O(1)-approximation of an MST is an
O(n)-spanner of the complete graph.

The �nal step of the preprocessing is to associate a PSP-structure to each
node in T . Let � be an arbitrary node in T and let lc(�) and rc(�) be the
left- and right child respectively of �. Every node � in T represents a cluster C.
Associated to � is also a value d(�), i.e., the length of the edge connecting C1 and
C2 where C1 is the cluster represented by lc(�) and C2 is the cluster represented
by rc(�). According to Observation 5, this value is an O(n)-approximation of
the distance between any pair of points (p; q) where p 2 C1 and q 2 C2. For each
node � in T we add a pointer to the appropriate PSP-structure. By using binary
search on the ` PSP-structures one can easily �nd the appropriate PSP-structure
in O(log n) time, hence in O(n log n) time in total.

Now we are �nally ready to handle a query. Given a query (p; q), compute
the LCA � of p and q in T . The LCA-query will approximate the length of (p; q)
within a factor of O(n), according to the above observation, which is suÆcient
for our needs. Hence, � will have a pointer to a PSP-structure Pj . One of the
PSP-structures Pj�1 or Pj will be an appropriate PSP-structure, this can be
decided in constant time. Finally the query is passed on to the appropriate PSP-
structure that answers the query in constant time.

We can now summarize the results presented in this section.

Lemma 1. Let V be a set of n points in Rd , and let G = (V;E) be a t-spanner
for V , for some real constant t > 1, having O(n) edges. We can preprocess G in
O(n2 logn) time and space, such that for any two points p and q in V , we can
compute, in O(1) time, a (1 + ")-approximation to the shortest-path distance in
G between p and q, where " is a positive real constant.

This is hardly impressive since using Dijkstra's algorithm to compute all-
pairs-shortest-paths and then saving the results in a matrix would give a better
result. In the next section we will show how to improve both the time and space
used to O(n logn).

4 Improving the complexity

By considering the above construction, one observes that the main reason why
the complexity is so high, is the size of the ` graphs constructed as input to the

PSP-algorithm. The trivial bound we obtain is that each of the ` graphs has size
O(n) and ` 6 n, thus resulting in an overall O(n2 logn) time and space bound.
A way to improve the complexity would be to construct \sparser" graphs, for
example cluster-graphs. This will improve both the preprocessing time and the
space complexity to O(n logn), as will be shown below. Since each input graph
will be a subset of the original input graph, this will complicate the construction
and the query structure considerably. This section is organized as follows. First
we show how to construct the ` cluster graphs, then it is shown that the total
space complexity of the input graphs can be bounded by O(n logn). Finally we
consider the problem of answering queries. The correctness of the data structure
is proven and �nally it is shown how to answer a query in constant time.

4.1 Constructing the cluster-graphs

The aim of this section is to produce the ` graphs G1; : : : ; G` that will be the
input to the PSP-algorithms. We de�ne the notions of cluster and cluster graph
as follows. Given a graph G = (V;E), a cluster C with cluster center at v is a
maximal set of vertices of V such that ÆG(v; u) <1 for every vertex u in C. Let
cc(u) denote the cluster center of the cluster that u belongs to.

A cluster graph HG;E0 , of a graph G = (V;E) and a set of edges E0, has
vertex set V and edge set E which are de�ned as follows. Let C = fC1; : : : ; Cbg
be a minimal set of clusters of G. For every edge (u; v) 2 E0 there is an edge
(cc(u); cc(v)) 2 E , with weight jcc(u); cc(v)j, if and only if u and v are in di�erent
clusters. The vertex set V is the set of cluster centers of C adjacent to at least
one edge in E . The cluster graph can be constructed in linear time with respect
to the complexity of G and the number of edges in E0. Below we describe, using
pseudo code, how this can be done.

ComputeClusterGraph(G = (V;E); E0)
1. for each edge (u; v) 2 E0 do

2. add edge (cc(u); cc(v)) with weight jcc(u); cc(v)j to E
3. while V not empty do
4. pick an arbitrary vertex v 2 V
5. remove every vertex u from V for which ÆG(v; u) <1
6. if 9u 2 V such that (v; u) 2 E then

7. add v to V
8. output H = (V ; E)

Following the above de�nition of a cluster graph it is now easy to construct
the ` cluster graphs G1; : : : ; G` which will be the input graphs for the construc-
tion of the ` PSP-structures, P1; : : : ; P`. Let G1 = (V;E1) and G2 = (V;E1[E2).
For each value of i, 3 6 i 6 `, the input graph Gi = (Vi; Ei) is the cluster graph
of Gi�2 and the edge set (Ei�1 [Ei).

Lemma 2. The ` PSP-structures uses O(n logn) space and can be constructed
in time O(n logn).

Proof. One PSP-structure Pi uses O((jVij + jEij) log(jVij + jEij)) preprocessing
time and space, according to Corollary 2. So the total time and space needed is:

X̀

i=1

(jVij+ jEij) log(jVij+ jEij): (1)

We know from the above de�nition of Vi and Ei that jVij 6 2jEi [Ei�1j and
that jEij = jEi [Ei�1j. Hence jVij+ jEij 6 3jEi [Ei�1j. The input graph G has

jEj = O(n) edges, which implies that
P`

i=1(jVij + jEij) 6 3
P`

i=1 jEi [Ei�1j =
O(n) and, hence, (1) will sum up to O(n logn). The time to compute the `
cluster graphs is linear with respect to the total input size, hence a total time
of O(n logn).

PreProcessing(G = (V;E); ")
1. construct E1; : : : ; E`

2. G1 := (V;E1), G2 := (V;E1 [E2)
3. for i := 3 to ` do
4. Gi :=ComputeClusterGraph(G;Ei�1 [Ei)
5. Pi :=ConstructPSP(Gi; "

0)
5. construct an approximate single-linkage hierarchy T of V
6. process T to allow eÆcient LCA-queries
7. construct cluster tree L of G
8. process L to allow eÆcient level-ancestor queries

Next it will be shown that given a query (p; q) there always exists an appro-
priate PSP-structure that answers (1 + ")-ASD queries. Finally, in Section 4.3,
we show how this appropriate PSP-structure can be found in constant time.

4.2 There exists an appropriate PSP-structure

Assume that we are given a spanner G = (V;E), a (1 + ")-ADS query (p; q),
and the appropriate PSP-structure Pi for (p; q). As the observant reader already
noticed, p and/or q may not be vertices in Vi, which implies that we cannot
query Pi with (p; q). Instead it will be shown that querying Pi with (cc(p); cc(q))
will help to answer the (1 + ")-ASD query on G. Let Gi be the cluster graph
given as input to the PSP-algorithm that constructed Pi.

Observation 6 The diameter of a cluster in Gi is at most jpqj=n2k�1.

Proof. According to the requirements the ratio between edge weights in Ei and
edge weights in Ei�2 is at least n2k, and since the longest path in a graph
contains at most n edges, we know that the diameter of a cluster in Gi is at
most a factor 1=n2k�1 times longer than the shortest edge in Ei.

The following observation can now be derived.

Observation 7 Given a (1 + ")-ASD query (p; q) on a graph G and a cluster
graph Gi, where Pi is the appropriate PSP-structure for (p; q) and G constructed
with Gi as input, we have

ÆGi
(cc(p); cc(q)) �

2jpqj

n2k�2
6 ÆG(p; q) 6 ÆGi

(cc(p); cc(q)) +
2jpqj

n2k�2
:

Proof. Let L1 the path in G between p and q having weight ÆG(p; q). We shall
use the notation L1(y; x) to denote the vertices of L1 between vertices y and x,
not including y. We construct a cluster path L2 from p to q in Gi as follows. Let
C0 be the cluster with cluster center v0 := cc(p). Among all vertices adjacent
to v0 in Gi, let v1 be the cluster center whose cluster C1 intersects C0 in the
furthest vertex, say w1, along L1(p; q). Add the edge (v0; v1) to L2. Next, among
all vertices adjacent to v1 in Gi, let v2 be the cluster center whose cluster C2

intersects C1 in the furthest vertex, say w2, along L1(w1; v). Add the edge (v1; v2)
to L2. This process continues until we reach cc(q) = vm. The two paths are
illustrated in Figure 1.

From Observation 6, the di�erence in length between L1 and L2 within one
cluster is bounded by 2jpqj=n2k�1. Since a shortest path can visit at most n
clusters and at most n vertices, it follows that the error is bounded by n �
2jpqj=n2k�1 = 2jpqj=n2k�2, hence the observation follows.

L1

L2

v0

v1

v2 vm

w1

w2

Fig. 1. Illustrating the two paths L1 and L2.

Observation 8 For every graph G and every query (p; q) there is an appropriate
PSP-structure Pi.

Proof. There is a path in G between p and q of length at most t � jpqj. This path
has length at least jpqj, and contains at most n edges. Hence, the longest edge,
say e0 on this path satis�es jpqj=n 6 wt(e0) < t � jpqj. This means that there is a
set Ei such that mine2Ei

jej 6 t � jpqj and jpqj 6 nk+1mine2Ei
jej.

We summarize this section with the following lemma:

Lemma 3. A (1 + ")-ADS query (p; q) on G can be answered by returning the

value Æ + 2jpqj
n2k�2 , where Æ is the answer obtained by performing a (1 + "0)-ADS

query (cc(p); cc(q)) on the appropriate PSP-structure for (p; q) on G, where "0 6
"� "+4

n2k�2 .

Proof. Assume that we are given a (1 + ")-ASD query (p; q) on G. According
to Observation 8 there is an appropriate PSP-structure Pi for (p; q) and G.
Now assume that we perform a (1 + "0)-ASD query (cc(p); cc(q)) on Pi where
we let Æ denote the answer of the query. According to Observation 7, we have

ÆG(p; q) �
2jpqj
n2k�2 6 ÆGi

(cc(p); cc(q)) 6 Æ 6 (1 + "0) � ÆGi
(cc(p); cc(q)) 6 (1 + "0) �

(ÆG(p; q)�
2jpqj
n2k�2); which gives

ÆG(p; q) 6 Æ +
2jpqj

n2k�2
6 (1 + "0) � ÆGi

(cc(p); cc(q)) + 4(1 + "0)
2jpqj

n2k�2
:

Now choose "0 6 "� "+4
n2k�2 . If a (1+")-ASD query (p; q) is performed on G we can

answer the query with the value Æ + 2jpqj
n2k�2 where Æ is obtained by performing a

(1+ "0)-ADS query (cc(p); cc(q)) on the appropriate PSP-structure Pi for (p; q).

The result of this section is that if the appropriate PSP-structure for G and
(p; q) is Pi then the (1+ ")-ASD query (p; q) on G can be replaced by a (1+ "0)-
ADS query (cc(p); cc(q)) on Gi with "0 6 " � "+4

n2k�2 . By choosing k equal to 2,
and assuming that n is suÆciently large, we can take "0 = "=2.

4.3 Answering ASD-queries

Above it was shown that a (1 + ")-ASD query (p; q) can be answered provided
that the appropriate PSP-structure and the cluster centers of p and q are found.
In this section we will �rst show how the appropriate PSP-structure Pi can be
found in constant time and �nally we show how the cluster centers of p and q
can be found in constant time.

Build an approximate single-link hierarchical cluster tree, denoted T , as de-
scribed in Section 3.2. The tree is then preprocessed such that LCA-queries
can be answered in constant time [10]. The �nal step of the preprocessing is to
associate a PSP-structure to each node in T , see Section 3.2.

Given a query (p; q) compute the LCA � of p and q in T . The LCA-query
will approximate the length of (p; q) within a factor of O(n), according to Ob-
servation 5, which is suÆcient for our needs. Hence, � will have a pointer to a
PSP-structure Pi and one of the PSP-structures Pi�1 or Pi will be the appro-
priate PSP-structure, which one it is can be decided in constant time.

Finding the cluster centers. Next the query should be passed on to the appro-
priate PSP-structure. It might be that p and/or q are not points in Vi. Recall
that Vi is the set of input points for the appropriate PSP-structure Pi. Hence,
it remains to show that one can �nd the vertex cc(p) in Vi that is the cluster
center of a query point p in constant time. For this purpose we build the cluster
tree L. Let r be the root of L. The parent of a node v in L is denoted parent(v).
The depth of v is d(v) = d(parent(v))+1, and d(r) = 0. The tree has `+1 levels

(p; q)

pq

T

LCA(p; q)
L

Level i

p q

cc(p) cc(q)

P1 P2 Pi Pl

i

cc(p)

cc(q)

Query

Fig. 2. Processing a query (p; q).

where the number of nodes at level 1 6 j 6 ` is jV`�j+1j. At level j in L, every
node � corresponds to a vertex v in V`�j+1, hence at leaf level, level `, there
are n nodes (the same holds for level `� 1). It holds that parent(�) is the node
�0 at level j � 1 that corresponds to the cluster center cc(v) in G`�j . To obtain
a tree we �nally add a root at level 0 that connects the nodes at level 1. The
cluster tree L can be computed in linear time w.r.t. the number of nodes, and
according to the proof of Lemma 2 this is O(n), hence, in total time O(n logn).

Note that �nding the cluster center cc(p) in Gi of a point p in G is equivalent
of �nding the ancestor of the leaf p at level j = ` � i + 1 in L. We will use a
modi�ed variant of the data structure presented by Alstrup and Holm [2]. The
structure answers level ancestor queries in constant time. Given a leaf v of a tree
T and a level l of T , the level ancestor of v and l is the ancestor of v at level l.
Note that if we query the cluster tree T with a vertex v and a level j the data
structure would return the ancestor of v at level j which is the cluster center of
v in the cluster graph G`�i+1.

We briey describe the modi�ed version of the data structure by Alstrup and
Holm [2].

Finding level ancestor Assume that we are given a tree L with a total of N
nodes. A query LevelAncestor(x; l) returns the ancestor y to x at level l in L.
The number of nodes in the subtree rooted at v is denoted s(v). The notation
dja means that a = k �d for some positive integer k. De�ne the rank of v, denoted
r(v) to be the maximum integer i such that 2ijd(v) and s(v) > 2i. Note that the
rank of the root will be blog2 nc.

Fact 9 (Observation 1 in [2]) The number of nodes of rank> i is at most bN=2ic.

The preprocessing algorithm consists of precomputing the depth, size and
rank of each node in the tree and then constructing the following three tables:

logtable[x]: contains the value blog2 xc, for 0 6 x 6 N .

levelanc[v][x]: contains the x'th ancestor to v, for 0 6 x 6 2r(v).

jump[v][i]: contains the �rst ancestor to v whose depth is divisible by 2i, for
0 6 i 6 log2(d(v) + 1).

The idea is then to use the jump[][] table a constant number of times in
order to reach a node w with a suÆciently large rank to hold the answer to the
level ancestor query in its table. The pseudocode looks as follows:

LevelAncestor(v; x)
1. i :=logtable[x+ 1]
2. d := d(v) � x
3. while 2(d(v)� d) > 2i do
4. v :=jump[v][i-1]
5. return levelanc[v][d(v)-d]

Corollary 2. (Modi�ed version of Lemma 2 in [2])
A tree T with N nodes can be preprocessed in O(N logN) time and space allowing
level ancestor queries to be answered in constant time.

Since the size of the L is O(n) we get that L can be constructed in total time
O(n log n) and then processed in time O(n logn) using O(n logn) space such
that level ancestor-queries can be answered in constant time.

ASD-query(p; q)
1. � :=LCA(T ; p; q)
2. Pi := �:PSP-structure
3. cc(p) :=LevelAncestor(L; p; i)
4. cc(q) :=LevelAncestor(L; q; i)
5. Æ :=QueryPSP(Pi; "

0)

6. return (Æ + 2jpqj
nk�2)

The following lemma concludes this section.

Lemma 4. We can preprocess a graph G = (V;E) and a set of PSP-structures
of G in time O(n logn) using O(n logn) space such that for any two points
p; q 2 V , we can compute in constant time the appropriate PSP-structure P for
(p; q) and G, and the cluster centers of p and q in the cluster graph corresponding
to P .

Putting together the results in Lemmas 2, 3 and 4 gives us Theorem 1.

5 Concluding remarks

We have presented a data structure which supports (1+")-approximate shortest
distance queries in constant time for geometric t-spanners, hence functions as
an approximate distance oracle. This generalises the ASD-oracle for restricted
queries presented by the authors in [9] to arbitrary queries. It has been shown
that the data structure can be applied to a large number of problems, for ex-
ample, closest pair queries, shortest paths among obstacles, computing stretch
factors of a geometric graph, and so on. We believe that the techniques used are
of independent interest.

In the full paper we also show that the structure easily can be extended such
that (1 + ")-approximate shortest path queries for geometric t-spanners can be
answered in time proportional to the number of edges along the path.

References

1. D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter
and shortest paths (without matrix multiplication). SIAM Journal on Computing,
28:1167{1181, 1999.

2. S. Alstrup and J. Holm, Improved algorithms for �nding level ancestors in dy-
namic trees. In Proc. 27th International Colloquium on Automata, Languages, and

Programming, 2000.
3. S. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. Smid, and C. D. Zaroliagis. Planar

spanners and approximate shortest path queries among obstacles in the plane. In
Proc. 4th European Symposium on Algorithms, LNCS 1136, pp. 514{528, 1996.

4. D. Z. Chen. On the all-pairs Euclidean short path problem. In Proc. 6th ACM-

SIAM Symposium on Discrete Algorithms, pp. 292{301, 1995.
5. D. Z. Chen, K. S. Klenk, and H.-Y. T. Tu. Shortest path queries among weighted

obstacles in the rectilinear plane. SIAM Journal on Computing, 29:1223{1246,
2000.

6. Y.-J. Chiang and J. S. B. Mitchell. Two-point Euclidean shortest path queries in
the plane. In Proc. 10th ACM-SIAM Symposium on Discrete Algorithms, 1999.

7. E. Cohen. Fast algorithms for constructing t-spanners and paths with stretch t.
SIAM Journal on Computing, 28:210{236, 1998.

8. D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths. SIAM Journal

on Computing, 29:1740{1759, 2000.
9. J. Gudmundsson, C. Levcopoulos, G. Narasimhan and M. Smid. Approximate

Distance Oracles for Geometric graphs. In Proc. 13th ACM-SIAM Symposium on

Discrete Algorithms, 2002.
10. D. Harel and R. E. Tarjan. Fast algorithms for �nding nearest common ancestors.

SIAM Journal on Computing, 13:338{355, 1984.
11. J. B. Kruskal, Jr. On the shortest spanning subtree of a graph and the traveling

salesman problem. Proc. Amer. Math. Soc. 7(1956):48{50, 1956.
12. D. Krznaric, C. Levcopoulos and B. J. Nilsson. Minimum Spanning Trees in d

Dimensions. Nordic Journal of Computing, 6(4):446{461, 1999.
13. J. S. B. Mitchell. Shortest paths and networks. In Handbook of Discrete and

Computational Geometry, pp. 445{466. CRC Press LLC, 1997.
14. M. Thorup and U. Zwick. Approximate distance oracles. In Proc. 33rd ACM

Symposium on Theory of Computing, 2001.

