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Abstract
We use methods from Data Mining and Knowledge Dis-
covery to design an algorithm for detecting motifs in
protein sequences. Based on this approach, we have im-
plemented a program called “GYM”. The Helix-Turn-
Helix Motif was used as a model system on which to
test our program. The program was also extended to de-
tect Homeodomain motifs. The detection results for the
two motifs compare favorably with existing programs.
In addition, the GYM program provides a lot of useful
information about a given protein sequence.

1. Introduction

A Motif is a region or portion of a protein sequence
that has a specific structure and is functionally signifi-
cant. Protein families are often characterized by one or
more such motifs. Detection of motifs in proteins is an
important problem since motifs carry out and regulate
various functions, and the presence of specific motifs
may help classify a protein.
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We describe a new approach to the problem of au-
tomatic motif detection. We use methods from Data
Mining and Knowledge Discovery to design an algo-
rithm that displays increased sensitivity as compared to
existing algorithms, while maintaining good accuracy
and also providing additional information about a given
protein sequence. Unlike previous approaches, our al-
gorithm does not use statistical methods. However, our
algorithm does need a “training set” of aligned sample
motifs. The basic assumption is that specific combi-
nations (of which there could be many) of residues in
specific locations within the motif are responsible for
imparting the structure and the functionality to the
motif. With this in mind, our algorithm searches for
patterns from the sample training set that are present
in a new protein sequence. Our approach has similari-
ties to an independently developed method designed by
Rigoutsos and Floratos [16], which does arbitrary motif
detection on unaligned protein sequences. This paper
describes how our algorithm can be implemented effi-
ciently. The resulting program is called GYM. Finally,
we describe our experiments with the Helix-Turn-Helix
Motif, which was used as a model system on which to
test our program. Results of tests on Homeodomain
motifs are also reported.



2. Motifs in Protein Sequences

As mentioned above, motifs share a common structure
and function. We describe the structural and func-
tional properties of the two motifs used in this study.

Helix-turn-helix Motifs The helix-turn-helix mo-
tif was the first protein motif to be discovered for site-
specific DNA recognition. This motif has been widely
investigated and there exists substantial knowledge of
the chemical interactions of specific residues. Crystal
structures of many of the proteins containing these mo-
tifs are also available. Limited information is also avail-
able from mutational analysis of the motif and the ef-
fect of specific amino-acid substitutions on motif struc-
ture. This motif is common to many DNA-binding pro-
teins and plays a crucial role in their binding to DNA.
Thus studying these motifs provides an excellent model
system for the study of protein motifs that are used in
site-specific recognition.

Features of the helix-turn-helix motif have been re-
viewed extensively by Pabo and Sauer [14] and Nel-
son [12]. Briefly, it consists of two α-helical struc-
tures separated by a turn. The motif is about 20 to
22 residues in length. The turn consists of three to
four amino acids, and the two helices make an angle
of approximately 120◦ [12]. One of the two helices is
responsible for binding to DNA in a sequence-specific
manner, and is referred to as the “recognition helix”.
In most proteins, the second of the two helices is the
“recognition helix”. Residues of the recognition helix
interact directly with bases in the major groove of the
DNA. A combination of residues in both the helices are
believed to be responsible for maintaining the appropri-
ate angle between the two helices. Proteins with helix-
turn-helix motifs share only limited sequence homol-
ogy in the motif region; the dissimilarity is attributed
to the sequence-specific interactions with the bases in
the DNA. Most proteins have at most one helix-turn-
helix motif; however, we will discuss a family of proteins
that have more than one such motif. All the proper-
ties mentioned above make automatic recognition of
helix-turn-helix motifs an interesting (and non-trivial)
algorithmic problem.

Homeodomain Motifs Proteins containing the
homeodomain motif play an important role in plant and
animal development. The homeodomain [18] motif is
made up of three α-helices and an extended N-terminal
arm. The first and second α-helices pack against each
other in an anti-parallel arrangement, while the third
α-helix lies perpendicular to them. The third helix is
the recognition helix; like its counterpart in the helix-

turn-helix motif, it interacts with DNA in the major
groove and provides the DNA-binding specificity. How-
ever, unlike the helix-turn-helix unit, the 60-residue
homeodomain forms an independent folded structure
and can independently bind to DNA. It is interesting to
note that the homeodomain motif contains a canonical
helix-turn-helix structure. Mutational and evolution-
ary analyses and crystal structures of these domains
are also available. The homeodomain motifs were cho-
sen for testing because they are almost thrice as long
as the helix-turn-helix motifs.

3. Motif Detection

3.1. Existing Methods

To aid in the detection of motifs in protein sequences,
classical methods involved carefully crafting a “consen-
sus” sequence to reflect highly conserved residues in the
motif. Pabo and Sauer [14] constructed a consensus
sequence for helix-turn-helix motifs based on a multi-
ple alignment of known motif sequences. One simple
method to detect helix-turn-helix motifs is to look for
the occurrence of such a consensus sequence. More
general “consensus” sequences are also possible (as the
ones maintained by PROSITE [2]). Inspired by the
concept of regular expressions, such generalized con-
sensus sequences consist of a sequence of sets of amino
acids where amino acids within the same set could sub-
stitute each other in that position. Nevill-Manning et
al. [13] presented a method for discovering motifs from
families of aligned protein sequences. Their method
was based on automatically constructing such general-
ized consensus sequences. Earlier, Wu and Brutlag [19]
had showed a way of constructing substitution sets in a
statistically significant manner. Another feature of the
algorithm due to Nevill-Manning et al. [13] involved
constructing a set of such consensus sequences with
the assumption that any one of the sequences in the
set could describe the motif. Additionally, the software
based on their method (emotif) provided the user with
parameters to tradeoff sensitivity to specificity. These
parameters are claimed to control the number of false
positives.

Other sophisticated detection schemes are all statis-
tically motivated. These are typified by the Profile
method described by Gribskov et al. [6]. The first step,
once again, involved making a multiple alignment of
known motifs. The next step typically involved com-
puting a probability matrix or a Score Matrix, which
assigns a different score to each possible residue at each
position in the motif. Intuitively, the entries of this ma-
trix represent a measure of the probability that a cer-
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tain residue occurs in that location, normalized by the
background frequencies for that residue. Minor vari-
ants exist in the methods employed to compute the
position-specific scoring matrix as well as in scoring a
match (see, for example, [9]). Given a score matrix, the
detector, when given an input protein sequence, com-
putes a weighted score for every subsequence of the
input sequence, and reports the subsequence with the
highest score as the detected motif, as long as this score
is above a certain threshold.

Dodd and Egan [4] showed how to compute such a
matrix in a simple manner. The probability values they
used were simply the frequency of a residue normalized
against the background frequencies for that residue.
Other statistically-based methods for detecting motifs
include that of using a Hidden Markov Model [8] and
Gibbs Sampling [10].

3.2. Motif Detection – New Method

Our method is not based on statistical methods. It dis-
covers patterns in known motifs to compute a pattern
dictionary. Detection of a motif in a new protein se-
quence is then a function of which patterns from the
dictionary are present in the new protein sequence.

The first assumption that our algorithm makes is
that an appropriate length of the motif is known be-
forehand. This is a reasonable assumption to make
since this is true for most of the known motifs (as in
the case of helix-turn-helix motifs and homeodomain
motifs). For example, there is ample evidence to show
that a helix-turn-helix motif lies within a window of
size at most 22. The second assumption is that a rea-
sonably large number of motifs are known and have
been detected and verified by experiment in the stan-
dard way. The training set can be chosen from these
known motifs. The third assumption is that a combi-
nation of key residues are sufficient to constitute the
necessary physical structure and to give it the func-
tionality; the rest of the parts of the motif may serve
other purposes. Note that this is where we differ from
the assumptions made for the other methods. While
many of the methods attach separate significance to
the occurrence of specific residues in specific locations
in the motif, they do not account for the reinforcing ef-
fect of a combination of specific residues. For instance,
residue x in location lx may be very significant only
if residue y is in location ly and residue z in location
lz simultaneously. Residue x in location lx may not
be very significant otherwise and may not occur fre-
quently in that location in known motifs and thus may
not have a high score in the score matrix. It is likely
that the patterns in the pattern dictionary discovered

by our method represent such “reinforcing” combina-
tions, helping in the detection of new motifs. Finally,
we assume that a “good” combination of residues must
occur “frequently enough” to be called a valid pattern
for the motif. To account for relatively rare reinforcing
combinations, we opted for setting an absolute thresh-
old value to decide whether a combination occurs “fre-
quently enough”, as opposed to a requirement that a
combination occurs in a specified percentage of the se-
quences in the training set.

Rigoutsos and Floratos [16] independently devised
a method to discover unknown motifs without doing
alignment, i.e., the training set for their program is a
set of unaligned protein sequences. Their method is
based on similar ideas of generating patterns, which
in turn could be used to perform detection. Other re-
lated methods are reviewed by Brāzma et al. [3]. While
the overall philosophy of these methods coincide with
ours, our algorithm differs from them in that it detects
known motifs after being trained on a set of aligned
sequences for the same motif, thus making use of all
available knowledge about the motif. Our methods
also share some overlap with that of Nevill-Manning
et al. [13]. The fundamental differences lies in the way
the threshold (this concept is explained below in Sec-
tion 4.1.) is used; they require that their motifs “cover”
some percentage of the sequences in the training set.

4. The New Algorithm

Here we present our new algorithm for detecting known
motifs in protein sequences. We will refer to this algo-
rithm as the “Pattern Dictionary” method. Based on
this new algorithm, we have implemented a program
(called “GYM”) that detects helix-turn-helix motifs.
This program was also modified and retrained to de-
tect homeodomain motifs in protein sequences. Note
that the program can be modified to detect other mo-
tifs.

The algorithm requires that an approximate length
of the motif be known beforehand and that a reason-
ably large number of motifs are known and have been
detected and verified by experiment in the standard
way. The training set can be chosen from these known
motifs. The algorithm consists of two parts. The first
part is a preprocessing step that needs to be performed
only once. The second part is where the actual motif
detection takes place.

The preprocessing phase can be called the Pattern
Mining phase. The input to this phase is the set of
known and aligned motifs, or the Master Set. The out-
put is a Pattern Dictionary consisting of frequently oc-
curring Patterns within the Master Set. The prepro-
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cessing phase is described in detail in Section 4.1.. The
input to the second part, or the Detection phase, con-
sists of the pattern dictionary output from the prepro-
cessing step and the input protein for which the motif
detection needs to be performed. The detection phase
is described in Section 4.2..

The output of the detection algorithm will indicate
whether or not the protein sequence contains a motif,
the location of this motif, a score indicating the con-
fidence of the prediction, along with a list of proteins
from the master set that share high sequence homol-
ogy with the detected motif as inferred from matching
patterns from the dictionary.

4.1. Preprocessing: “Pattern Mining”

The input to this phase is a master set of aligned motifs
without spaces. Thus when two motifs are aligned,
either the amino acids in a certain location in the motif
match or have a mismatch. Figure 1 shows an example
of a set of aligned motif sequences, where each motif is
of length 7; this is a hypothetical motif that is simply
used to illustrate the method. Note that each of these
motif sequences occur at different locations in different
proteins as indicated in Figure 1.

Location Sequence Protein
in Seq. 1 2 3 4 5 6 7 Name

14 G V S A S A V Ka RbtR
32 G V S E M T I Ec DeoR
33 G V S P G T I Ec RpoD
76 G A G I A T I Ec TrpR

178 G C S R E T V Ec CAP
205 C L S P S R L Ec AraC
210 C L S P S R L St AraC

Figure 1. Aligned Motifs – An example

Every amino acid in each of the motif sequences
above is associated with a position in the motif. Thus
protein Ka RbtR has amino acid G in location 1, V in
location 2, S in location 3, and so on. We thus repre-
sent the motif by a sequence of pairs, where each pair
<aa, pos> consists of an amino acid and its position in
the motif. We simplify the notation and denote these
amino acids by pairs of symbols such as G1, V2, and S3,
respectively. Ka RbtR would thus be denoted by the
set of pairs {G1, V2, S3, A4, S5, A6, V7}.

A Pattern is simply a set of pairs. Thus, {G1, S3,
T6} and {C1, P4, S5, L7} are two examples of pat-
terns. Protein Ec DeoR contains the pattern {G1, S3,
T6}, but does not contain the pattern {C1, P4, S5,
L7}. The length of a pattern is defined as the num-

ber of pairs in it. Thus, {G1, S3, T6} is a pattern of
length 3; this pattern is also shared by protein Ec CAP
and Ec RpoD. The support of a pattern is the number of
proteins in which it appears. For the 7 motif sequences
in Figure 1, the patterns {G1, S3, T6} and {G1, S3,
V2} have a support of 3, while pattern {G1, S3} has a
support of 4. A pattern is called a significant pattern
(or a frequent pattern), if its support is no less than a
certain threshold. A significant pattern is called maxi-
mal if it is not contained in any other significant pat-
tern. For a threshold value of 3, the pattern {G1, S3,
T6} is significant, but not maximal, since the maximal
significant pattern {G1, I7, S3, T6, V2} contains it.
The pattern mining phase outputs a list of all maximal
frequent patterns. This list will henceforth be referred
to as the pattern dictionary. For a threshold value of
3, the dictionary that will be output for the example
in Figure 1 would be that in Figure 2. If we lower the
threshold to 2, the dictionary that will be output would
be as shown in Figure 3.

Pattern Maximal Support
length Patterns

2 { S3, P4} 3
2 { S3, S5} 3
3 { G1, T6, I7} 3
3 { G1, S3, T6} 3
3 { G1, V2, S3} 3

Figure 2. Dictionary of frequent patterns for the
aligned motifs from Figure 1 with THRESH-
OLD = 3.

Pattern Maximal Support
length Patterns

2 { S3, P4 } 3
3 { G1, S3, V7} 2
5 { G1, V2,

S3, T6, I7 } 2
7 { C1, L2, S3,

P4, S5, R6, L7 } 2

Figure 3. Dictionary of frequent patterns for the
aligned motifs from Figure 1 with THRESH-
OLD = 2.

The algorithm goes through at most m (length of the
motif) iterations. In the i-th iteration, it generates all
frequent patterns of length i. In the i-th iteration, the
algorithm first generates a collection of potentially fre-
quent patterns and then their supports are computed
to verify if they are frequent enough. The collection of
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potential patterns generated in the i-th iteration con-
sists only of those patterns that are obtained by the
set union of two frequent patterns of length i− 1 that
differ in exactly one item. Even this observation is not
enough to efficiently generate all potentially frequent
patterns. We first present the algorithm in Figure 4
followed by a discussion of the implementation details
that make it efficient.

Algorithm Pattern-Mining
Input : Motif length m, support threshold

T , and list of aligned motifs.
Output : Dictionary L of frequent patterns.
1. Generate all frequent patterns of length 1

and insert into list L1.
2. for i = 2 to m do
3. for every pair of patterns p, q ∈ Li−1

such that |p ∩ q| = i− 1 do
4. Insert pattern p ∪ q into list Ei

5. for every pattern p ∈ Ei do
6. if (support(p) > T ) then
7. Insert p into Li.
8. if (|Li| ≤ 1) then
9. return L = ∪iLi

Figure 4. Pattern Mining Algorithm

Implentation Details Enumerative algorithms that
generate such a dictionary of frequent patterns are
likely to be inefficient because of the combinatorial ex-
plosion in the number of possible patterns. A sim-
ple counting argument shows that if the motif length
is denoted by m, there are 20m possible patterns of
length one (since there are only 20 amino acids), and
O((20m)k) possible patterns of length k. However, it
was recently shown [15] that the number of frequent or
significant patterns is also bounded by O(mn), where
n is the number of motif sequences in the input.

The naive algorithm of generating all possible pat-
terns of length i and checking whether it is significant
or not will clearly be very inefficient. Our algorithm
is based on an algorithm from the Data Mining by
Agrawal et al. [1], and is able to avoid the generation of
most infrequent patterns by using an efficient screening
process to be described below. The basic idea behind
the algorithm by Agrawal et al. is that if a pattern oc-
curs frequently, then every subset of this pattern must
necessarily be frequent. This also implies that if a pat-
tern does not occur frequently enough, then all super-
sets of this pattern may be immediately discarded.

In order to make this process efficient, all patterns
are stored in a canonical form with their items in sorted
order. For example, the canonical form for a pattern
{G1, A2, I4, A5} would be the sequence {A2, A5,
G1, I4}. The sorting is done in a simple lexicographic
manner. Furthermore, the list of patterns are also
sorted (again, in a lexicographic order). Once the dic-
tionary is put in this form, a potentially frequent pat-
tern is generated if two frequent patterns of length i−1
share the first i− 2 items in common. But then, since
the list is in sorted order, such patterns are going to be
next (or at least close) to each other in the list. To be
more precise, a block of k patterns that share the first
i−2 items are going to contribute O(k2) potentially fre-
quent patterns of length i. Another important obser-
vation that is not obvious is that the list does not need
to be sorted if things are processed in a proper order.
When a new pattern is generated, it is automatically
put at the end of the list. Because of the order in which
things are considered, the list remains sorted. For the
first iteration, the input sequences are scanned and for
every amino acid in the input sequences, either a new
pattern of length one is created or the support of an
existing pattern is incremented. The implementation
resulting from the algorithm is very fast in practice.

4.2. The Detection Algorithm

The detection algorithm is now quite straightforward.
It takes as input a motif length m, the dictionary of
significant patterns L output by the Pattern-Mining al-
gorithm (Figure 4), an integer k representing the num-
ber of best matches required as output, and the given
protein sequence P to be examined for the motif. We
slide a window of length m across the input sequence
P . The subsequence of P that lies in the window is
then matched against every significant pattern in L.
This is performed in a subroutine called Match. Match
returns a Match-Score that quantifies how well the win-
dow matched against the patterns in the dictionary L.
While it is convenient to think of Match-Score as a
number, it is in reality a collection of measures that
describe the quality of the match. The parameters
that define the Match-Score is explained later. The k
best Match-Scores along with the corresponding win-
dow locations is maintained. Finally, all matches from
the list of the k best matches whose quality exceeds a
pre-specified threshold are reported as possible motif
locations. The algorithm is described in Figure 5.

Match Parameters The following are the parame-
ters that define the quality of a match of a window of
size m with a dictionary of proteins: LPM – the length
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Algorithm Motif-Detection
Input : Motif length m, threshold score T ,

dictionary L of patterns,
number of best matches k,
and input protein sequence P [1..n].

Output : Information about motif(s) detected.
1. Best-Match-Score = Match(P [1..m] , L)
2. for i = 2 to n−m + 1 do
3. Match-Score = Match(P [i..i + m− 1] , L)
4. Update list of k best matches found so far.
5. for i = 1 to k do
6. if i-th best match-score ≥ T then
7. Report it as possible motif location

Figure 5. Motif Detection Algorithm

of the longest pattern matched, NDP – the number of
distinct positions from the window that matched some
pattern, and NPM – the number of distinct maximal
patterns matched.

Comparing two matches The selection of the
list of parameters and the process of comparing two
matches has been developed and fine-tuned after a close
study of experimental data. A significant pattern from
the dictionary represents a combination of amino acids
in specific locations that (potentially) positively rein-
force the motif structure. Thus, the longer the pattern,
the greater the number of positive reinforcements to the
structure, and consequently, the better the quality of
the match. By a similar argument, NDP and NPM are
also significant.

Output of Algorithm The algorithm is designed to
output the k locations with the highest match score, as
long as the scores are above a pre-specified threshold.
The algorithm will output the location of the motif
as well as the residues in the motif. It also prints the
match parameters, i.e., LPM, NDP, and NPM, for the k
best matches. The output includes the set of patterns
that are matched at the predicted motif location. It
also indicates which particular residues in the motif
are present in the patterns matched.

Lastly, the output gives a list of proteins from the
training set that exhibit the same patterns found in
the motif of the input protein sequence. For new pro-
tein sequences, this could provide clues to the family to
which this protein may belong in terms of its function.
This information would become more valuable when it
is combined with similar information from other motifs

found in the same protein sequence. We also conjec-
ture that a more careful study of the list of patterns
matched in a protein could help in determining evolu-
tionary relationships between proteins.

5. Results and Discussion

The pattern dictionary algorithm described above was
implemented, trained, and tested.

We first discuss the choice of the training set, also re-
ferred to as the “Master Set”. In general, the choice of
a training set is a non-trivial problem, and could deter-
mine the success or failure of a motif detection method.
Also, automatic generation of a training set is a diffi-
cult problem. We initially used the same training set
(91 proteins) as Dodd and Egan [4], but subsequently
eliminated three proteins. For these three proteins the
GYM and DE programs reported different motif lo-
cations, and experimental evidence defining the pre-
cise locations was not available in the literature. We
deleted these proteins so that their motifs could not
bias the training set. The three proteins deleted were:
(a) SpoOA Bacillus subtillis (Assn. No: 134739): GYM
predicted positions 5 and 219, DE predicted 198; (b)
XylR Bacillus subtillis (Assn. No: 98448): GYM pre-
dicted position 361, DE predicted 29; (c) pSC101 rep
(Assn. No: 281929): GYM predicted a marginal motif
at location 103, while DE failed to predict any motif.

Next we discuss the choice of the support threshold
T in Pattern-Mining algorithm. This parameter repre-
sents a tradeoff between the sensitivity and the number
of false positives that can be generated by the detection
algorithm. When the threshold is higher, while fewer
patterns are generated, the resulting patterns are likely
to have higher statistical significance. On the other
hand, if the threshold is lower, sensitivity is higher since
good patterns with lower statistical significance can be
detected. The threshold value used for our experiments
was equal to the maximum value that optimized the de-
tection of motifs from the training set itself, i.e., if the
threshold is any higher, then the detection algorithm
failed on some instances from the Master Set itself. For
the given training set, we chose a threshold of 4. Once
again, automatic choice of the threshold value seems to
be a difficult problem.

Since we wanted to test the performance of the
GYM program on a diverse set of proteins, the GYM
program was then tested on several families of pro-
teins. Some of the sub-families (such as the SigE sub-
family) are not represented in the training set. The
sequences were down-loaded from GenBank Protein Se-
quence Database maintained by the National Center for
Biotechnology Information (NCBI). For the helix-turn-
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helix motif, we ran the GYM program on 675 protein
sequences. For our tests, we chose to output only the
two (i.e., k = 2) best locations; choosing k = 1 was in-
adequate because there are a number of proteins with
more than one helix-turn-helix motif. We ran two inde-
pendent sets of experiments on the 675 proteins. One
set was run with the assumption that the helix-turn-
helix motif was located within a window of 20 residues;
the other set was run with a window size of 22. Since
the differences were minor, we only present the results
for a window size of 22. On the whole, the results for
a window size of 20 were subsumed by the results for a
window size of 22, i.e., sometimes the results for a win-
dow size of 22 may contain a prediction that is missed
by the results for a window size of 20.

Of the 675 sequences, GenBank had the motif lo-
cation annotated for 241. However, the database had
no information on how these locations were determined
(What program was used to determine the motif loca-
tion? Were any laboratory experiments performed to
verify the claim?). Thus we consider these annotations
unverified, as are the predictions of our program. In
order to confirm our results with an independent pro-
gram, we also implemented the score matrix method
described by Dodd and Egan [4]. For the sake of con-
venience, we refer to this program as DE, and we refer
to our program as GYM. Among the 675 proteins se-
lected, 93 are proteins involved in metabolic pathways
and other enzymatic reactions. These are presumed
not have a helix-turn-helix motif, since they are un-
likely to bind to DNA. We refer to this family as the
“Negates” family (see section 5.3. for details).

The programs GYM and DE disagreed on 68 (ap-
proximately 10%) of the sequences. Of these disagree-
ments 23 were from the negates set, indicating a large
number of false positives for our program. Another 23
of them were from the “Sigma” family (sigma factor
proteins). As discussed in section 5.2., there is evi-
dence to support the helix-turn-helix predictions made
by our program for these 23 sigma factor sequences.

It is interesting to note that the DE program, by
virtue of its design, makes a sharper distinction be-
tween its first choice and its second choice in terms
of the weighted scores. This is not true of the GYM
program. While this was an asset in dealing with pro-
teins that had two helix-turn-helix motifs, it could be
considered a drawback in other cases.

The results are discussed in detail in Sections 5.2.-
5.4.. The scores are first summarized in Figure 6. The
first column specifies the family of proteins tested. The
next two columns state the number of sequences tested
and the number on which the two programs agreed on
a motif location. The two programs are said to agree

if they have a common location within their top two
choices and if the corresponding scores are above the
threshold. The next two columns indicate how many
of the sequences tested had published annotations for
the motif location and how many of these matched
with GYM’s predictions. Once again, an annotation
is matched if one of the top two locations (if above the
threshold) are the same. While this was not known
before testing, we noticed that of the 675 proteins an-
alyzed, only 459 of the detected motifs were unique,
i.e., 216 of the sequences had motifs that were iden-
tical to the motifs in other sequences. Even if these
are discounted, the overall results show that out of
459 (= 675− 216) sequences tested, the two programs
agreed on 630− 216 = 414 (about 90%) sequences.

We also modified the GYM program to detect home-
odomain motifs. An appropriately modified version of
the DE program was also used. After training the two
programs with 121 sequences, we ran the two programs
on 524 protein sequences. There was overwhelming
agreement between the two programs. The results are
summarized below in Figure 6.

5.1. Master Set

The GYM and DE programs were first tested on the
88 sequences from the Master Set (the same set they
were trained with). The two programs agreed on the
locations of the motif in all of them.

5.2. Sigma Family

The 304 proteins selected for this set are all sigma fac-
tors, which are known to be DNA-binding proteins.
The sigma subunit of eubacterial RNA polymerase is
required for recognition of promoter sequences and ini-
tiation of transcription from those sites [11]. Two ma-
jor subfamilies of the sigma family of proteins have been
identified: (i) the σ70 or RpoD subfamily, which is used
by most of the “housekeeping” genes expressed during
exponential growth, and (ii) the alternative sigma fac-
tor subfamily, including RpoS, RpoE, FliA, etc., which
are involved in coordinated expression of sets of genes
during a change in metabolic or developmental state.

The results for this set of proteins were quite inter-
esting. GYM and DE predictions did not match for 34
of the 304 sequences tested. On closer inspection we
found that the predicted locations for 23 of them were
about 90-93 residues apart, and that most of them were
from the RpoS subfamily. Members of the sigma fam-
ily are known to have two helix-turn-helix motifs [11, 7]
in regions 3.1 and 4.2, which are about 90-93 residues
apart. For the RpoS subfamily, the GYM program de-
tected the motif in region 3.1, while DE picked the one
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Motif Protein How Many GYM = DE How Many GYM =
Family Tested Agree Annotated Annotated

Helix-Turn-Helix Master 88 88 (100%) 13 13
Motif Sigma 304 270+23 (96%) 96 82

(Window Size = 22) Negates 93 70 (75%) 0 0
LysR 127 125 (98%) 95 93
AraC 63 54 (86%) 37 29
Total 675 607+23 (93%) 241 217 (90%)

Homeodomain Master 121 121 (100%) 121 121
Motif Rest 403 390 (97%) 385 370

(Window Size = 60) Total 524 511 (98%) 506 491 (97%)

Figure 6. Summary of Motif Detection Results

in region 4.2, thereby accounting for the disagreements.
It is also interesting to note that the motifs in region
3.1 were not represented in the master set but GYM
was still able to detect them.

5.3. Negates Family

Among the 675 proteins analyzed, 93 were specifically
chosen as proteins involved in metabolic pathways and
other enzymatic reactions. We presumed that these
proteins would be unlikely to have a DNA-binding func-
tion, and consequently would be unlikely to have a
helix-turn-helix motif. We refer to this set of proteins
as the “negates” family.

Out of these 93 proteins, GYM predicted a potential
helix-turn-helix motif for 23. We initially interpreted
these results as “False Positives”; however, inspection
of the crystal structure of one of these proteins (Adeny-
losuccinate Synthetase from Escherichia coli, Assn.
No: 1942847) revealed three α-helices at locations 183-
191, 193-201, and 204-214. The GYM program pre-
dicted a motif at locations 188-219, which includes the
last two α-helices. This demonstrates that the GYM
program is able to detect structural motifs with high
sensitivity, and that a helix-turn-helix structure can
occur without guaranteeing DNA-binding function for
the motif region.

5.4. LysR and AraC families

The proteins from the LysR family [17] are predom-
inantly similar-sized, autoregulatory transcriptional
regulators. In response to different inducers, members
of this family of proteins activate divergent transcrip-
tion of linked target genes or unlinked regulons encod-
ing extremely diverse functions. Mutational studies
and amino acid sequence similarities have identified a

DNA-binding domain employing a helix-turn-helix mo-
tif (residues 1-65).

The AraC/XylS [5] family of transcriptional regula-
tors includes proteins and predicted polypeptides de-
rived from translation of DNA sequences. Members of
this family are about 300 amino acids long and have
three main regulatory functions: carbon metabolism,
stress response, and pathogenesis.The conserved region
contains all the elements required to bind DNA target
sequences and to activate transcription from cognate
promoters.

The GYM predictions agreed with those from DE
much more for the LysR family than the AraC family.
Among the disagreements in the LysR family was one
(BlaA Sc; Assn. No: 461627) for which the published
location matches GYM’s strong prediction for a mo-
tif at location 17; whereas, neither of the top two DE
predictions included this location.

Among the disagreements in the AraC family, there
were several that were displaced by about 60 residues.
This raises the question whether there is a second helix-
turn-helix structure in that location (as observed in the
Sigma family). There is evidence to suggest that this
region containing the second motif may have biological
significance [5]. It is also interesting to note that the
average “score” given by both programs was relatively
low for members of the AraC family, suggesting some-
what different characteristics for the helix-turn-helix
motifs in this family.

5.5. Homeodomain Motif

Both GYM and DE programs were retrained with
homeodomain motifs (60 residues in length) from 121
proteins to generate a corresponding pattern dictio-
nary. The two programs agreed with each other’s pre-
dictions and with the database annotations approxi-
mately 97% of the time. Such a high percentage of
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agreement may arise because homeodomain motifs are
found in closely related proteins, or because the propor-
tion of amino acids conferring DNA-binding specificity
(amino acids that are different) is much smaller than
the proportion conferring α-helical structure (amino
acids that are similar). We are unable to offer any
explanations for the cases where the predictions of the
two programs differed.

6. Conclusions

The GYM program has excellent ability to predict
helix-turn-helix motifs. It appears to have increased
sensitivity over the DE program and can detect mo-
tifs with greater differences from the training set. On
the negative side, the GYM program appears to have a
higher number of false positives; this may result from
detection of closely placed α-helices that are not di-
rectly involved in DNA binding. Modification of the
GYM program to detect the longer homeodomain mo-
tifs was also successful and resulted in very high agree-
ment with DE and the database sequence annotations.

The previous statistical methods for motif detection
are limited in that the sample training set must con-
tain sufficient representation of amino acid substitu-
tions that preserve or reinforce the particular struc-
ture and function of the motif. Some combinations of
residues in specific locations can reproduce that struc-
ture; whereas others cannot. Until we can model these
complex molecular interactions, the next best thing will
be to detect and enumerate successful combinations of
residues that form such motifs.
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