Data Structures

Giri Narasimhan Office: ECS 254A Phone: x-3748 giri@cs.fiu.edu

Hello!

- What are we here for?
 - □ COP 3530
 - It is a required course, but a pivotal one for BS-CS
- What is this course about?
 - Data Structures & Algorithm Analysis
 - Teaches you to plan before you act
 - Helps prior to coding to design the algorithm in a disciplined, systematic manner
 - Helps analyze and compare algorithms before implementation
 - Helps implement the most efficient programs
 - Simple to increasingly complex data structures & algorithms

General Information

- Course Website: https://users.cs.fiu.edu/~giri/teach/ 3530Fall2016.html
 - Moodle Site: Soon!
 - See Course website for
 - Syllabus
 - course objectives and learning outcomes
 - prerequisites and co-requisites
 - Required text
 - All policies, rules and regulations, including
 - Assignment Submission Policy
 - Cheating Policy
 - attendance standards

Evaluation

Programming Assignments 40%
In-class quizzes 15%
Exams 40%
Class Participation 5%

Pseudocode: Prelude to Code

- Structured, indented code
 - Free format
 - Skip formal syntax, declarations, and other details

Pseudocode 1: Find kth largest among N numbers SELECT-KTH-LARGEST (k, A) Sort(A) in decreasing order Report A[k]

3 considerations: Correctness? Time? Memory?

Pseudocode 2: Report all Prime numbers between 1 and N **REPORTALLPRIMES** (N) A prime number has only two divisors: 1 For j = 2 to N do and itself For k = 2 to j-1 do If (k is a factor of j) then Report j is not a prime and process next j Report j is a prime

Sconsiderations: Correctness? Time? Memory?

Pseudocode 3: Max Contiguous Subsequence Sum

MAXSUBSEQSUM(A)

For every possible subsequence of A compute Sum of subsequence keep track of highest subsequence sum

 3 considerations: Correctness? Time? Memory?

MAXSUBSEQSUM(A) Initialize maxSum to 0 N := size(A)For i = 1 to N do For j = i to N do Initialize this Sum to O for k = i to j do add A[k] to thisSum if (thisSum > maxSum) then update maxSum

Time Complexity Analysis

Pseudocode is enough for prelim time & memory analysis

- Time Complexity Analysis can:
 - Give you rough estimate of time
 - Give you a sense of growth of time complexity with input size (Asymptotics)
 - Help you to compare two or more algorithms in a machineindependent manner
- Time Complexity Analysis cannot:
 - Inform you about correctness or memory usage
 - Account for machine-dependent, PL-dependent, and programmer-dependent differences

Why not do Timing experiments

- Implementations take time
- Experiments cannot test all inputs
 - Average-Case vs Worst-Case Analysis
 - Results may be machinedependent

Asymptotic Running Time

- To compute asymptotic running time,
 - Consider the worst-case scenario
 - Consider the worst-case scenario & count number of steps as a function of length of input
 - Eliminate all terms except the dominant term(s)
 - Eliminate constants where possible
 - Simplify expression where possible
 - What remains is typically the asymptotic running time in big-Oh notation

Pseudocode 1: Find kth largest among N numbers Select-KTH-Largest (k, A) Sort(A) in decreasing order Report A[k]

3 considerations: Correctness? Time? Memory?

◆ Time ≈ time for sorting

Pseudocode 2: Report all Prime numbers between 1 and N **REPORTALLPRIMES** (N) A prime number has only two divisors: 1 For j = 2 to N do and itself For k = 2 to j-1 do If (k is a factor of j) then Report j is not a prime and process next j Report j is not a prime

◆ 3 considerations: Correctness? Time? Memory?
 ◆ Time ≈ N²

Pseudocode 3: Max Contiguous Subsequence Sum

MAXSUBSEQSUM(A)

For every possible subsequence of A compute Sum of subsequence keep track of highest subsequence sum

Time $\approx N^3$

MAXSUBSEQSUM(A)

Initialize maxSum to 0 For i = 1 to N-1 do For j = i to N-1 do Initialize thisSum to 0 for k = i to j do add A[k] to thisSum if (thisSum > maxSum) then update maxSum

Some Growth Rates

© The McGraw-Hill Companies, Inc. all rights reserved.

1	constant
log <i>n</i>	logarithmic
п	linear
n log n	n-log-n
n ²	quadratic
n ³	cubic
2"	exponential
<i>n</i> !	factorial

COP 3530: DATA STRUCTURES

description	order of growth	typical code framework	description	example
constant	1	a = b + c;	statement	add two numbers
logarithmic	log N	[see page 47]	divide in half	binary search
linear	Ν	double max = a[0]; for (int i = 1; i < N; i++) if (a[i] > max) max = a[i];	loop	find the maximum
linearithmic	$N \log N$	[see Algorithm 2.4]	divide and conquer	mergesort
quadratic	N^2	<pre>for (int i = 0; i < N; i++) for (int j = i+1; j < N; j++) if (a[i] + a[j] == 0) cnt++;</pre>	double loop	check all pairs
cubic	N^3	<pre>for (int i = 0; i < N; i++) for (int j = i+1; j < N; j++) for (int k = j+1; k < N; k++) if (a[i] + a[j] + a[k] == 0)</pre>	t ri ple loop	check all triples
exponential	2 ^N	[see CHAPTER 6]	exhasutive search	check all subsets

Review your exponents, logs, series

Exponents

- ♦ X^AX^B = X^{A+B}
- $\mathbf{A} \mathbf{X}^{\mathsf{A}} \mathbf{\dot{+}} \mathbf{X}^{\mathsf{B}} = \mathbf{X}^{\mathsf{A}-\mathsf{B}}$
- $(X^A)^B = X^{AB}$
- ◆ Fine points
 □ X^N + X^N = 2X^N ≠ X^{2N}
 □ X^N * X^N = X^{2N}
 □ 2^N + 2^N = 2^{N+1}

Logarithms • $\log x^{y} = y \log x$ log xy = log x + log y log log n = log(log n) • $\log^k n = (\log n)^k$ • $\log_y x = \log x - \log y$ $\bullet \log_b x = \log_a x / \log_a b$

Advantages of Asymptotic Analysis & Big-Oh Notation

Allows for rough measure of running time

- Abstracts main features of code without focusing on details of implementation or hardware or language or environment
- Tells us how time complexity scales with input size
- Allows for a quick high-level comparison of algorithms