Data Structures

Giri Narasimhan Office: ECS 254A Phone: x-3748 giri@cs.fiu.edu

Motivation

Many applications where

Items have associated priorities

- Job scheduling
 - Long print jobs vs short ones; OS jobs vs user jobs
 - Doctor's office

Abstract Data Structure: PriorityQueue

Insert(x, priority) // insert item with priority value
 DeleteMin // delete item with highest prioriy

Simple Implementations:
 ...

Possible Implementations

	insert(x, p)	deleteMin
LinkedList	O(1)	O(N)
SortedList	O(N)	O(1)
ArrayList	O(1)	O(N)
SortedArrays	O(N)	O(1)
Stacks	O(1)	N/A
Queues	O(1)	N/A
Binary Search Tree	O(h)	O(h)
AVL Trees	O(log N)	O(log N)
Binary Heaps	O(log N) **	O(log N)

What is a Binary Heap?

Heap is

a complete binary tree

Heap Property

Priority of node is at least as large as priority of children

Useful observations

- Highest priority is at the root of the tree
- The number of nodes in a complete binary tree of height h is between 2^h and 2^{h+1} - 1
- The height of a complete binary tree with n nodes is floor(log n)
- A complete binary tree can be stored in an array.
 - How?

Possible Array Implementation

Index	1	2	3	4	5	6	7	8	9	10
Node	18	15	14	6	12	11	3	9	2	7
Left Child	2	3	4	N/A	N/A	7	N/A	9	N/A	N/A
Right Child	8	6	5	N/A	N/A	N/A	N/A	10	N/A	N/A
Parent	N/A	1	2	3	3	2	6	1	8	8

Index	1	2	3	4	5	6	7	8	9	10
Node	18	15	9	14	11	2	7	6	12	3
Left Child	2	4	6	8	10	N/A	N/A	N/A	N/A	N/A
Right Child	3	5	7	9	N/A	N/A	N/A	N/A	N/A	N/A
Parent	N/A	1	1	2	2	3	3	4	4	5

No gaps in array

Because binary heaps are complete binary trees

Binary Heap: An example

- Root is always in position 1
 - For any array position i
 - Left child in position 2i
 - Right child in position 2i+1
 - Parent in floor(i/2)
- All tree links are therefore implicit

COP 3530: DATA STRUCTURES

9/28/16

http://users.cecs.anu.edu.au/~Alistair.Rendell/Teaching/apac_comp3600/module2/images/Heaps_HeapStructure.png

Array Implementations

Why is it better?

- Speed
 - Array operations tend to be faster (indexing is faster than referencing)
 - no need to read and write node references
 - cache performance is better
- Memory
 - Trees have a storage overhead (pointers to chidren)

Binary Heap interface

- // void insert(x) --> Insert x
- // Comparable deleteMin()--> Return and remove smallest item
- // Comparable findMin() --> Return smallest item
- // boolean isEmpty() --> Return true if empty; else false
- // void makeEmpty() --> Remove all items

Insert Operation

Let's try the animation first

http://www.cs.usfca.edu/~galles/JavascriptVisual/ Heap.html

Basic Idea:

Insert item at last item on last level

Same as last location in array

Percolate item up the tree until Heap Property is satisfied

Insert Implementation

```
public void insert( AnyType x ) {
    if( currentSize == array.length - 1 )
        enlargeArray( array.length * 2 + 1 );
```


deleteMin Operation

Basic Idea: First Attempt

- Delete root
- Percolate next highest priority value up the tree

Does not work

Result may not be a complete tree

Let's try the animation now

http://www.cs.usfca.edu/~galles/JavascriptVisual/Heap.html

Basic Idea: SecondAttempt

- Swap root with last item in array
- Percolate value down the tree

deleteMin Implementation

```
public AnyType deleteMin()
```

if(isEmpty())
 throw new UnderflowException();

AnyType minItem = findMin(); // returns array[1]
array[1] = array[currentSize--];
percolateDown(1);

return minItem;

percolateDown

```
private void percolateDown( int hole )
    int child;
    AnyType tmp = array[ hole ];
    for(; hole * 2 <= currentSize; hole = child)
       child = hole * 2;
       if( child != currentSize &&
            array[ child + 1 ].compareTo( array[ child ] ) < 0 )</pre>
         child++; // "child" is now the higher priority of the 2 children
       if(array[child].compareTo(tmp)<0)
         array[hole] = array[ child ]; // now compare with "child" & swap
       else
         break;
    array[ hole ] = tmp;
                      Time Complexity = O(\log n)
```

Possible Implementations

	insert(x, p)	deleteMin
LinkedList	O(1)	O(N)
SortedList	O(N)	O(1)
ArrayList	O(1)	O(N)
SortedArrays	O(N)	O(1)
Stacks	O(1)	N/A
Queues	O(1)	N/A
Binary Search Tree	O(h)	O(h)
AVL Trees	O(log N)	O(log N)
Binary Heaps	O(log N) **	O(log N)

Rethinking Priority Queues

- We have 2 operations
 Insert(x)
 - deleteMin()
- Amazingly, this can be used to sort a list. How?
 For (each item in unsorted list) { Insert(x); }
 While (not IsEmpty()) { deleteMin(); }
- Both steps above take O(n log n) time. Why?
- We also want to rethink the first step.
- If all items are inserted at start before any deletes, can inserts be done faster?

Revisit Insert

 If all items are inserted at start before any deletes, can inserts be done faster?

- Yes!
 - buildHeap

```
private void buildHeap()
  { // build heap efficiently from unsorted list
   for( int i = currentSize / 2; i > 0; i-- )
      percolateDown( i );
  }
```

Analysis of buildHeap

Useful Fact:

percolateDown(i) has time complexity O(d) where d is height of node represented by heap location i

 Theorem: For complete binary tree with height h and with n = 2^{h+1} - 1 nodes, the sum of heights of the nodes is 2^{h+1} - 1 - (h+1) = O(n)

BuildHeap does job of n inserts, but more efficiently

 Since buildHeap can be performed in O(n) time, each insert operation effectively takes O(1) time on the average.

Applications of Priority Queues

Sorting

buildHeap and then perform n deleteMins

- O(n) + n X O(log n) = O(n log n)
- Selection find kth smallest item in set
 - 1. buildHeap and then perform only k deleteMins
 - $O(n) + k \times O(\log n) = O(n + k \log n)$
 - If $k = O(n / \log n)$, then time complexity is O(n)
 - If k is much larger (say k = n/2), then this takes O(n log n)
 - 2. buildHeap on first k items and then, if needed, insert each remaining item after a deleteMin operation
 - O(k) + (n-k) X O(log k) = O(n log k)

Minor Problem

- Heap has largest item at the root
- Thus items deleted would be in reverse order
- One option is to create a heap where the smallest item is at root instead of the largest and to assume that values in the heap increase as you traverse from root to leaf
- A better solution is already achieved by deleteMin()
 How?
- Remember how deleteMin swaps with last position in array before proceeding to percolateDown() that item?
 N calls to deleteMin() would place the items in incr order!

Other Heap Operations

decreaseKey(p, Delta) // make item higher priority

increaseKey(p, Delta) // make item lower priority

delete(p) // delete arbitrary item

Sorting with AVL Trees

- N insert() operations, followed by
- N findMin() and N delete()
- Time complexity is O(N log N) again