Graphs

* Graphs model networks of various
kinds: roads, highways, oil pipelines,
airline routes, dependency
relationships, etc.

* Graph G(V,E)

* V Vertices or Nodes

* E Edges or Links: pairs of vertices
» Directed vs. Undirected edges
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1. 2 3 4 5
110 1 0 0 1
2110 1 1 1
3101 010
4|10 1 1 0 1
5|1 1 01 0
(a) (b) (c)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G having five
vertices and seven edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix rep-
resentation of G,

I 23 4 5 .6
110 1 01 0 O
210 00 010
310 000 1 1
40 1 0 0 0 0
510001 00
610 0 0 0 0 1

(a) (b) (c)

Figure 22.2 Two representations of a directed graph. (a) A directed graph G having six vertices
and eight edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation
of G.
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Graphs

* Graphs can be augmented to
store extra info (e.g., city
population, oil flow capacity, etc.)

* Weighted vs. Unweighted
* Paths and Cycles
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Figure 14.1
A directed graph.
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Figure 14.2

Adjacency list representation of the graph shown in Figure 14.1; the nodes in
list / represent vertices adjacent to / and the cost of the connecting edge.

3| 4@ —»| 6@4) —» 5(8) —» 2(2)

(VAR VEAVIS U AV AU vV VUL W U -~
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Adjacency Lists

» Constructing adjacency lists
- Input: list of edges
- Output: adjacency list for all vertices
- Time: O(L), where L is length of list of edges.

* Check if edge exists
- Input: edge (u,v)
- Output: does the edge exist in the graph G?

- Time: O(d,), where d, is the number of entries
in u's adjacency list. In the worst case it is
O(N), where N is the number of vertices

* Need a MAP data structure to map vertex
name or ID to (internal) vertex number.
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Shortest Paths

» Suppose we are interested in the
shortest paths (and their lengths)
from vertex "Miami" to all other
vertices in the graph.

* We need to augment the data
structure to store this information.
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Figure 14.4

An abstract scenario of the data structures used in a shortest-path
calculation, with an input graph taken from a file. The shortest weighted path

fromAtoCisAtoBto EtoDtoC(costis 76).
dist prev name  adj

D C 10 0 D —1— 3 (23),1 (10)
A B 12
D B 23 1 C | —1™ 2(19)
A D 87 2 A - 0(87),3 (12)
E D43 3 B — > 4 (11)
B E 11
C A 19 4 E —T— 0 (43)
Input Graph table
e I
D (0) E (4)
B (3)
A (2) C (1)
NG J

Visual representation of graph Dictionary

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss ~ © 2002 Addison Wesley



Figure 14.5

Data structures used in a shortest-path calculation, with an input graph taken
from a file; the shortest weighted path from AtoCisAtoBtoEtoDto C
(cost is 76).

Legend: Dark-bordered boxes are
Vertex objects. The unshaded portion in
each box contains the name and
adjacency list and does not change
when shortest-path computation is
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Figure 14.16

The graph, after the starting vertex has been marked as reachable in zero
edges

Vo

Ve
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Figure 14.17

The graph, after all the vertices whose path length from the starting vertex is
1 have been found
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Figure 14.18

The graph, after all the vertices whose shortest path from the starting vertex
is 2 have been found

1 2

Vo

Ve
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Figure 14.19
The final shortest paths
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Figure 14.20

If wis adjacent to v and there is a path to v, there also is a path to w

D, D, +1
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Figure 14.21A

Searching the graph in the unweighted shortest-path computation. The
darkest-shaded vertices have already been completely processed, the
lightest-shaded vertices have not yet been used as v, and the medium-
shaded vertex is the current vertex, v. The stages proceed left to right, top to
bottom, as numbered (continued).
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Figure 14.21B

Searching the graph in the unweighted shortest-path computation. The
darkest-shaded vertices have already been completely processed, the
lightest-shaded vertices have not yet been used as v, and the medium-
shaded vertex is the current vertex, v. The stages proceed left to right, top to
bottom, as numbered.

04/
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Figure 14.23

The eyeball is at v and w is adjacent, so D, should be lowered to 6.
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Figure 14.24

If D, is minimal among all unseen vertices and if all edge costs are
nonnegative, D, represents the shortest path.

Dy

az0
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Figure 14.25A

Stages of Dijkstra’s algorithm. The conventions are the same as those in
Figure 14.21 (continued).
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Figure 14.25B
Stages of Dijkstra’s algorithm. The conventions are the same as those in
Figure 14.21.
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Figure 14.28

A graph with a negative-cost cycle
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Figure 14.30A

A topological sort. The conventions are the same as those in Figure 14.21
(continued).
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Figure 14.30B

A topological sort. The conventions are the same as those in
Figure 14.21.
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Figure 14.31A

The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21 (continued).
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Figure 14.31B

The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21.

VUT/IVL/IVY L/vvilulvy v parey
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Figure 14.33
An activity-node graph

S
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Figure 14.34

An event-node graph
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Figure 14.35

Earliest completion times
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Figure 14.36

Latest completion times
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Figure 14.37

Earliest completion time, latest completion time, and slack (additional edge
item)
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Figure 14.38

Worst-case running times of various graph algorithms

TYPE OF GRAPH PROBLEM RUNNING TIME COMMENTS

Unweighted O(|E)) Breadth-first search
Weighted, no negative edges O(|E|log|V]) Dijkstra's algorithm
Weighted, negative edges O(E| - V] Bellman—Ford algorithm
Weighted, acydlic O(|E)) Uses topological sort
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