COT 5407: Introduction to Algorithms

Giri Narasimhan ECS 389; Phone: x3748 giri@cs.fiu.edu www.cs.fiu.edu/~giri/teach/5407F05.html

Quote by Charles Babbage

As soon as an *Analytical Engine* exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will then arise — by what course of calculation can these results be arrived at by the machine in the shortest time?

Charles Babbage (1864)

History of Babbage: http://ei.cs.vt.edu/~history/Babbage.html

Evaluation

•	Exams (2)	50%
•	Homework Assignments	35%
•	Semester Project	10%
•	Class Participation	5%

Search

 You are asked to guess a number X that is known to be an integer lying between integers A and B. How many guesses do you need in the worst case?

- Use binary search; Number of guesses = $log_2(B-A)$

- You are asked to guess a positive integer X. How many guesses do you need in the worst case?
 - NOTE: No upper bound is known for the number.
 - Algorithm:
 - figure out B (by using Doubling Search)
 - perform binary search in the range B/2 through B.
 - Number of guesses = $\log_2 B + \log_2 (B B/2)$
 - Since X is between B/2 and B, we have: $log_2(B/2) < log_2X$,
 - Number of guesses < $2log_2X 1$

Polynomials

Given a polynomial

 $- p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_{n-1} x^{n-1} + a_n x^n$

compute the value of the polynomial for a given value of \mathbf{x} .

- How many additions and multiplications are needed?
 - Simple solution:
 - Number of additions = n
 - Number of multiplications = 1 + 2 + ... + n = n(n+1)/2
 - Improved solution using Horner's rule:
 - $p(x) = a_0 + x(a_1 + x(a_2 + ... + x(a_{n-1} + x + a_n))...))$
 - Number of additions = n
 - Number of multiplications = n

Celebrity Problem

 A Celebrity is one that knows <u>nobody</u> and that <u>everybody</u> knows.

Celebrity Problem:

INPUT: n persons with a $n \times n$ information matrix. OUTPUT: Find the "celebrity", if one exists. MODEL: Only allowable questions are:

- Does person i know person j?
- Naive Algorithm: O(n²) Questions.
- Using Divide-and-Conquer: O(n log₂n) Questions.
- Improved solution?

Celebrity Problem (Cont'd)

- Naive Algorithm: O(n²) Questions.
 - Ask everyone of everyone else for a total of n(n-1) questions
- Using Divide-and-Conquer: O(n log₂n) Questions.
 - Divide the people into two equal sets. Solve recursively and find two candidate celebrities from the two halves. Then verify which one (if any) is a celebrity by asking n-1 questions to each of them and n-1 questions to everyone else about them. This gives a recurrence for the total number of questions asked: T(n) = 2T(n/2) + 4(n-1)
- Improved solution?
 - Hint: What information do you gain by asking one question?

Celebrity Problem (Cont'd)

- Induction Hypothesis 2: We know how to find n-2 non-celebrities among a set of n-1 people, i.e., we know how to find at most one person among a set of n-1 people that could potentially be a celebrity.
- Resulting algorithm needs [3(n-1)-1] questions.