Evaluation

•	Exams (2)	50%
•	Homework Assignments	35%
•	Semester Project	10%
•	Class Participation	5%

Celebrity Problem

• A **Celebrity** is one that knows <u>nobody</u> and that <u>everybody</u> knows.

Celebrity Problem:

INPUT: n persons with a $n \times n$ information matrix.

OUTPUT: Find the "celebrity", if one exists.

MODEL: Only allowable questions are:

- Does person i know person j?
- Naive Algorithm: O(n²) Questions.
- Using Divide-and-Conquer: O(n log₂n) Questions.
- Improved solution?

Celebrity Problem (Cont'd)

- Naive Algorithm: O(n²) Questions.
 - Ask everyone of everyone else for a total of n(n-1) questions
- Using Divide-and-Conquer: O(n log₂n) Questions.
 - Divide the people into two equal sets. Solve recursively and find two candidate celebrities from the two halves. Then verify which one (if any) is a celebrity by asking n-1 questions to each of them and n-1 questions to everyone else about them. This gives a recurrence for the total number of questions asked: T(n) = 2T(n/2) + 2n
- Improved solution?
 - Hint: What information do you gain by asking one question?

Celebrity Problem (Cont'd)

- Induction Hypothesis 2: We know how to find n-2 non-celebrities among a set of n-1 people, i.e., we know how to find at most one person among a set of n-1 people that could potentially be a celebrity.
- Resulting algorithm needs [3(n-1)-1] questions.

Solving Recurrence Relations

Page 62, [CLR]

Recurrence; Cond	Solution
T(n) = T(n-1) + O(1)	T(n) = O(n)
T(n) = T(n-1) + O(n)	$T(n) = O(n^2)$
T(n) = T(n-c) + O(1)	T(n) = O(n)
T(n) = T(n-c) + O(n)	$T(n) = O(n^2)$
T(n) = 2T(n/2) + O(n)	$T(n) = O(n \log n)$
T(n) = aT(n/b) + O(n);	$T(n) = O(n \log n)$
a = b	
T(n) = aT(n/b) + O(n);	T(n) = O(n)
a < b	
T(n) = aT(n/b) + f(n);	T(n) = O(n)
$f(n) = O(n^{\log_b a - \epsilon})$	L'ant de Later de
T(n) = aT(n/b) + f(n);	$T(n) = \Theta(n^{\log_b a} \log n)$
$f(n) = O(n^{\log_b a})$	
T(n) = aT(n/b) + f(n);	$T(n) = \Omega(n^{\log_b a} \log n)$
$f(n) = \Theta(f(n))$	
$af(n/b) \le cf(n)$	

5