Evaluation							
Exams (2) Homework Assignments Semester Project Class Participation	50% 35% 10% 5%						
9/1/05	COT 5407	1					

Celebrity Problem

 A Celebrity is one that knows <u>nobody</u> and that <u>everybody</u> knows.

Celebrity Problem:

INPUT: n persons with a n×n information matrix. OUTPUT: Find the "celebrity", if one exists.

MODEL: Only allowable questions are:

- Does person i know person j?
- Naive Algorithm: O(n²) Questions.
- Using Divide-and-Conquer: O(n log₂n) Questions.
- Improved solution?

9/1/05 COT 5407

Celebrity Problem (Cont'd)

- Naive Algorithm: O(n2) Questions.
 - Ask everyone of everyone else for a total of n(n-1) questions
- Using Divide-and-Conquer: O(n log₂n) Questions.
 - Divide the people into two equal sets. Solve recursively and find two candidate celebrities from the two halves. Then verify which one (if any) is a celebrity by asking n-1 questions to each of them and n-1 questions to everyone else about them. This gives a recurrence for the total number of questions asked: T(n) = 2T(n/2) + 2n
- Improved solution?
 - Hint: What information do you gain by asking one question?

9/1/05 COT 5407

- Induction Hypothesis 2: We know how to find n-2 non-celebrities among a set of n-1 people, i.e., we know how to find at most one person among a set of n-1 people that could potentially be a celebrity.
- Resulting algorithm needs [3(n-1)-1] questions.

9/1/05 COT 5407 4

Solving Recurrence Relations

Page 62, [CLR]

Solution
T(n) = O(n)
$T(n) = O(n^2)$
T(n) = O(n)
$T(n) = O(n^2)$
$T(n) = O(n \log n)$
$T(n) = O(n \log n)$
T(n) = O(n)
T(n) = O(n)
$T(n) = \Theta(n^{\log_b a} \log n)$
$T(n) = \Omega(n^{\log_b a} \log n)$