
1

COT 5407 10/6/05 1

Animations
• BST:

http://babbage.clarku.edu/~achou/cs160/bst_animation/BST-
Example.html

• Rotations:
http://babbage.clarku.edu/~achou/cs160/bst_animation/index2.ht
ml

• RB-Trees:
http://babbage.clarku.edu/~achou/cs160/bst_animation/RedBlackTree-
Example.html

COT 5407 10/6/05 2

Red-Black (RB) Trees
• Every node in a red-black tree is

colored either red or black.
– The root is always black.
– Every path on the tree, from the root

down to the exterior, has the same
number of black nodes.

– No red node has a red child.
• Every RB-Tree with n nodes has

height at most 2logn

COT 5407 10/6/05 3

Red-Black Trees
RB-Insert (T,z) // pg 261

// Insert node z in tree T
y = NIL
x = root[T]
while (x ≠ NIL) do

y = x
if (key[z] < key[x])

x = left[x]
x =

right[x]
p[z] = y
if (y == NIL)

root[T] = z
else if (key[z] < key[y])

left[y] = z
else right[y] = z
// new stuff
left[z] = NIL[T]
right[z] = NIL[T]
color[z] = RED
RB-Insert-Fixup (T,z)

RB-Insert-Fixup (T,z)
while (color[p[z]] == RED) do

if (p[z] = left[p[p[z]]]) then
y = right[p[p[z]]]
if (color[y] == RED) then // C-1

color[p[z]] = BLACK
color[y] = BLACK
z = p[p[z]]
color[z] = RED

else if (z == right[p[z]]) then // C-2
z = p[z]
LeftRotate(T,z)

color[p[z]] = BLACK // C-3
color[p[p[z]]] = RED
RightRotate(T,p[p[z]])

else
// Symmetric code: “right” ↔ “left”
• • •

color[root[T]] = BLACK

2

COT 5407 10/6/05 4

Rotations
LeftRotate(T,x) // pg 278

// right child of x becomes x’s parent.
// Subtrees need to be readjusted.
y = right[x]
right[x] = left[y] // y’s left subtree becomes x’s right
p[left[y]] = x
p[y] = p[x]
if (p[x] == NIL[T]) then

root[T] = y
else if (x == left[p[x]]) then

left[p[x]] = y
else right[p[x]] = y
left[y] = x
p[x] = y

COT 5407 10/6/05 5

Augmented Data Structures
• Why is it needed?

– Because basic data structures not enough for all operations
– storing extra information helps execute special operations more

efficiently.
• Can any data structure be augmented?

– Yes. Any data structure can be augmented.
• Can a data structure be augmented with any additional

information?
– Theoretically, yes.

• How to choose which additional information to store.
– Only if we can maintain the additional information efficiently

under all operations. That means, with additional information,
we need to perform old and new operations efficiently maintain
the additional information efficiently.

COT 5407 10/6/05 6

New Operations on RB-Trees
• Basic operations

– RB-Search, RB-Insert, RB-Delete
• New Operations

– Rank(T,x)
– Select(T,k)
– NO EFFICIENT WAY TO IMPLEMENT THEM!
– Unless more information is stored in each node!

• What information to be added in each node?
– Rank information

• Very useful but hard to maintain under Insert/Delete
– Size information

• Useful and easy to maintain under Insert/Delete

3

COT 5407 10/6/05 7

How to augment data structures

1. choose an underlying data structure
2. determine additional information to be

maintained in the underlying data
structure,

3. develop new operations,
4. verify that the additional information can

be maintained for the modifying
operations on the underlying data
structure.

COT 5407 10/6/05 8

RB-Tree Augmentation
• Augment x with Size(x), where

– Size(x) = size of subtree rooted at x
– Size(NIL) = 0

COT 5407 10/6/05 9

OS-Select
OS-SELECT(x,i) //page 304
// Select the node with rank i
// in the subtree rooted at x
1. r = size[left[x]]+1
2. if i = r then
3. return x
4. elseif i < r then
5. return OS-SELECT (left[x], i)
6. else return OS-SELECT (right[x], i-r)

4

COT 5407 10/6/05 10

OS-Rank
OS-RANK(x,y)
// Different from text (recursive version)
// Find the rank of x in the subtree rooted at y
1 r = size[left[y]] + 1
2 if x = y then return r
3 else if (key[x] < key[y]) then
4 return OS-RANK(x,left[y])
5 else return r + OS-RANK(x,right[y])

Time Complexity O(log n)

COT 5407 10/6/05 11

Augmenting RB-Trees
Theorem 14.1, page 309

Let f be a field that augments a red-black tree T
with n nodes, and f(x) can be computed using only
the information in nodes x, left[x], and right[x],
including f[left[x]] and f[right[x]].
Then, we can maintain f(x) during insertion and
deletion without asymptotically affecting the
O(lgn) performance of these operations.

For example,
size[x] = size[left[x]] + size[right[x]] + 1
rank[x] = ?

COT 5407 10/6/05 12

Examples of augmenting information for
RB-Trees

• Parent
• Height
• Any associative function on all

previous values or all succeeding
values.

• Next
• Previous

