
\qquad

OS-Rank

\qquad
OS-RANK (x, y)
// Different from text (recursive version)
// Find the rank of x in the subtree rooted at y
$1 r=\operatorname{size}[$ left $[y]]+1$
2 if $x=y$ then return r
3 else if (key[$x]$ < $\operatorname{key}[y]$) then
4 return OS-RANK (x, left $[y]$) \qquad
5 else return $r+$ OS-RANK (x, right $[y]$)

COT 5407	Time Complexity $\mathrm{O}(\log \mathrm{n})$

OS-Select

\qquad
OS-SELECT(x,i) //page 304
// Select the node with rank i
// in the subtree rooted at x \qquad

1. $r=\operatorname{size}[$ left $[x]]+1$
2. if $i=r$ then \qquad
3. return $x \quad$ Time Complexity $\mathrm{O}(\log \mathrm{n})$
4. elseif $i<r$ then \qquad
5. return OS-SELECT (left $[x], i)$
6. else return OS-SELECT (right[x], i-r)

10/6/05

Augmented Data Structures

- Why is it needed?
- Because basic data structures not enough for all operations
- storing extra information helps execute special operations more efficiently
- Can any data structure be augmented?
- Yes. Any data structure can be augmented.
- Can a data structure be augmented with any additional information?
- Theoretically, yes.
- How to choose which additional information to store.
- Only if we can maintain the additional information efficiently under all operations. That means, with additional information we need to perform old and new operations efficiently maintain the additional information efficiently.

COT 5407
10/6/05

How to augment data structures

\qquad

1. choose an underlying data structure
2. determine additional information to be maintained in the underlying data structure,
3. develop new operations,
4. verify that the additional information can be maintained for the modifying operations on the underlying data structure.
\qquad
\qquad
\qquad
\qquad

Augmenting RB-Trees

\qquad
Theorem 14.1, page 309 Let f be a field that augments a red-black tree T \qquad with n nodes, and $f(x)$ can be computed using only the information in nodes x, left $[x]$, and right $[x]$, including $f[l e f t[x]]$ and $f[r i g h t[x]]$.
Then, we can maintain $f(x)$ during insertion and deletion without asymptotically affecting the $O(\operatorname{lgn})$ performance of these operations.

For example,
$\operatorname{size}[x]=\operatorname{size}[\operatorname{left}[x]]+\operatorname{size}[\operatorname{right}[x]]+1$ $\operatorname{rank}[x]=$?

Cot 5407
10/6/05

Examples of augmenting information for RB-Trees

\qquad

- Parent
- Height
- Any associative function on all \qquad previous values or all succeeding values. \qquad
- Next
- Previous

Greedy Algorithms

- Given a set of activities $\left(s_{i}, f_{i}\right)$, we want to schedule the maximum number of non-overlapping activities.
- GREEDY-ACTIVITY-SELECTOR (s, f)

1. $n=$ length[s]
2. $S=\left\{a_{1}\right\}$
3. $i=1$
4. for $m=2$ to n do
5. if s_{m} is not before f_{i} then $\begin{aligned} & \text { if } S_{m} \text { is not before } f_{i} \\ & S=S U\left\{a_{m}\right\}\end{aligned}$ $i=m$
return S

COT 5407

Example

\qquad

- [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11],
[8,12], $[2,13],[12,14]$-- Sorted by finish times
- $[1,4],[3,5],[0,6],[5,7],[3,8],[5,9],[6,10],[8,11]$, [8,12], [2,13], [12,14]
- $[1,4],[3,5],[0,6],[5,7],[3,8],[5,9],[6,10],[8,11]$,
\qquad [8,12], [2,13], [12,14]
$[1,4],[3,5],[0,6],[5,7],[3,8],[5,9],[6,10],[8,11]$ \qquad
[8,12], [2,13], [12,14]
- $[1,4],[3,5],[0,6],[5,7],[3,8],[5,9],[6,10],[8,11]$,
[8,12], [2,13], [12,14] \qquad
- $[1,4],[3,5],[0,6],[5,7],[3,8],[5,9],[6,10],[8,11]$,
[8,12], [2,13], [12,14]

COT 5407

Why does it work?

- THEOREM

Let A be a set of activities and let a_{1} be the activity with the earliest finish time. Then activity a_{1} is in some maximum-sized subset of nonoverlapping activities.

- PROOF

Let S^{\prime} be a solution that does not contain a_{1}. Let a_{1}^{\prime}
\qquad be the activity with the earliest finish time in S^{\prime}.
Then replacing a_{1}^{\prime} by a_{1} gives a solution S of the same size.
Why are we allowed to replace? Why is it of the same size? Then apply induction! How?
\qquad
\qquad
\qquad
\qquad
\qquad
COT 5407
10/6/05

Greedy Algorithms - Huffman Coding

\qquad

- Huffman Coding Problem

Example: Release 29.1 of $15-\mathrm{Feb}-2005$ of TrEMBL Protein Database contains $1,614,107$ sequence entries, comprising $505,947,503$ amino acids'. There are 20 possible amino acids. What is the minimum number of bits to store the compressed database?
$\sim 2.5 \mathrm{G}$ bits or 300 MB .

- How to improve this?
- Information: Frequencies are not the same.

Ala (A) $7.72 \mathrm{GIn}(Q) 3.91 \quad \mathrm{Leu}(\mathrm{L}) 9.56 \quad \operatorname{Ser}(\mathrm{~S}) 6.98$
$\operatorname{Arg}(\mathrm{R}) 5.24 \quad \mathrm{Glu}(\mathrm{E}) 6.54 \quad \mathrm{Lys}(\mathrm{K}) 5.96 \quad \mathrm{Thr}(\mathrm{T}) 5.52$ Asn (N) 4.28 Gly (G) $6.90 \quad \operatorname{Met}(M) 2.36 \quad \operatorname{Trp}(W) 1.18$ Asp (D) 5.28 His (H) 2.26 Phe (F) $4.06 \quad \mathrm{Tyr}(\mathrm{Y}) 3.13$ $\begin{array}{llll}\text { Cys (C) } 1.60 & \mathrm{Ile} \text { (I) } 5.88 & \operatorname{Pro}(\mathrm{P}) 4.87 & \mathrm{Val}(\mathrm{V}) 6.66\end{array}$

COT 5407
10/6/05 11

Huffman Coding

- Idea: Use shorter codes for more frequent amino acids and longer codes for less frequent ones. \qquad
Greedy Algorithms - Other examples
- Minimum Spanning Trees (Kruskal's \& Prim's)
- Matroid Problems
- Several scheduling problems

Dynamic Programming

- Activity Problem Revisited: Given a set of activities (s_{i}, f_{i}), we want to schedule the maximum number of non-overlapping activities.
- New Approach:
$A_{i}=$ Best solution for intervals $\left\{a_{1}, \ldots, a_{i}\right\}$ that includes interval a_{i}
$B_{i}=$ Best solution for intervals $\left\{a_{1}, \ldots, a_{i}\right\}$ that does not include interval a_{i}
- Does it solve the problem to compute A_{i} and B_{i} ?
- How to compute A_{i} and B_{i} ?

