
1

10/18/05 1COT 5407

Greedy Algorithms
• Given a set of activities (si, fi), we want to

schedule the maximum number of non-overlapping
activities.

• GREEDY-ACTIVITY-SELECTOR (s, f)
1. n = length[s]
2. S = {a1}
3. i = 1
4. for m = 2 to n do
5. if sm is not before fi then
6. S = S U {am}
7. i = m
8. return S

10/18/05 2COT 5407

Example
• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12],

[2,13], [12,14] -- Sorted by finish times
• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12],

[2,13], [12,14]
• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12],

[2,13], [12,14]
• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12],

[2,13], [12,14]
• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12],

[2,13], [12,14]
• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12],

[2,13], [12,14]

10/18/05 3COT 5407

Why does it work?
• THEOREM

Let A be a set of activities and let a1 be the activity with
the earliest finish time. Then activity a1 is in some
maximum-sized subset of non-overlapping activities.

• PROOF
Let S’ be a solution that does not contain a1. Let a’1 be the
activity with the earliest finish time in S’. Then replacing a’1
by a1 gives a solution S of the same size.
Why are we allowed to replace? Why is it of the same size?

Then apply induction! How?

2

10/18/05 4COT 5407

Greedy Algorithms – Huffman Coding
• Huffman Coding Problem

Example: Release 29.1 of 15-Feb-2005 of TrEMBL Protein Database
contains 1,614,107 sequence entries, comprising 505,947,503 amino
acids. There are 20 possible amino acids. What is the minimum number
of bits to store the compressed database?

~2.5 G bits or 300MB.
• How to improve this?
• Information: Frequencies are not the same.

Ala (A) 7.72 Gln (Q) 3.91 Leu (L) 9.56 Ser (S) 6.98
Arg (R) 5.24 Glu (E) 6.54 Lys (K) 5.96 Thr (T) 5.52
Asn (N) 4.28 Gly (G) 6.90 Met (M) 2.36 Trp (W) 1.18
Asp (D) 5.28 His (H) 2.26 Phe (F) 4.06 Tyr (Y) 3.13
Cys (C) 1.60 Ile (I) 5.88 Pro (P) 4.87 Val (V) 6.66

• Idea: Use shorter codes for more frequent amino acids and longer
codes for less frequent ones.

10/18/05 5COT 5407

IDEA 3: Use Variable Length
Codes

A 22

T 22

C 18

G 18

N 10

Y 5

R 4

S 4

M 3

Huffman Coding

IDEA 1: Use ASCII Code
Each need at least 8 bits,
Total = 16 M bits = 2 MB

2 million characters in file.
A, C, G, T, N, Y, R, S, M

IDEA 2: Use 4-bit Codes
Each need at least 4 bits,
Total = 8 M bits = 1 MB

110101101110010001100000000110

110101101110010001100000000110

How to Decode?
Need Unique decoding!
Easy for Ideas 1 & 2.
What about Idea 3?

2 million characters in file.
Length = ?
Expected length = ?
Sum up products of frequency times the code length, i.e.,

(.22x2 + .22x2 + .18x3 + .18x3 + .10x3 + .05x5 + .04x5 + .04x5 + .03x5) x 2 M bits =
3.24 M bits = .4 MB

Percentage
Frequencies

11

10

011

010

001

00011

00010

00001

00000

10/18/05 6COT 5407

Dynamic Programming
• Activity Problem Revisited: Given a set of activities (si, fi),

we want to schedule the maximum number of non-
overlapping activities.

• New Approach:
Ai = Best solution for intervals {a1, …, ai} that includes
interval ai

Bi = Best solution for intervals {a1, …, ai} that does not
include interval ai

• Does it solve the problem to compute Ai and Bi?
• How to compute Ai and Bi?

3

10/18/05 7COT 5407

Dynamic Programming
• Activity Problem Revisited: Given a set of n

activities ai = (si, fi), we want to schedule the
maximum number of non-overlapping
activities.

• New Approach:
– Observation: To solve the problem on activities

An = {a1,…,an}, we notice that either
• optimal solution does not include an (Problem on An-1)
• optimal solution includes an (Problem on Ak, which is

equal to An without activities that overlap an, I.e., ak is
the last activity that finishes before an starts.)

10/18/05 8COT 5407

An efficient implementation
• Why not solve the problem on A1,…,An-1,An?
• In what order to solve them?
• Is the problem on A1 easy?

– YES, trivial
• Can the optimal solutions to the problems on

A1,…,Ai help to solve the problem on Ai+1?
– YES! Either:

• optimal solution does not include ai+1 (Problem on Ai)
• optimal solution includes ai+1 (you are left with a

problem on Ak, which is equal to Ai without activities
that overlap ai+1, i.e., ak is the last activity that
finishes before ai+1 starts.)

10/18/05 9COT 5407

Dynamic Programmming: Activity Selection
• Select the maximum number of non-overlapping

activities from a set of n activities A = {a1, …, an}
(sorted by finish times).

• Identify “easier” subproblems to solve.
A1 = {a1}
A2 = {a1, a2}
A3 = {a1, a2, a3}, …,
An = A

• Subproblems: Select the max number of non-
overlapping activities from Ai

4

10/18/05 10COT 5407

Dynamic Programmming: Activity Selection
• Solving for An solves the original problem.
• Solving for A1 is easy.
• If you have optimal solutions S1, …, Si-1 for

subproblems on A1, …, Ai-1, how to compute Si?
• The optimal solution for Ai either

– Case1: does not include ai or
– Case 2: includes ai

• Case 1:
– Si = Si-1

• Case 2:
– Si = Sk U {ai}, for some k < i.
– How to find such a k? We know that ak cannot overlap ai.

10/18/05 11COT 5407

Dynamic Programmming: Activity Selection
• DP-ACTIVITY-SELECTOR (s, f)

1. n = length[s]
2.N[1] = 1 // number of activities in S1
3.F[1] = 1 // last activity in S1
4.for i = 2 to n do
5. let k be the last activity finished before si
6. if (N[i-1] > N[k]) then // Case 1
7. N[i] = N[i-1]
8. F[i] = F[i-1]
9. else // Case 2
10. N[i] = N[k] + 1
11. F[i] = i

How to output Sn?
Backtrack!

Time Complexity?
O(n lg n)

10/18/05 12COT 5407

Dynamic Programming Features
• Identification of subproblems
• Recurrence relation for solution of

subproblems
• Overlapping subproblems (sometimes)
• Identification of a hierarchy/ordering

of subproblems
• Use of table to store solutions of

subproblems (MEMOIZATION)
• Optimal Substructure

