Greedy Algorithms

Given a set of activities (s_{i}, f_{i}), we want to schedule the maximum number of non-overlapping activities.
GREEDY-ACTIVITY-SELECTOR (s, f)

1. $n=$ length[s]
2. $S=\left\{a_{1}\right\}$
3. $i=1$
4. for $m=2$ to n do
5. if s_{m} is not before f_{i} then
\qquad
\qquad
\qquad
\qquad
6. $\quad S=S \cup\left\{a_{m}\right\}$
7. $\quad i=m$
8. return S
cot 5407
10/18/05

Example

[1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12],
\qquad [2,13], [12,14] -- Sorted by finish times
$[1,4],[3,5],[0,6],[5,7],[3,8],[5,9],[6,10],[8,11],[8,12]$,
[2,13], [12,14]
$[1,4],[3,5],[0,6],[5,7],[3,8],[5,9],[6,10],[8,11],[8,12]$,
[2,13], [12,14]
$[1,4],[3,5],[0,6],[5,7],[3,8],[5,9],[6,10],[8,11],[8,12]$,
[2,13], [12,14]
[1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12],
[2,13], [12,14]
[1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12],
[2,13], [12,14]
\qquad

Why does it work?

THEOREM
Let A be a set of activities and let a_{1} be the activity with the earliest finish time. Then activity a_{1} is in some
maximum-sized subset of non-overlapping activities.
PROOF
Let S^{\prime} be a solution that does not contain a_{1}. Let a_{1}^{\prime} be the activity with the earliest finish time in S^{\prime}. Then replacing a_{1}^{\prime} by a_{1} gives a solution S of the same size.
Why are we allowed to replace? Why is it of the same size?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Dynamic Programming

Activity Problem Revisited: Given a set of activities (s_{i}, f_{i}), we want to schedule the maximum number of nonoverlapping activities.
New Approach:
$A_{i}=$ Best solution for intervals $\left\{a_{1}, \ldots, a_{i}\right\}$ that includes interval a_{i}
$B_{i}=$ Best solution for intervals $\left\{a_{1}, \ldots, a_{i}\right\}$ that does not include interval a_{i}
Does it solve the problem to compute A_{i} and B_{i} ?
How to compute A_{i} and B_{i} ?

COT 5407
10/18/05
${ }^{6}$ \qquad

Dynamic Programming

Activity Problem Revisited: Given a set of n activities $a_{i}=\left(s_{i}, f_{i}\right)$, we want to schedule the maximum number of non-overlapping activities.
New Approach:

- Observation: To solve the problem on activities $A_{n}=\left\{a_{1}, \ldots, a_{n}\right\}$, we notice that either
- optimal solution does not include a_{n} (Problem on A_{n-1})
- optimal solution includes a_{n} (Problem on A_{k}, which is equal to A_{n} without activities that overlap a_{n}, I.e., a_{k} is the last activity that finishes before a_{n} starts.) \qquad
COT 5407
10/18/05 \qquad

An efficient implementation

Why not solve the problem on $A_{1}, \ldots, A_{n-1}, A_{n}$?
In what order to solve them?
Is the problem on A_{1} easy?

- YES, trivial

Can the optimal solutions to the problems on A_{1}, \ldots, A_{i} help to solve the problem on A_{i+1} ?

- YES! Either:
- optimal solution does not include a_{i+1} (Problem on A_{i})
- optimal solution includes a_{i+1} (you are left with a problem on A_{k}, which is equal to A_{i} without activities that overlap a_{i+1}, i.e., a_{k} is the last activity that
finishes before a_{i+1} starts.)
COT 5407
10/18/05
8
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

> Dynamic Programmming: Activity Selection
> - Select the maximum number of non-overlapping activities from a set of n activities $A=\left\{a_{1}, \ldots, a_{n}\right\}$ (sorted by finish times).
> - Identify "easier" subproblems to solve.
> $A_{1}=\left\{a_{1}\right\}$
> $A_{2}=\left\{a_{1}, a_{2}\right\}$
> $A_{3}=\left\{a_{1}, a_{2}, a_{3}\right\}, \ldots$,
> $A_{n}=A$

- Subproblems: Select the max number of non-
\qquad overlapping activities from A_{i} \qquad
\qquad

```
Dynamic Programmming: Activity Selection
Solving for \(A_{n}\) solves the original problem.
Solving for \(A_{1}\) is easy.
If you have optimal solutions \(S_{1}, \ldots, S_{i-1}\) for
subproblems on \(A_{1}, \ldots, A_{i-1}\), how to compute \(S_{i}\) ?
The optimal solution for \(A_{i}\) either
    - Case1: does not include \(a_{i}\) or
    - Case 2: includes \(a_{i}\)
Case 1:
    - \(S_{i}=S_{i-1}\)
Case 2:
    \(-S_{i}=S_{k} \cup\left\{a_{i}\right\}\), for some \(k<i\).
    - How to find such \(a k\) ? We know that \(a_{k}\) cannot overlap \(a_{i}\).
    cot 5407 10/18/05
10
```


Dynamic Programming Features
- Identification of subproblems
- Recurrence relation for solution of
subproblems
- Overlapping subproblems (sometimes)
- Identification of a hierarchy/ordering
of subproblems
- Use of table to store solutions of
subproblems (MEMOIZATION)
- Optimal Substructure
cor 5407

\qquad
\qquad
\qquad
\qquad
Use of table to store solutions of subproblems (MEMOIZATION)
\qquad
\qquad
\qquad

